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1 Introduction

Traditionally, forecasting of macroeconomic variables is done within a low dimensional

framework, typically using vector autoregressive (VAR) models. However, recent ad-

vances in macroeconometric modelling point in another direction, where predictions of

key macroeconomic variables are integrated within the analysis of a possibly very large

number of other variables that are not considered to be of primary interest. An exam-

ple is when the focus is on predicting in�ation and GDP growth, whereas many other

variables that are thought to carry information about the future realizations of these key

variables are also included in the analysis. To reduce the dimensionality problem, which

would cause the number of parameters in a VAR model to increase exponentially with

the number of variables, common dynamic factors are currently advocated by many re-

searchers as a parsimonious way of capturing the comovements among di¤erent variables

�thus attempting to break the curse of dimensionality that arises in VAR models. One

speci�c example is the so-called di¤usion index models (see inter alia Quah and Sargent,

1993, Forni et al., 2000 and 2001 and Stock and Watson, 2002a, 2002b and 2006). An-

other variant of these types of models is the factor augmented VAR model, FAVAR (see

Bernanke et al., 2005 and Bai and Ng, 2002).

The implementation of large, dynamic models with latent factors is not straightfor-

ward. One common approach is to estimate the unobserved factors in a �rst step using

principal component techniques. In this way, information about a few common factors

from a large number of interrelated variables can be extracted. Then, in the next step,

when the estimated common factors are used to forecast key variables within an AR or

VAR model, they are treated �as if� they were observed. More direct approaches, in-

volving parametric speci�cations of the latent processes, have also been put forward, e.g.,

subspace algorithms (see Bauer, 2005 and Bauer and Wagner, 2002) and quasi maximum
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likelihood methods (Doz et al., 2006). These methods can be seen as approximate meth-

ods for maximizing the full likelihood implied by a state space model when the observation

vector is high dimensional, but the number of latent factors is relatively small.

The performance of various procedures, compared with traditional low dimensional

time series modeling is an important topic. The problems we address in this paper concern

both e¢ cient estimation and out-of-sample predictive performance. Of course, the issues

of estimation and prediction are related. Only if we are able to estimate su¢ ciently rich

models, can we expect that their goodness-of-�t and out-of-sample forecasting properties

are satisfactory. Well established univariate methods may provide a useful benchmark

for evaluating the more elaborate high-dimensional models. While some papers report

satisfactory results when comparing di¤usion index models with simple univariate models,

these �ndings may not be robust, especially if the latter type of models are more carefully

designed than often is the case in such �competitions�, e.g., regarding the question about

the number of lags to include. There is some evidence that on data sets dominated

by large, irregular components, which is typical for many macroeconomic time series, the

performance of di¤usion index-type models is disappointing compared with simpler models

(Dahl et al., 2005; D�Agostino et al., 2006). This may be explained by the fact that large

models with latent factors tend to have simple dynamics, driven by just a few common

components. The dynamics related to the individual (variable speci�c) components are

then typically not su¢ ciently taken into account when the models are estimated and

applied for forecasting. An important example of this is the approximate dynamic factor

models, where the (idiosyncratic) error terms of each variable are allowed to be weakly

correlated over time (and series), but where this correlation structure is not explicitly

modeled.

Our approach is to model the individual variables as univariate autoregressive processes,

augmented with common dynamic factors to account for the comovements among them.
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The number of lags for each of the individual variables and the number of common fac-

tors are determined by applications of information criteria in a two-step procedure. More

speci�cally, we shall focus on a situation where a vector of key variables, zt; is assumed to

be an aggregate of an n-dimensional vector xt = (xt1; :::; xtn)0 through the deterministic

relation zt = f(xt). As a special case, some components of xt and zt may be identi-

cal. Typically, zt is low dimensional, while xt is of high dimension. The n endogenous

variables xit, i = 1; :::; n, are observed for t = 1; :::; T . Each variable xit is modeled as

an AR(pi)�process augmented with a small number of common stochastic components

(common factors). One question we address is whether there is any gain from predicting

the key variables, zt, using a disaggregated data set, xt, or whether one obtains equally

good, or even better, forecasts from univariate models of the key variables.

Our approach has more in common with the tradition of multivariate structural time

series models than with the approximate dynamic factor models mostly favored in the

literature. See Harvey (1989) for a general exposition of structural time series models and

Proietti (2002) and Harvey (2006) for forecasting within this framework. Our model is

formulated using unadjusted values of the variables, and common latent dynamic factors

and latent seasonal components are an integral part of the model formulation. Apart from

detrending by di¤erencing we perform no preprocessing of the data, such as e.g. seasonal

adjustments or corrections for outliers. Estimation of the model is based on the state space

formulation. A full information maximum likelihood algorithm using exact (analytical)

derivatives is developed, which works well even if the number of unknown parameters is

in the range of 1,000�3,000, which is the typical situation in the present study. These

parameters comprise, for each of the 93 equations we analyze, AR-parameters, parameters

of seasonal dummy variables, loading coe¢ cients of common factors and white noise error

variances.

The rest of this paper is organized as follows: Section 2 presents the modelling frame-
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work and discusses forecasting. Section 3 describes the data and the estimation method

used in the empirical application. The empirical results are presented and discussed in

Section 4, while Section 5 concludes.

2 Modeling framework

The n variables xit are assumed to have the following representation:

(1�
piX
j=1

�ijL
j)�xit = �i

0dt + �i
0ft + �i

0st + eit,

where L is the lag operator, the �ij are autoregressive parameters, dt is a 4 � 1 vector

consisting of a constant term and dummy variables for the three �rst quarters of the

calendar year, with corresponding coe¢ cient vector �i, ft = (f1t; :::; frt)
0 is an r�1 vector

of independent dynamic factors, distributed as Gaussian AR(1) processes:

ft = 	ft�1 + �t; �t � IN (0; I);

with r � 1 loading vector �i and 	 =diag( 1; :::;  r).
1 We use the notation 0 and I

to denote, respectively, a matrix of zeros and an identity matrix of appropriate dimen-

sion. Furthermore, st = (s1t; :::; skt)
0 is a k-dimensional vector of independent stochas-

tic seasonal components with loading vector �i: The seasonal vector process is given by

st = �st�1 � st�2 � st�3 + !t; !t � IN (0; I):

Finally, eit � N (0; �2i ) is an (idiosyncratic) error term with Cov(eit,ejs) = 0 if i 6= j or

t 6= s.

Next, de�ne

�x�it =
�
�xi;t�1; � � � ;�xi;t�pi

�0
,

1The (identifying) restriction that 	 is a diagonal matrix may easily be relaxed, but we �nd no gain
in terms of improved out-of-sample performance by allowing the latent factors to follow a more general
VAR process.
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and

�i =
�
�i1; � � � ; �ipi

�0
; i = 1; :::; n:

Furthermore, let

� =
�
�1; � � � ; �n

�0
� =

�
�1; � � � ; �n

�0
.

To obtain identi�cation, we require the loading matrices � = f�ijgn�r and � = f�ijgn�k

to have a lower triangular structure, with �ij = 0 and �ij = 0 if j > i. The above model

can then be cast in a familiar state space form:

yt = Bdt +X�
t �+ Z�t + "t

�t = T �t�1 +R
�
�t
0; !0t

�0 t = 1; :::; T; (1)

where the observation vector is

yt =
�
�x1t; :::;�xnt

�0
and the state vector is

�t =
�
ft
0; st

0; st�1
0; st�2

0 �0 :
Furthermore

"t =
�
"1t; � � � ; "nt

�0
B =

�
�1 � � � �n

�0
X�
t =

26664
�x�1t

0 0 0 0
0 �x�2t

0 0 0
...

...
. . .

...
0 0 0 �x�nt

0

37775
� =

�
�1

0; � � � ; �n
0 �0

Z =
�
� � 0 0

�
T =

2664
	 0 0 0
0 �I �I �I
0 I 0 0
0 0 I 0

3775 ; R =
2664
I 0
0 I
0 0
0 0

3775 : (2)
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The main purpose of the analysis is to predict zt = f(xt). Consider the i�th component

of zt, zit. The typical situation is that zit = lnZit, and that

zit = fi(X1t; :::; Xnt):

where the econometric model is formulated in terms of xit = lnXit. More speci�cally, all

our aggregates can be represented in the following form:

zit = ln
X
j2ni

wjtXjt, (3)

where ni denotes the set containing the indices of the components included in the ag-

gregate zit. If a volume aggregate is considered, wjt = 1 for all j and t, whereas, if an

aggregate price index is considered, the wjt are time dependent and
P

i2ni wjt = 1 (wjt

will then also depend on i, but for simplicity we have omitted the i-subscript here). The

typical variable of interest to predict is the relative growth from t to t+ h , i.e., �hzi;t+h,

where, for any series Xt, �hXt � Xt �Xt�h. The optimal predictor would then be

Et(�hzi;t+h) = Et

 
�h ln

X
j2ni

wjtXj;t+h

!
,

where Et(�) denotes the expectation given the information set It including observations

up until period t: It = fXsgs�t This calculation is obviously complicated and depends

critically on distributional assumptions. A simpler alternative, which is the one we pursue,

is to linearize zi;t+h around the current value zit as follows:

zi;t+h = lnZit + ln

�
1 +

�hZi;t+h
Zit

�
= zit + ln

 
1 +

X
j2ni

wjtXjt

Zit

�hXj;t+h

Xjt

!

' zit +
X
j2ni

�jt�hxj;t+h

where

�jt �
�

wjtXjtP
k2ni wktXkt

�
, xjt � lnXjt,
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and we have used the approximations x ' ln(1 + x) and �hXt+h=Xt ' �hxt+h (see

Appendix B for two concrete examples of how �jt is constructed). Hence

�hzi;t+h '
X
j2ni

�jt�hxj;t+h =
X
j2ni

�jt

 
t+hX
s=t+1

�xjs

!

and

Et(�hzi;t+h) '
X
j2ni

t+hX
s=t+1

�jtEt(�xjs). (4)

The approximation (4) should work well when the terms Et(�xjs) are small over the

forecasting horizon s 2 [t + 1; t + h]. Well-known prediction methods for state space

models can be used to obtain Et(�xjs), for given parameter values. To make explicit

the dependence of the forecasts on the parameter values, let # be a vector of unknown

parameters and let b#� denote the ML estimator of # using all the data up until (and
including) time period � , i.e., fxtgt�� . We then use the notation Et(zi;t+hjb#� ) to denote
the forecast of zi;t+h given the information set It and the parameter estimate b#� :

Et(zi;t+hjb#� ) = zit + Et(�hzi;t+hjb#� ): (5)

3 Data and estimation

We mainly use quarterly data from the Norwegian national accounts. In addition we

use time series for household wealth, housing prices, the money market interest rate,

the unemployment rate and the import weighted exchange rate where the data source is

either Statistics Norway or the Central Bank of Norway. Altogether, not counting deduced

variables, data for 93 variables are utilized. The time series start in 1978Q2 and end in

2005Q4. Table A1 gives an exhaustive overview over the variables, which we denote by

Xi. Note that nominal variables, price indices and hourly wage rates have been divided

by the consumer price index, as indicated in the footnotes of Table A1. In conjunction

9



with the econometric analysis, the variables are log transformed. For the money market

interest rates and the unemployment rate, we apply the transformations given below:

x5 = ln(1 +X5)

x8 = ln(1 + (X8=100)).

Table A2 shows how the 22 key variables, referred to as Z-variables, are derived from

those in Table A1. In Table 1 we list the key variables and the transformation undertaken

for each of them. We also introduce short labels for the transformed key variables, that

we are going to predict.

Referring to the state space formulation (1), letAt =E(�tjy1; :::; yt�1), Vt =Var(�tjy1; :::; yt�1),

� = diag[�21; �
2
2; :::; �

2
n] and letDt be the one-step ahead prediction error covariance matrix

for yt:

Dt = E
�
[yt � E(ytjy1; :::; yt�1)] [(yt � E(ytjy1; :::; yt�1))]0

�
: (6)

As above, # denotes the vector of unknown parameters. Then the log-likelihood function

takes the standard form

l(#) = �1
2

TX
t=1

�
ln jDtj+ (yt �Bdt �X�

t �� ZAt)
0Dt

�1(yt �Bdt �X�
t �� ZAt)

�
;
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where At and Dt are calculated by means of the Kalman �lter, as follows:

A1 = 0

V1 = 0

For t = 2; :::; T :

et = yt �Bdt �X�
t �� ZAt

Dt = ZVtZ
0 + �

Kt = T VtZ 0D�1
t

At+1 = T At +Ktet

Vt+1 = (T �KtZ)VtT 0 +RR0: (7)

The dimensionality problem associated with this model is related to the observation

vector yt. Although the Kalman �lter requires inversion of the n� n matrix Dt, this can

be carried out by using the matrix inversion lemma:

[ZVtZ
0 + �]�1 = ��1 � ��1Z(V �1

t + Z 0��1Z)�1Z 0��1. (8)

Because � is diagonal, the use of (8) simpli�es considerably.

Partial optimization of the likelihood function with respect to the regression para-

meters (�0i; �
0
i), i = 1; :::; n, is automatically obtained, in closed form, by the augmented

Kalman �lter, see de Jong (1991). Full maximum likelihood estimation with respect to

all the parameters of the model, i.e., also including the factor loadings and variance pa-

rameters, (�0i; �
0
i; �i), i = 1; :::; n; and the autoregressive coe¢ cients of the latent factors,

 1; :::;  r, is more cumbersome. Most papers that use likelihood methods, e.g., Doz et al.,

2006, rely on the EM algorithm. However, because of its linear convergence properties,

this method is not practical when the number of parameters is very large. For example,

Doz et al. (2006), using seasonally adjusted data, do not attempt to maximize the log-

likelihood function but just perform a few iterations of the EM algorithm. In our model,
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the number of parameters is given by
Pn

i=1 pi + n(r + k + 5); except for the correction

following from identifying restrictions on the loading factors. The parameters consist of

AR-parameters, factor loadings, dummy variables and the variance of the genuine error

term. The median value of pi is 3 and, for example if r = k = 3, the total number of

parameters is around 1,500.

A property of the EM algorithm, which is seldom utilized in practice, is that it can be

used to obtain exact derivatives of the log-likelihood function; see Koopman and Shephard

(1992). To obtain @l
@#
via the EM-algorithm, the following result is useful:

@l(#)

@#

����
#=#0

=
@M(#j#0)

@#

����
#=#0

; (9)

with

M(#j#0) =
Z
ln g(Y; �;#) g(�jY ;#0) d�, (10)

where g(�j�) is a conditional probability density, Y = fytgTt=1 are the observed variables,

and � = f�tgTt=1 are the latent variables. While direct di¤erentiation of the log-likelihood

function will break down because the number of computations involved in the derivative

of the covariance matrix [ZVtZ 0 + �] is of order O(n4), indirect di¤erentiation of the

log-likelihood function using (9) is of order O(n2), as we show in Appendix A, and hence

quite feasible even for large n. Some background for (9) and (10) for the general Gaussian

state space model is given in Dempster et al. (1977). See also Fahrmeir and Tutz (1994).

4 Empirical results

To evaluate the out-of-sample forecasting properties of the dynamic factor model and the

benchmark AR model, 16 observations were retained. We refer to these observations, i.e.,

t 2 [T + 1; T + 16], as the out-of-sample period. The in-sample period, [1; T ], is used

for estimation and model selection only. It is the change using a logarithmic scale, i.e.,

relative change, which is predicted, not the (nominal) levels of the variables.

12



To choose pi, r and k in the dynamic factor model, a two-step model selection proce-

dure was used. In the �rst step, the Akaike information criterion was applied to determine

the number of lags (pi) in each of the 93 equations of the dynamic factor model. The

chosen lag lengths vary between one and eleven quarters. The maximum number of lags al-

lowed was 12. In the second step, given the number of lags pi in each equation determined

in the �rst step, the numbers r and k were jointly determined by the use of information

criteria. Let DFM(r; k) denote the resulting dynamic factor model with r non-seasonal

dynamic factors and k stochastic seasonal components. This two-step procedure has two

main bene�ts. First, it is computationally simple. In contrast, joint optimization with

respect to (p1; :::; pn; r; k) is not computationally feasible �for obvious reasons. Second,

when r = k = 0 we obtain as a special case a set of optimal (according to Akaike�s cri-

terion) univariate AR models, which are natural benchmarks to which we may compare

the forecasting properties of the dynamic factor model.

We consider three types of criteria in the second step: Akaike (AIC), Bayes (BIC)

and a criterion proposed by Bai and Ng (2002), denoted ICp1. Formally, these three

information criteria are de�ned as

AIC = ln j bD1j+ (r + k)n
2

T

BIC = ln j bD1j+ (r + k)n
ln(T )

T

ICp1 = ln
tr( bD1)

n
+ (r + k)

n+ T

nT
ln(

nT

n+ T
):

As pointed out by Reinsel (1993, p. 92), bD1 is the estimated covariance matrix of the

one-step ahead prediction error covariance matrix Dt when t ! 1, T is the number of

observations and (r + k)n is the total number of factor loading parameters (including

also the zeros imposed to achieve identi�cation). To estimate the parameters, 81 quar-

terly observations from 1978Q2 to 2001Q4 were used. The AIC criterion is standard for

VARMA models, while the BIC is similar to the AIC except that the penalty factor 2=T
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is replaced by the heavier penalty factor ln(T )=T . The criterion ICp1 is one of several

criteria suggested by Bai and Ng (2002), that are tailored to dynamic factor models with

both large n and T . Their criteria have in common that they are based on the trace of

bD1 �instead of the generalized prediction error variance, j bD1j.

Table 2 presents the results for the AIC, BIC and ICp1 for some combinations of r and

k in the neighborhood of the optimal solutions. The optimal solution based on the AIC is

characterized by r = 5 and k = 3, i.e., it leads to DFM(5; 3), the BIC leads to the model

choice DFM(1; 1), while ICp1 degenerates into the case with zero factors, DFM(0; 0 ): In

the case of the Bai and Ng (2002) criterion, the reason for the degenerate outcome is

that tr( bD1) changes little across the di¤erent models. It is especially interesting that

the optimal model according to the BIC, DFM(1; 1), has a higher value of tr( bD1) than

the degenerate model DFM(0; 0 ), which is optimal according to the ICp1. On the other

hand, the results in Table 2 do tell us that by including more common factors, a decrease

in the generalized variance, j bD1j; of the whole system of equations is always attained.

Because Bai and Ng (2002) do not take the o¤-diagonal elements of bD1 into account, their

criterion does not appear to be appropriate in the present context: It is the o¤-diagonal

elements of bD1 that are most a¤ected by the common factors. Thus the potential for

reducing tr( bD1) in the second stage of the model selection procedure seems small, given

that the AIC was used to select the number of AR terms in the �rst stage.

We shall now compare the forecasting properties of four di¤erent models: (i) 22 uni-

variate �benchmark�AR models, where the number of lags in each equation is determined

by means of Akaike�s Information Criterion, (ii) DFM(5; 3), (iii) DFM(1; 1) and (iv) the

degenerate case DFM(0; 0), which is a system of n = 93 univariate AR models. In cases

(ii)�(iv), forecasts of the key variables are obtained by aggregation, as outlined in Section

2.

For the four models above, Table 3 shows the root mean square forecasting error
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(RMSE) for each of the 22 key variables, all of which are measured using a logarithmic

scale (cf. (3)). The results in the table refer to the out-of-sample period [T + 1; T + 16].

At the end of period T; we carried out 1-, 2- , 3- and 4-quarters ahead forecasts using (5).

Then the information set was updated by including data up until T +4. The models were

then reestimated, with the new data appended, and corresponding 1-, 2- , 3- and 4-quarters

ahead forecasts were calculated, etc. The results for out-of-sample RMSE presented in

Table 3 are therefore based on the 16 forecasts ET+4l(zi;T+4l+hjb#T+4l) for l = 0; 1; 2; 3 and
h = 1; 2; 3; 4. The resulting forecast errors zi;T+4l+h � ET+4l(zi;T+4l+hjb#T+4l) for each of
the 22 key variables produced by the models were used to calculate the RMSEs. Results

from similar calculations using the mean absolute error (MAE) are presented in Table 4

for the benchmark AR models and DFM(5; 3).

Let us �rst look at the results for the model DFM(5; 3) in Tables 3 and 4. The

columns labeled �Relative�refer to RMSE or MAE for the dynamic factor model relative

to the AR benchmark. We see that the dynamic factor model is improving somewhat

upon the out-of-sample forecasts of the benchmark AR model. The gain in terms of both

reduced RMSE and MAE is about 20 per cent when averaging the results for all the 22

key variables. In terms of the median, the di¤erence between the two models is somewhat

smaller, slightly exceeding 10 per cent. The gain is most notably related to the forecasts

for aggregate manufacturing investments (INVM), which are improved substantially by

using the dynamic factor model compared with the univariate AR models. For the other

variables, the results are mixed. In most cases, however, the factor model is at least as

good as the AR model; that is for 17 and 19 of the 22 key variables, according to the

RMSE and MAE, respectively.

Comparing the RMSEs for the model DFM(5; 3) with the degenerate model DFM(0; 0),

i.e., the AR models for the 93 disaggregated variables, we get similar results as for the

benchmark AR model, except that the RMSE for INVM in the latter model (.105) is much
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smaller than in the AR model (.162). The same is even more pronounced for DFM(5; 3)

(.070). Compared with the disaggregate AR model, both the mean and median RMSE

for DFM(5; 3) is 15 per cent lower. For only one variable, unemployment (UNEMP), is

the RMSE of DFM(5; 3) higher than for DFM(0; 0). Moreover, compared to the �gures

reported in study by Artis et al. (2005) for UK, we �nd that the optimal dynamic factor

model according to the AIC criterion performs substantially better relative to the AR

models (regardless of whether one applies the aggregated or the disaggregated data). Artis

et al. report an overall gain in terms of the MSE of 10�20 per cent, which corresponds

to only 5�10 per cent in terms of the RMSE. On the other hand, the optimal dynamic

factor model according to the BIC, i.e., DFM(1; 1); generally performs poorer than the

other models reported in Table 3, for example with a median RMSE about 20 per cent

higher than the benchmark AR model. This may be because the model DFM(1; 1) has

the highest estimated in-sample MSE of all the speci�cations in Table 2, as seen from

ln(tr( bD1)). Thus, it appears that neither the BIC nor the ICp1 are appropriate criteria

for choosing the number of dynamic factors in our two step procedure.

In Figures 1�3 we display, as examples, the forecast errors of the key variables INVM,

man-hours in manufacturing (MM) and the price index of traditional imports (PRIM),

respectively. Each �gure consists of four parts corresponding to the four di¤erent horizons

employed. For each horizon, there are four forecast errors. Figure 1 reinforces that the

out-of-sample forecasts are better for the dynamic factor model than for the AR model

in the case of INVM. The same feature, but to a lesser extent, is also evident for MM,

whereas the forecast errors from the two models are close to equal in the case of PRIM.

We have compared our results with the model DFM(5,3), where we also have included

two exogenous regressors: (i) the relative change of the real oil price (Brent spot de�ated

by the consumer price index) and (ii) the relative change in a foreign market indicator.

The out-of-sample forecasts of the exogenous variables themselves were obtained using
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univariate AR models, with lag lengths determined by means of the AIC. While the

in-sample forecasts for our key macroeconomic variables were somewhat improved, the

out-of-sample results are disappointing. The RMSE was almost 50 per cent higher on

average than for the factor model without exogenous regressors. Our interpretation of

this result is that the relevant information for our key variables that is contained in these

variables are already incorporated in the dynamic factors, so that adding them directly

as regressors does not convey any additional information. On the contrary, idiosyncratic

components of these variables, that are not informative about the key variables, seem

to contaminate the forecasts in a way that leads to substantially worse out-of-sample

performance.

5 Conclusions

In this paper, we have estimated a dynamic factor model using a quarterly data set of 93

unadjusted variables for the Norwegian economy. The model is formulated in the relative

changes of the variables. In the �nal speci�cation we include, after having performed

model selection using Akaike�s information criterion, �ve common stationary latent com-

ponents and three common nonstationary latent components related to seasonality.

The main aim of the paper has been to compare forecasts for 22 derived key variables

using a dynamic factor model with forecasts based on univariate autoregressive models

augmented with seasonal dummy variables. We consider forecasts up to four periods using

root mean square error and mean absolute error and �nd that there is an overall gain in

employing the dynamic factor model. The improvement is notable only for a small set of

variables. However, for most of the variables, the dynamic factor model does not perform

worse than the univariate model. Our results seem to be in line with other analyses in

this line of research.
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Appendix A. Derivatives of the log-likelihood function

For general random vectors z and �, let Y denote the observed data and � the �missing�

data, i.e., all of the latent variables. Furthermore, let g(Y; �;#) be their joint density (i.e.

the �complete data�density), and g(�jY ;#) the conditional density of � given Y . The
ML estimator, b#; is the maximum of the log-likelihood l(#) of the observed data, where

l(#) = ln g(Y ;#). (11)

Because

g(Y ;#) =
g(Y; �;#)

g(�jY ;#) ,

(11) can be rewritten as

l(#) = ln g(Y; �;#)� ln g(�jY ;#). (12)

Taking the expectation on both sides in (12) with respect to the conditional density

g(�jY ;#0) for any arbitrary value #0 gives

l(#) = M(#j#0)�H(#j#0) (13)
@l(#)

@#

����
#=#0

=
@M(#j#0)

@#

����
#=#0

where

M(#j#0) = E[ln g(Y; �;#)jY; #0]

H(#j#0) = E[ln g(�jY ;#)jY; #0]

and the expectation is with respect to the conditional density of � given the observed data

Y , evaluated at #0. Let �
(1)
t denote the subvector of � consisting of the �rst r components,

i.e., �(1)t = ft, for t = 1; :::; T . Using (1) and (2), we can write

M(#j#0) =M1(B; �; Z;�j#0) +M2(	j#0), (14)

where

M1(B; �; Z;�j#0) = �
T

2

nX
i=1

ln�2i

� 1
2
Ef

TX
t=1

(yt �Bdt �X�
t �� Z�t)

0��1(yt �Bdt �X�
t �� Z�t) jY ;#0g

(15)
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and

M2(	j#0) =

� 1
2
Ef

TX
t=2

(�
(1)
t �	�(1)t�1)0(�

(1)
t �	�(1)t�1) jY ;#0g.

(16)

Note that many elements of B; �; Z and � are zeros (for notational simplicity we do not

make this explicit) and that T depends on 	 through (2). In (15)-(16), the expectation

is with respect to the latent variables (�1; :::; �T ); conditional on the data Y , and with #

evaluated at #0.

BecauseM(#j#0) is quadratic in (�1; :::; �T ), to evaluate the expectations in (15)-(16)
we only need to calculate the conditional expectations

atjT = Ef�t jY ;#0g, (17)

and the covariance matrices

Vt jT = Ef(�t � atjT )(�t � atjT )
0 jY ;#0g. (18)

Note that atjt�1 � At and Vtjt�1 � Vt (cf. (7)), while the required conditional expecta-

tions atjT and covariance matrices VtjT are obtained by the backward Kalman-smoothing

recursions (see e.g. Harvey, 1989):

Kalman smoothing

For t = T; :::; 2:

at�1jT = at�1jt�1 +Bt(atjT � atjt�1)

Vt�1jT = Vt�1jt�1 +Bt(VtjT � Vtjt�1)B
0
t,

where

Bt = V 0
t�1jt�1T 0V �1

tjt�1. (19)

Let us �rst consider the di¤erentiation of M2(	j#) with respect to the elements of 	:

@M2(	j#0)
@	

=

 
TX
t=2

a
(1)
tjTa

(1)
t�1jT

0 + (V 0
tjTB

0
t)
(1;1)

!
�	

 
TX
t=2

a
(1)
t�1jTa

(1)
t�1jT

0 + V
(1;1)
t�1jT

!
, (20)

where the r � 1 vector a(1)sjt is the �rst elements of asjt, V
(1;1)
t�1jT is the corresponding upper

left block of the matrix Vt�1jT , and we have utilized that

E(�t�
0
t�1jY ;#) = atjTat�1jT

0 + VtjTB
0
t,
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with Bt de�ned in (19) (see Fahrmeir and Tutz, 1994, p. 269; and Schneider, 1986, for a

proof). Note that all the matrices atjT , VtjT , and Bt are outputs from the Kalman �ltering

and smoothing algorithms, with # evaluated at #0. Next consider M1(B; �; Z;�j#0).
Some straightforward calculations yield

M1(B; �; Z;�j#0) = �
T

2

nX
i=1

ln�2i

� 1
2

TX
t=1

tr
�
��1

��
yt �Bdt �X�

t �� ZatjT
� �
yt �Bdt �X�

t �� ZatjT
�0
+ ZVtjTZ

0
��

The number of unknown parameters in our model is of order O(n) (see the discussion

following (8)). Moreover, X�
t is sparse: from (2), we see that it contains O(n2) elements,

of which there are O(n) non-zero elements. Hence it is easily seen that di¤erentiation

with respect to (the non-zero elements of) B, �, Z and � requires O(n2) operations.

Appendix B. Construction of weights. Two speci�c
examples

Here, we consider two particular examples of aggregate variables. Recall that the upper

case X and Z variables are de�ned in Tables A1 and A2, respectively. Let wrjt and �rjt
denote wjt and �jt, respectively, when applied to the (aggregate) variable zr, r = 1; :::; 22

(in Section 2 the r-index was suppressed for simplicity). First, we look at z9, the log of

traditional exports. Then

w9jt = 1 and �9jt =
XjtP
k2n9 Xkt

for j 2 n9 = f9; 10; :::; 13g.

Let us next consider z10, the log of the price of the traditional export aggregate de�ated

by the consumer price index. Then

w10jt = �9;j�5;t and �10jt = w10jt
Xjt

Z10t
for j 2 n10 = f14; 15; :::; 18g.
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Tables and �gures

Table 1: Key variables, transformations and short labels
Symbol Short label Short description Transformation
z1 INC Income ln(Z1)
z2 WTH Wealth ln(Z2)
z3 CPI Consumer price ln(Z3)
z4 HPI Housing price ln(Z4)
z5 INTR Interest rate ln(1 + Z5)
z6 GOV Government consumption ln(Z6)
z7 EXCR Exchange rate ln(Z7)
z8 UNP Unemployment rate ln(1 + (Z8=100))
z9 EXP Traditional exports ln(Z9)
z10 PREX Price index of trad. exports ln(Z10)
z11 IMP Traditional imports ln(Z11)
z12 PRIM Price index of trad. imports ln(Z12)
z13 CON Private consumption ln(Z13)
z14 MM Man-hours in manufact. ln(Z14)
z15 WM Wage in manufact. ln(Z15)
z16 VAM Value added manufact. ln(Z16)
z17 INVM Investment manufact. ln(Z17)
z18 VAS Value added services ln(Z18)
z19 INVS Investment services ln(Z19)
z20 MS Man-hours in services ln(Z20)
z21 WAS Wage services ln(Z21)
z22 VAML Value added �mainland� ln(Z22)

Table 2: Information criteria for di¤erent dynamic factor models
DFM(r; k) ln(tr( bD1)) ln(j bD1j) (r + k)2n=T AIC BIC ICp1
r k
0 0 -630.9 -630.9 0 -630.9 -630.9 -4.39
1 0 -631.7 -661.2 2.3 -658.8 -655.9 -4.30
1 1 -624.0 -670.2 4.7 -665.4 -659.7 -4.20
1 2 -627.8 -674.3 7.1 -667.1 -658.5 -4.16
1 3 -630.8 -678.3 9.5 -668.8 -657.4 -4.09
2 3 -640.4 -682.0 11.9 -670.1 -655.8 -4.03
3 3 -642.1 -685.6 14.2 -671.3 -654.2 -3.96
4 3 -642.2 -689.0 16.6 -672.4 -652.5 -3.87
5 3 -642.6 -692.3 18.9 -673.3 -650.7 -3.78
6 3 -642.3 -693.8 21.2 -672.5 -647.1 -3.68
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Table 3: Out-of-sample root mean squared error (RMSE) and relative RMSE
Variable Benchmark AR Dynamic factor models

DFM(5; 3) DFM(1; 1) DFM(0; 0)
RMSE #lag RMSE Relative RMSE Relative RMSE Relative

INC 0.044 3 0.034 0.767 0.043 0.961 0.042 0.936
WTH 0.033 3 0.028 0.852 0.035 1.048 0.033 1.000
CPI 0.010 4 0.008 0.755 0.010 0.992 0.009 0.912
HPI 0.032 7 0.032 1.002 0.039 1.210 0.034 1.058
INTR 0.003 1 0.003 0.889 0.003 0.991 0.003 1.022
GOV 0.026 3 0.019 0.700 0.030 1.141 0.025 0.961
EXC 0.055 4 0.054 0.988 0.060 1.085 0.060 1.092
UNP 0.002 4 0.003 1.313 0.002 0.946 0.002 1.012
EXP 0.023 1 0.027 1.170 0.031 1.311 0.027 1.138
PREX 0.051 1 0.048 0.933 0.050 0.974 0.050 0.969
IMP 0.044 1 0.030 0.670 0.046 1.046 0.041 0.938
PRIM 0.035 1 0.033 0.951 0.035 0.988 0.035 0.991
CON 0.015 5 0.010 0.664 0.013 0.915 0.012 0.856
MM 0.041 11 0.031 0.765 0.044 1.063 0.038 0.912
WM 0.025 2 0.026 1.016 0.039 1.547 0.026 1.037
VAM 0.032 5 0.032 0.993 0.042 1.311 0.034 1.079
INVM 0.162 3 0.070 0.432 0.100 0.619 0.105 0.648
VAS 0.018 5 0.016 0.926 0.025 1.418 0.017 0.991
INVS 0.054 5 0.044 0.813 0.052 0.962 0.050 0.927
MS 0.035 6 0.027 0.772 0.041 1.173 0.032 0.899
WAGS 0.027 3 0.024 0.911 0.038 1.448 0.025 0.939
VAML 0.022 1 0.024 1.116 0.030 1.370 0.026 1.187

mean 0.036 0.028 0.788 0.037 1.021 0.033 0.919
median 0.032 0.028 0.873 0.039 1.209 0.032 1.016
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Table 4: Out-of-sample mean absolute error (MAE)
Variable DFM(5; 3) Benchmark AR Relative MAE
INC 0.028 0.036 0.778
WTH 0.025 0.030 0.837
CPI 0.006 0.008 0.698
HPI 0.027 0.027 0.987
INTR 0.002 0.002 0.869
GOV 0.015 0.023 0.660
EXC 0.040 0.041 0.979
UNP 0.002 0.002 1.250
EXP 0.022 0.016 1.327
PREX 0.041 0.044 0.935
IMP 0.025 0.035 0.702
PRIM 0.030 0.032 0.958
CON 0.007 0.013 0.592
MM 0.027 0.036 0.754
WM 0.021 0.022 0.958
VAM 0.026 0.028 0.946
INVM 0.056 0.147 0.382
VAS 0.012 0.015 0.832
INVS 0.035 0.042 0.823
MS 0.024 0.032 0.740
WAGS 0.019 0.020 0.943
VAML 0.020 0.018 1.140

mean 0.023 0.030 0.764
median 0.024 0.027 0.881
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Table A1: Overview of variables in the dynamic factor model1

Variable Description Unit of measurement

X1 Households�disposable income (*) In million 2003 NOK

X2 Households�wealth (*) In million NOK

X3 The Norwegian consumer price index 1 in 2003 (average)

X4 Housing price (*) 1 in 2003 (average)

X5 Money market interest rate Quarterly interest rate

X6 Governmental consumption In million 2003 NOK

X7 Import weighted exchange rate (*)

X8 Unemployment rate In per cent

X9 Exports of manufactured agricultural and �sh products In million 2003 NOK

X10 Exports of di¤erent manufactured products In million 2003 NOK

X11 Exports of pulp and paper products In million 2003 NOK

X12 Exports of machinery In million 2003 NOK

X13 Exports of other traditional goods In million 2003 NOK

X14 Price index of exports of manufactured agricultural and �sh products (*) 1 in 2003 (average)

X15 Price index of exports of di¤erent manufactured products (*) 1 in 2003 (average)

X16 Price index of exports of pulp and paper products (*) 1 in 2003 (average)

X17 Price index of exports of machinery (*) 1 in 2003 (average)

X18 Price index of exports of other traditional goods (*) 1 in 2003 (average)

X19 Imports of manufactured agricultural and �sh products In million 2003 NOK

X20 Imports of di¤erent manufactured products In million 2003 NOK

X21 Imports of pulp and paper products In million 2003 NOK

X22 Imports of machinery In million 2003 NOK

X23 Imports of other traditional goods In million 2003 NOK

X24 Price index of import of manufactured agricultural and �sh products (*) 1 in 2003 (average)

X25 Price index of import of di¤erent manufactured products (*) 1 in 2003 (average)

X26 Price index of imports of pulp and paper products (*) 1 in 2003 (average)

X27 Price index of imports of machinery (*) 1 in 2003 (average)

X28 Price index of imports of other traditional goods (*) 1 in 2003 (average)

X29 Domestic consumers�consumption of food In million 2003 NOK

X30 Domestic consumers�consumption of beverages In million 2003 NOK

X31 Domestic consumers�consumption of tobacco In million 2003 NOK
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Table A1: (Continued)
Variable Description Unit of measurement

X32 Domestic consumers�consumption of electricity In million 2003 NOK

X33 Domestic consumers�consumption of fuel etc. In million 2003 NOK

X34 Domestic consumers�running expenses on own vehicles In million 2003 NOK

X35 Domestic consumers�consumption of other non-durables In million 2003 NOK

X36 Domestic consumers�purchase of cloth In million 2003 NOK

X37 Domestic consumers�purchase of own transport equipment In million 2003 NOK

X38 Domestic consumers�purchase of other durables In million 2003 NOK

X39 Domestic consumers�consumption of housing services In million 2003 NOK

X40 Domestic consumers�consumption of other services In million 2003 NOK

X41 Domestic consumers�consumption of transport services In million 2003 NOK

X42 Domestic consumers�consumption of health services In million 2003 NOK

X43 Domestic consumers�consumption abroad In million 2003 NOK

X44 Man-hours in manufacturing of consumption goods In 1000

X45 Man-hours in manufacturing of materials and investment goods In 1000

X46 Man-hours in manufacturing of raw materials In 1000

X47 Man-hours in manufacturing of machinery etc. In 1000

X48 Man-hours in manufacturing of ships and transport equipment In 1000

X49 Wage per man�hour in manufacturing of consumption goods (*) In 2003 NOK

X50 Wage per man�hour in manufacturing of materials and investment goods (*) In 2003 NOK

X51 Wage per man�hour in manufacturing of raw materials (*) In 2003 NOK

X52 Wage per man�hour in manufacturing of machinery etc. (*) In 2003 NOK

X53 Wage per man-hour in manufacturing of ships and transport equipment (*) In 2003 NOK

X54 Value added in manufacturing of consumption goods In million 2003 NOK

X55 Value added in manufacturing of materials and investment goods In million 2003 NOK

X56 Value added in manufacturing of raw materials In million 2003 NOK

X57 Value added in manufacturing of machinery etc. In million 2003 NOK

X58 Value added in manufacturing of ships and transport equipment In million 2003 NOK

X59 Acq. of new tang. �xed assets in manufacturing of consumption goods In million 2003 NOK

X60 Acq. of new tang. �xed assets in manufacturing of materials and investment goods In million 2003 NOK

X61 Acq. of new tang. �xed assets in manufacturing of raw materials In million 2003 NOK

X62 Acq. of new tang. �xed assets in petroleum re�ning In million 2003 NOK
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Table A1: (Continued)
Variable Description Unit of measurement

X63 Acq. of new tang. �xed assets in manufacturing of machinery etc. In million 2003 NOK

X64 Acq. of new tang. �xed assets in manufacturing of ships and transport equipment In million 2003 NOK

X65 Value added in construction In million 2003 NOK

X66 Value added in �nance and insurance In million 2003 NOK

X67 Value added in production of electricity In million 2003 NOK

X68 Value added in domestic production In million 2003 NOK

X69 Value added in wholesale and retail trade In million 2003 NOK

X70 Value added in housing services In million 2003 NOK

X71 Value added in other private services In million 2003 NOK

X72 Acq. of new tang. �xed assets in construction In million 2003 NOK

X73 Acq. of new tang. �xed assets in �nance and insurance In million 2003 NOK

X74 Acq. of new tang. �xed assets in production of electricity In million 2003 NOK

X75 Acq. of new tang. �xed assets in prod. of domestic transportation services In million 2003 NOK

X76 Acq. of new tang. �xed assets in wholesale and retail trade In million 2003 NOK

X77 Acq. of new tang. �xed assets in production of housing services In million 2003 NOK

X78 Acq. of new tang. �xed assets in production of other services In million 2003 NOK

X79 Man-hours in construction In 1000

X80 Man-hours in �nance and insurance In 1000

X81 Man-hours in production of electricity In 1000

X82 Man-hours in production of domestic transportation services In 1000

X83 Man-hours in wholesale and retail trade In 1000

X84 Man-hours in production of housing services In 1000

X85 Man-hours in production of other private services In 1000

X86 Wage in construction (*) In NOK

X87 Wage in �nance and insurance (*) In NOK

X88 Wage in production of electricity (*) In NOK

X89 Wage in production of domestic transportation services (*) In NOK

X90 Wage in wholesale and retail trade (*) In NOK

X91 Wage in production of housing services (*) In NOK

X92 Wage in production of other services (*) In NOK

X93 Value added in production and pipeline transport of oil and gas etc. In million 2003 NOK
1The star in parenthesis signi�es that the nominal variable or nominal price index has been divided by the

consumer price index.
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Table A2: Overview of deduced key macroeconomic variables
Deduced key variable Expressions in terms of X and functions of X

Z1 Households�disposable income: X1

Z2 Households�wealth: X2

Z3 The Norwegian consumer price index: X3

Z4 Housing prices: X4

Z5 Money market interest rate: X5

Z6 Governmental consumption: X6

Z7 Import weighted exchange rate: X7

Z8 Unemployment rate: X8

Z9 Traditional exports: X9 +X10 +X11 +X12 +X13

Z10 Price index of traditional exports:

(X14 �X9 +X15 �X10 +X16 �X11 +X17 �X12 +X18 �X13)=Z9
Z11 Traditional imports: X19 +X20 +X21 +X22 +X23

Z12 Price index of traditional imports:

(X24 �X19 +X25 �X20 +X26 �X21 +X27 �X22 +X28 �X23)=Z11
Z13 Private consumption: X29 +X30 +X31 +X32 +X33 +X34 +X35+

X36 +X37 +X38 +X39 +X40 +X41 +X42 +X43

Z14 Man-hours worked by employees in the manufacturing sector:

X44 +X45 +X46 +X47 +X48

Z15 Wages per man-hour for employees in the manufacturing sector:

(X49 �X44 +X50 �X45 +X51 �X46 +X52 �X47 +X53 �X48)=Z14
Z16 Value added in the manufacturing sector: X54 +X55 +X56 +X57 +X58

Z17 Acq. of new tang. �xed assets in the manufacturing sector:

X59 +X60 +X61 +X62 +X63 +X64

Z18 Value added in the production of private services:

X65 +X66 +X67 +X68 +X69 +X70 +X71

Z19 Acq. of new tang. �xed assets in the private services sectors:

X72 +X73 +X74 +X75 +X76 +X77 +X78

Z20 Man-hours worked by employees in the private service sectors:

X79 +X80 +X81 +X82 +X83 +X84 +X85

Z21 Wages per man-hour for employees in the private service sectors:

(X86 �X79 +X87 �X80 +X88 �X81 +X89 �X82+
X90 �X83 +X91 �X84 +X92 �X85)=Z20

Z22 Value added in the manufacturing sector, in private services and in production

and pipeline transport of oil and gas: Z16 +X18 +X93
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Figure 1: Forecasting errors at di¤erent horizons for INVM (log scale)
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Figure 2: Forecasts errors at di¤erent horizons for MM: Benchmark AR vs. DFM(5,3)
(log scale)
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Figure 3: Forecast errors at di¤erent horizons for PRIM: Benchmark AR vs. DFM(5,3)
(log scale)
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