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1 Introduction

Standard approaches to sample surveys take as the point of departure the estimation of one
or several population totals (or means), or a few predefined sub-totals (or sub-means). Under
the model-based prediction approach (Valliant, Dorfman, and Royall, 2000) the implications on
the sampling design can be extreme as in the case of purposive selection for populations under
the ratio model, where the sample consists of the n largest units and n is the sample size.
There is clearly a legitimate concern over the sensitivity of such a purposive sample, because
the n largest units no longer constitute an optimal sample if the linear predictor turns out to
be misspecified. It is also clear that a purposive sample is not suitable for many other potential
uses of the survey data, such as micro simulations of econometric models, or unplanned domain
estimation, etc.. Other times the narrow focus on the population total may be too weak as in the
case of homogenous population, with independent units of common mean and variance, where
any non-informative sampling design is as good as another. The lack of a model-based theory
for the variety of randomization designs is understandable because model-based inferences of
population totals in principle do not require probability sampling, as long as the data are gathered
noninformatively (Rubin, 1976; Sugden and Smith, 1984). Probability sampling is viewed as a
robust and impartial way of achieving noninformative samples.

Neither is the situation satisfactory under the design-based approach. Särndal, Swensson,
and Wretman (1992) gave a unified account of the model-assisted design-based estimation for
finite populations. Under the ratio model with variances proportional to the auxiliary sizes,
the general regression estimator (GREG) becomes the classic ratio estimator (Cochran, 1977,
Chapter 6), provided the units are selected with equal probability, which is almost never applied
in populations with size-dependent variances. The approximate optimal design for the GREG
under this particular variance structure is to select the units with probabilities proportional to
the square root of the auxiliary sizes, which of course yields a GREG that is different from the
ratio estimator in return. The same conflict exists when the variance is assumed to be constant:
the classic ratio estimator is a GREG only if the units are selected with probabilities proportional
to the auxiliary sizes, whereas the optimal design for the GREG is equal-probability sampling
in this case. The common practice of combining unequal probability sampling with the classic
ratio estimator is therefore inconsequent from a design-based point of view.

There are many such examples in survey sampling where tried-and-trusted practices are
apparent anachronisms of the theories of both schools. Take e.g. the creation of take-none
units in business surveys, i.e. the ones that are excluded from the sample by design. For model-
based optimal prediction of the population total, the population is divided into the take-alls (i.e
the self-inclusion units) and the take-nones through purposive selection. Under the design-based
approach, sampling with probability proportional to some size variable may divide the population
into the take-alls and the take-somes (i.e. the units having inclusion probabilities strictly between
0 and 1), provided sufficient variation in the size variable. In neither case, however, there is
theoretical ground for distinguishing between the take-somes and the take-nones.

Now, probability sampling can be introduced under the model-based approach provided
concerns other than the optimal prediction of the population total are included as design criteria.
For instance, Valliant, Dorfman, and Royall (2000) gave a detailed account of balanced samples,
which provide bias protection when the true linear predictor is a polynomial of a single auxiliary
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variable. Probability sampling is still not a theoretical necessity. But it is used as practical means
to ‘zoom in’ towards the various balanced samples. However, there remains considerable gap
between the theory of balanced samples and the sampling practice, e.g. with respect to some
of the issues mentioned above.

A different approach is studied in the sequals. We place emphasis on general database-like
uses of survey data, in addition to the prediction of population totals (or means). This leads
us to consider individual prediction, which is descriptive inference at the most dis-aggregated
level, in addition to the prediction of population total, which is descriptive inference at the most
aggregated level. Since, given the sample, the conditional prediction error is zero for the selected
units but positive for the units outside of the sample, it is possible to use the sampling design
to control the unconditional individual prediction MSEs. This immediately raises the need for
probability sampling. If we consider the individual unconditional prediction MSE as a measure
of expected sample information about the corresponding unit, the sampling design becomes
crucial for the distribution of this information over the population. To facilitate the exposition,
we focus on equal individual prediction, and derive equal prediction designs for linear regression
populations as well as clustered populations under the intracluster correlations model. We notice
that, while equal prediction seems a natural choice for multiple uses of survey data, it is by no
means the only criterion that may be considered. Thus, one should treat the particular designs
in this paper as examples of a general approach, rather than explicit guidelines to be imposed
in sampling practice.

It turns out that balancing between optimal prediction of the population total and control
over individual prediction provides a fruitful model-based approach to sampling design. Apart
from raising the need for probability sampling in general, it leads naturally to a number of im-
portant design features that have been firmly established in the real world of sampling, including
the use of simple random sampling for homogeneous populations and unequal probability sam-
pling otherwise, the division of a business population into the take-all, take-some and take-none
units, the most common two-stage sampling designs, the use of stratification with proportional
allocation, etc.. At the same time this enables us to give an appraisal of these methods from a
prediction point of view.

The rest of the paper is organized as follows. In Section 2 we lay out the basic theory for linear
regression models. In Section 3, we consider sampling designs under the ratio model, which is the
most common situation in business surveys. In Section 4, we present some general results for the
intracluster correlations model. In Section 5, we study sampling designs for clustered populations
with common mean and variance, which is the simplest model for clustered populations. We
consider both two-stage cluster sampling and direct sampling of elements, depending on the
sampling frame and mode of data collection available. Finally, Section 6 contains a summary
and some discussions.
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2 Linear regression population

2.1 Prediction of population total

Denote by U = {1, ..., N} the finite population of N units. Consider the following linear
regression model for the population

yi = xT
i β + ei where E(ei) = 0 and V (ei) = σ2

i and Cov(ei, ej) = 0 (1)

for i �= j ∈ U . The independence assumption makes a special case of the general linear model
(Valliant, Dorfman, and Royall, 2000, Theorem 2.1.1). The corresponding best linear unbiased
predictor (BLUP) of the population total, denoted by Y =

∑
i∈U yi, is given by

Ỹ =
∑
i∈s

yi + XT
r β̃

where β̃ = (
∑

i∈s xix
T
i /σ2

i )
−1(

∑
i∈s xiyi/σ

2
i ), and r = U \ s contains the units outside the

sample, and Xr =
∑

k∈r xk. The conditional prediction MSE given the sample is

∆r =
∑
k∈r

σ2
k + XT

r γ−1
s Xr

where γs =
∑

i∈s γi, and γi = xix
T
i /σ2

i .
Thus, for optimal prediction of Y one would choose, with certainty, the particular sample s

which minimizes ∆r over all possible samples, i.e. purposive selection. For example, under the
ratio model with a single covariate xi and variance σ2

i ∝ xa
i for some constant a ≥ 0, purposive

selection leads to the cutoff sample of the n units having the largest x-values (Royall, 1970),
provided a ≤ 2. On the other hand, in the special case of xi = 1 and σ2

i = σ2, we have
∆r = N(N −n)σ2/n, which is a constant of the sample, such that optimal prediction of Y not
at all depends on the sampling design, as long as it is noninformative.

For the unconditional MSE of the BLUP under probability sampling, we have

∆r =
∑
k∈r

σ2
k +

∑
k∈r

xT
k γ−1

s xk +
∑

k �=j∈r

xT
k γ−1

s xj

=
∑
k∈U

(1 − Ik)(σ
2
k + xT

k γ−1
s xk) +

∑
k �=j∈U

(1 − Ik)(1 − Ij)x
T
k γ−1

s xj

where Ik = 1 if k ∈ s and Ik = 0 if k ∈ r. An approximation to the MSE is then given by

MSE ≈
∑
k∈U

(1 − πk)(σ
2
k + xT

k Γ−1xk) +
∑

k �=j∈U

(1 − πk − πj + πkj)x
T
k Γ−1xj

where πk is the inclusion probability of the kth unit, and πij is the joint inclusion probability of
the kth and jth units, and Γ =

∑
k∈U πkxkx

T
k /σ2

k.

5



2.2 Individual prediction

Consider now individual prediction under the linear model (1). For any k �∈ s, the BLUP is given
by Ỹk = xT

k β̃, with β̃ given above. The conditional prediction MSE of Ỹk is

∆k = σ2
k + hk where hk = xT

k γ−1
s xk

Let Ep denote expectation with respect to the sampling design. The unconditional MSE of the
BLUP, i.e. the expectation of ∆k with respective to the sampling, is given as

MSEk =
∑
s;k∈s

p(s) · 0 +
∑
s;k �∈s

p(s)∆k = (1 − πk)
∑
s;k �∈s

P (S = s|k �∈ s) ∆k

= (1 − πk)Ep(∆k|k �∈ s) = (1 − πk)(σ
2
k + Hk)

where p(s) = P (S = s) is the probability of selecting the sample s, and Hk = Ep(hk|k �∈ s).
Notice that (1 − πk)σ

2
k is the MSE of the best predictor (BP) xT

k β provided β is known, and
the additional term (1 − πk)Hk is due to the estimation of β.

Equal prediction accuracy implies that MSEk = λ for some constant λ, or (1 − πk) = λwk

where w−1
k = σ2

k + Hk. Provided
∑

i∈U πi = n, we have λ = (1 − n/N)w̄−1 where w̄ =∑
i∈U wi/N , and

πk = 1 − (1 − n/N)wk/w̄ (2)

The inclusion probabilities (2) takes into account the estimation of the regression coefficients.
If we ignore this piece of uncertainty, then we arrive at the inclusion probabilities that would
have yielded equal prediction by the BP, denoted by

π0
k = 1 − (1 − n/N){σ−2

k /(
∑
i∈U

σ−2
i /N)}

Consider the special of xi = 1 and σ2
i = σ2. We have hk = Hk = 1/n and wk = w̄,

such that πk = π0
k = n/N . That is, equal prediction implies equal probability sampling, which

theoretically justifies the intuition behind simple random sampling (srs) from any homogeneous
population with common mean and variance. Otherwise, equal prediction requires unequal
probability sampling. Generally, unequal probability sampling is needed if we wish to control the
MSEs in any unequal way, say, MSEk = λh for k ∈ Uh and U = ∪H

h=1Uh, or MSEkak = λ for
fixed constants {ak; k ∈ U}. Next, consider single xi and σ2

i ∝ x2
i , we have hk = Hk = σ2

k/n
and w−1

k = σ2
k(1 + 1/n), such that πk = π0

k. That is, the design is the same whether knowing
β or not, which makes sense because the variance of β̃ is a constant of the sample.

In general, since Hk depends on the πi’s, the inclusion probabilities are not explicitly given
by (2). Consider the inverse of a square matrix as a smooth function of its elements, we obtain
Ep(γs|k �∈ s)−1 as a first-order Taylor linear approximation to Ep(γ

−1
s |k �∈ s). We have

Ep(γs|k �∈ s) =
∑

i∈U(k)

γiP (i ∈ s|k �∈ s) =
∑

i∈U(k)

γi(πi − πik)/(1 − πk)

where U(k) = U \ {k}. Thus, Hk depends on the πik’s as well. In Poisson sampling (PS), we
have πik = πiπk for i �= k, which is convenient since we then have

Ep(γs|k �∈ s) =
∑

i∈U(k)

πiγi and Hk
.
= xT

k (
∑

i∈U(k)

πiγi)
−1xk
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A drawback with the PS is that the sample size is not fixed. Approximate PS with fixed sample
size can be achieved by the method of sequential Poisson sampling (Ohlsson, 1998). Another
potentially useful approximation of πij in terms of the first-order inclusion probabilities was given
by Hartley and Rao (1962) for systematic πps sampling based on random listing.

Sufficient conditions for solutions to (2), viewed as a fixed points equation of the πk’s, follow
as a special case of the Contraction Mapping Theorem (e.g. Ortega, 1972). In particular, for
the existence of a set of proper solutions, the right-hand side should map any set of proper πk’s
onto the interval (0, 1). Now that the wk’s are strictly positive, πk can be arbitrarily close but
never attain the unity. However, negative values arise whenever wk/w̄ > N/(N − n), which is
easily the case when σ2

k is small. In this way, equal individual prediction leads to the creation
of the take-none units. The primary reason is that these units have so small ’intrinsic variation’
(i.e. σ2

k) compared to the rest of the units, that the prediction remains less uncertain about
them even if they are excluded from the sample by design.

Numerically, we set πk = 0 for the take-none units which are then removed from the sampling
frame. Proper inclusion probabilities are sought for the units that remain in the frame, i.e. the
take-some units. We may need to repeat the adjustment several times before the take-some
units are settled and the corresponding πk’s found for them. Whenever take-none units are
generated in this way we need to check their uniqueness. This can be done by varying the
starting values. Some obvious choices include π0

k for equal BP design, or equal probability n/N ,
or probabilities proportional to a chosen size variable. Notice that, for a given population, the
take-none units depend on the variance assumption as well as the sample size.

3 Ratio regression population

3.1 Constrained equal prediction design

The ratio model is a special case of the linear regression model (1). It is often used as a
reasonable model for business survey planning. As mentioned before, for optimal prediction of
the population total, the purposive selection amounts to take the n units having the largest
x-values, provided 0 ≤ a ≤ 2. Such an extreme design, however, is only used in rare cases. In
practice, one finds typically in business surveys some constrained probability sampling design as
follows: (i) the population is divided into the take-none, the take-some and the take-all units; (ii)
the take-some units are selected either using a probability proportional to size (pps) scheme or
stratified srs. Indeed, the stratified srs design can be formed to emulate the pps design (Wright,
1983). Both the take-alls and the take-nones are parts of the constraint.

Now, the cut-off limit between the take-all and take-some units can be explored with respect
to the efficiency for the prediction of population total. But when it comes to the cut-off limit
between the take-some and take-none units, the choice will apparently be based on experiences
or conventions, of course, together with considerations of response burdens and other practical
concerns. The choice of the pps scheme depends on the variance assumption. In theory one
should select with probability proportional to σi (i.e. x

a/2
i ). This is approximately optimal

for the GREG from a design-based perspective (Särndal, Swensson, and Wretman, 1992, Result
12.2.1). Whereas it makes the first step towards the so-called root(v) weighted balance (Valliant,
Dorfman, and Royall, 2000, Chapter 3), where v denotes the individual variance. Typically, one
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assumes the variance to be proportional to either x or x2. We refer to the pps scheme as the
root pps (rpps) design if the probability is proportional to

√
x, and the (direct) pps design if the

probability is proportional to x.
There are thus at least three choices one needs to make, i.e. the cutoff limits between

the three sub-populations and the variance parameter a. It is possible to explore these issues
in terms of a balance between optimal prediction for the population total and control of the
individual prediction. Take first the equal prediction design. As explained before, given sufficient
variation in the individual variances, equal prediction leads to the creation of the take-none units
and, thereby, a theoretical cut-off limit between the take-none and the take-some units. Since
the largest units have lower inclusion probabilities than in the purposive selection, the equal
prediction design entails loss of efficiency for the population total. The efficiency can easily be
improved by, firstly, imposing a user-specified number of take-all units and, then, applying the
equal prediction approach to the adjusted frame. Such a constrained equal prediction (cep)
design leads to the creation of the take-all, take-some and take-none units, where the take-
some units will receive unequal inclusion probabilities, depending on the choice of two design
parameters: the number of take-all units, denoted by N1, and the variance parameter η (i.e.
assuming σ2

i ∝ xη
i at design stage). For any fixed choice of η, the cep designs can be arranged

in a nested set according to N1 and studied in a systematic fashion.

3.2 An example based on Norwegian business register data

To illustrate, we use a data set (of 4 industrial groups) extracted from the Norwegian business
register, where N = 5077. Let xi be the number of employees plus 1, which will be used as an
allround measure of the size of the business units. Table 1 gives the main characteristics of the
skewed distribution of the x-values in the population.

Table 1: Characteristics of 4 industrial groups from the Norwegian business register

Quantile of xi

min(xi) 0.10 0.25 0.50 0.75 0.90 0.95 0.975 0.99 max(xi) N
1 1 2 2 5 15 33 80 178 1737 5077

Table 2 gives the theoretical cutoff limits between the take-none and the take-some units
under the unconstrained equal prediction design (i.e. N1 = 0), for various combinations of
(η, f), where η is the variance parameter and f = n/N is the sampling fraction. The take-
nones are the smallest units in the population. Let N0 be the number of take-none units; and
let X0 be the total of x from the take-none units. Both N0 and X0 are increasing in η and
decreasing in f . For instance, at η = 1 and f = 0.2, the take-none sub-population contains
about 68% of all the units, and a coverage of about 11% in terms of x, i.e. X0/X.

In the top-left plot of Figure 1, the inclusion probabilities of the direct pps design are
compared to those of the cep design with variance assumption σ2

i ∝ xi and N1 = 310, which
is the number of self-inclusion units implied by the direct pps scheme. The sampling fraction is
20%. The inclusion probability is seen to increase quicker in x for the take-some units under the
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Table 2: Proportion of take-none units N0/N and coverage X0/X under equal prediction design
with variance assumption σ2

i ∝ xη
i and sampling fraction f = n/N .

N0/N X0/X
f 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3
η = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
η = 0.5 0.866 0.732 0.131 0.131 0.207 0.130 0.011 0.011
η = 1 0.907 0.824 0.681 0.131 0.252 0.175 0.112 0.011
η = 1.5 0.920 0.842 0.681 0.596 0.273 0.187 0.112 0.091
η = 2 0.928 0.854 0.732 0.596 0.287 0.196 0.130 0.091

cep design than under the pps design. In the rest three plots, the individual prediction MSEs by
the pps and purposive selections are compared to those under the cep designs with respective
design variance parameter η = 1, 1.5 and 2. The true population variance is set at σ2

i ∝ xa
i for

a = 1.5 in all the three cases. While there exist clear differences between the alternative designs
for the take-some units (identified by the cep designs), the MSEs for the take-none units vary
little from one design to another, which justifies the creation of the take-none units.

More systematic comparisons between the alternative designs are given in Figure 2. Given
the population and a fixed sample size (n = 1015 and f = 0.2 in this case), the rpps design
implies 92 self-inclusion units (i.e. N1 = 92). It is approximately optimal for the GREG under
the variance assumption σ2

i ∝ xi. In the top-left plot of Figure 2, the rpps design is compared
to the cep design with the same constraint (i.e. N1 = 92) and design variance assumption,
with respect to the following measures: (a) the TMSE ratio, i.e. the MSE of the BLUP for
population total under the cep design against that under the rpps design, (b) the MMSE ratio,
i.e. the mean of all the individual prediction MSEs under the cep design against that under
the rpps design, (c) the coefficient of variation (CV) of the individual MSEs under the cep
design, i.e. {∑k∈U(MSEk − MMSE)2/(N − 1)}1/2/MMSE, and (d) the CV of the individual
MSEs under the rpps design. These four measures are evaluated as the underlying population
variance structure σ2

i ∝ xa
i varies for a ∈ [0, 2]. It is seen that the cep design is considerably

more efficient than the rpps design, both in terms of the TMSE and MMSE ratios, especially
for a ≥ 1. Also, the variation among the individual prediction MSEs is much less under the
cep design than the rpps design for a > 0.5. Clearly, the rpps design assigns unnecessarily low
inclusion probabilities to the larger ones among the take-some units for this population.

Next, in the top-right plot, the cep design (with N1 = 310 and η = 1) is compared to the
pps design, which implies 310 self-inclusion units in this case. The cep design is more efficient,
because the largest take-some units have higher inclusion probabilities (top-left plot, Figure 1).
For instance, when the true variance is σ2

i ∝ x1.5
i , the pps design entails about 25% loss of

efficiency in terms of the MSE for total, and about 20% loss in terms of MMSE. Also, the
variation among the individual MSEs is much lower under the cep design for a > 0.5 — see the
top-right plot of Figure 1 for details at a = 1.5.

The pps design is approximately optimal for the GREG under the variance assumption σ2
i ∝

x2
i . In the bottom-left plot of Figure 2, we compare it to the cep design with N1 = 310 and
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Figure 1: Top left: Inclusion probabilities by cep and pps design. Top right, bottom left and bottom
right: Individual prediction MSE by cep, pps and purposive selection (opt). Sampling fraction 20%.

η = 2. Raising the design parameter η from 1 to 2 increases the inclusion probabilities of the
larger take-some units. The cep design becomes therefore even more efficient. It is interesting
to see that the variation among the individual prediction MSEs has become more stable (and
reduced) when the true variance structure is 1 ≤ a ≤ 2. The reason is apparent from Figure 1.

Finally, the cep design (with N1 = 310 and η = 2) is compared to the optimal design
for population total, i.e. the purposive selection, in the bottom-right plot of Figure 2. The
maximum loss of efficiency is about 15% for total and about 30% in terms of the MMSE. It is
possible to balance the loss of efficiency against the advantages of probability sampling through
the choice of N1. For instance, at N1 = 500 (i.e. about half of the sample) and η = 2, the
maximum loss of efficiency is reduced to 10% and 20%, respectively.

In summary, balancing between optimal prediction of the population total and control over
individual prediction yields nested classes of constrained probability sampling designs, providing
theoretical motivations for the common use of such designs in practice. The properties of the
standard pps or rpps design can be examined with reference to the cep designs for the given
population. This also shows us whether and how potential improvements over the pps designs
can be achieved in light of the available prior knowledge of the variance structure. The plots in
Figure 2 are especially helpful in situations where one needs to comprise between multiple Y of
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Figure 2: Comparison between cep and alternative designs when the underlying population model
varies with respect to the variance structure σ2

i ∝ xa
i : TMSE ratio (solid), MMSE ratio (dashed), CV

of individual prediction MSEs under cep design (dotted), and CV of individual prediction MSEs under
alternative design (long dashed). Sampling fraction being 20% in all cases.

interest. The different Y’s can have different variance inflation measured against x, all of which
are now summarized in a single plot for comparison.

4 Clustered population

4.1 Intracluster correlations and variance components

Some degree of clustering among “nearby” units tends to exist in all natural populations. Scott
and Smith (1969) and Royall (1976) considered model-based estimation under the following
variance assumptions for clustered populations, i.e.

V (Yij) = σ2
i and Cov(Yij, Yik) = ρiσ

2
i and Cov(Yij, Ygk) = 0 (3)

where (ij) denotes the jth unit of the ith cluster, for i = 1, ..., M and j = 1, ..., Ni and∑M
i=1 Ni = N . In particular, the parameter ρi is known as the intracluster correlation. Notice
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that in standard texts on survey sampling (e.g. Cochran, 1977), N denotes the number of
clusters and M denotes the number of elements, contrary to our notation.

Scott and Smith (1969) motivated the assumptions (3) by means of variance components.
Suppose that the variance of Yij is the sum of that of two independent random components,
denoted by σ2

i = Ω + φi, where Ω is the between-cluster variance and φi is the within-cluster
variance. The intracluster correlation is then given by

ρi = Cov(Yij, Yik)/
√

V (Yij)V (Yik) = Ω/(Ω + φi)

Such variance components models are standard in small area estimation (Fay and Herriot, 1979).
The model (3) appears more general because it allows for negative intracluster correlations,
although this is not usual. Indeed, ρi is bounded from below by

ρi ≥ −1/(Ni − 1)

from noting that the variance of any cluster total must not be negative. Thus, ρi is virtually
nonnegative for any cluster of reasonable size. Meanwhile, a variance components model can
be more general than the intracluster correlation model if the within-cluster variance is unit-
specific. Suppose that the variance of Yij is given by Ω + φij, then the correlation is no longer
constant for all pairs of observations from the same cluster. We refer to Rao (2003) for more
general variance components models with an emphasis on small area estimation. In this paper
we consider only the intracluster correlations model.

When it comes to the mean structure, two special cases are worth noting: (i) auxiliary
information may be available cluster-wise as a proxy measure of the cluster mean (or total),
(ii) E(Yij) is a constant. The latter is the primary case considered by Scott and Smith (1969)
and Royall (1976), and will be studied in Section 5. For the results in this section, we allow
a slightly more general mean structure by assuming that E(Yij) is related to a single auxiliary
variable through a multiplying constant, i.e.

E(Yij) = xijβ (4)

We assume single auxiliary variable because this is the most common situation at the design
stage. We allow for unit-specific mean because models combining (3) and (4) have been
successfully used in survey context (Battese, Harter, and Fuller, 1988).

4.2 Prediction of population total

We start with the prediction of population total. Denote by Ỹ =
∑m

i=1

∑
j∈si

aijyij the BLUP
conditional on s, where si is the ith sample cluster for i = 1, ..., m. Again, the BLUP and its
conditional MSE follow from the theory of general linear model. In the first place, the conditional
MSE is minimized only if aij = ai, such that

V (Ỹr − Yr|s) = Vr +
m∑

i=1

niτ
−1
i a2

i − 2
m∑

i=1

ni(Ni − ni)ρiσ
2
i ai

12



where ni is the size of si, and Yr is the total of y outside the sample, and Ỹr is its BLUP, and
τ−1
i = (1−ρi)σ

2
i +niρiσ

2
i = σ2

i [1+(ni−1)ρi], and Vr =
∑M

i=1(Ni−ni)σ
2{1+(Ni−ni−1)ρi}

is the variance of Yr. Next, the Lagrange method gives us

ai = brx̄iτi/(

m∑
g=1

ngx̄
2
gτg) + (Ni − ni)ρiσ

2
i τi

where br = xr − ∑
i ni(Ni − ni)x̄iρiσ

2
i τi, and xr is the total of x outside the sample, and

x̄i =
∑ni

j=1 xij/ni. The conditional prediction MSE is then

∆r = Vr + b2
r/(

m∑
i=1

nix̄
2
i τi) −

m∑
i=1

ni(Ni − ni)
2ρ2

i σ
4
i τi

It is unclear how the purposive selection looks like in general, although in principle the solution
can be determined numerically for the given population by going through all possible sample
cluster sizes n = (n1, ..., nM) and sample cluster means x̄i. (The problem will be dealt with
more closely under the common mean model in Section 5.) When it comes to the unconditional
prediction MSE, i.e. Ep(∆r), we have

Ep(Vr) =

M∑
i=1

σ2
i

Ni∑
j=1

(1 − πij) +

M∑
i=1

ρiσ
2
i

Ni∑
j �=k=1

(1 − πij − πik + πij,ik)

where πij is the inclusion probability of (ij), and πij,ik is the joint inclusion probability of (ij)
and (ik). The rest two terms of the MSE can easily be approximated when n is fixed by the
design. Otherwise, Monte Carlo evaluation provides a straightforward option, although it can
be computationally intensive.

4.3 Individual prediction

For any (gk) �∈ s, consider the BLUP Ỹgk =
∑m

i=1

∑
j∈si

aijyij. Unbiased prediction conditional
on s implies that

∑
i

∑
j aijxij = xgk, and the conditional MSE under the model (3) is

V (Ỹgk − Ygk|s) = σ2
g +

∑
i

(1 − ρi)σ
2
i (

∑
j

a2
ij) +

∑
i

ρiσ
2
i (

∑
j

aij)
2 − 2ρgσ

2
g(

∑
j

agj)

because V (
∑

j aijYij) = (1 − ρi)σ
2
i (

∑
j a2

ij) + ρiσ
2
i (

∑
j aij)

2. Notice that the last term on the
righ-hand side exists only if the cluster g is represented in the sample. It follows that, for any
value of

∑
j aij , the conditional MSE is minimized only if aij = ai =

∑
j aij/ni. Next, by the

Lagrange method, we find that

ai = bgkx̄iτi/(
∑

l

nlx̄
2
l τl) + δigρgσ

2
gτg

where bgk = xgk − ngx̄gρgσ
2
gτg, and δig = 1 if i = g and 0 otherwise. The conditional MSE of

the BLUP Ỹgk is then given by

∆gk = σ2
g + hgk where hgk = b2

gk/(
m∑

i=1

nix̄
2
i τi) − ngρ

2
gσ

4
gτg
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It follows that the unconditional prediction MSE of the BLUP is

MSEgk = (1 − πgk)(σ
2
g + Hgk) where Hgk = Ep{hgk|(gk) �∈ s}

Provided
∑

(ij)∈U πij = n, equal prediction implies the following fixed-points equation

πgk = 1 − (1 − n/N)wgk/w̄ (5)

where w−1
gk = σ2

g + Hgk and w̄ =
∑M

i=1

∑Ni

j=1 wij/N . To actually derive the πgk’s we need to
set the ρi’s, which is usually difficult. An immediate use of the results of this section is then
to check how a particular design works as the population intracluster correlations vary in some
plausible ways.

5 Common mean population

5.1 Common parameter model

The common mean assumption is an important special case, especially when studying the sam-
pling design for general purposes. It follows that the expectation of the cluster total is propor-
tional to the size of the cluster. There is clearly a connection to the ratio model when a unit
with mean xiβ can be a ‘cluster’ made up of xi elements, all having a common mean β. Now,
when the elements have a common mean, it is often reasonable to assume that they also have
the same variance, i.e. σ2

ij = σ2. Indeed, the common parameter model assumes that ρi = ρ,
which can often be motivated by means of variance components, i.e. σ2 = Ω + φ. But it is
easy to conceive other covariance structures. For instance, under what may be referred to as
the clustered ratio model, we assume that the cluster total has variance proportional to xa

i . The
case of a = 1 is then equivalent to the assumption of ρi = 0. Whereas 1 < a < 2 implies that
ρi = (xa−1

i − 1)/(xi − 1) if σ2
ij = σ2, i.e. positive intracluster correlation between the elements

that decreases towards 0 as the cluster size increases. Notice that such covariance structures
can not arise from a variance components assumption.

Table 3: Characteristics of municipality household numbers in Norwegian Census 2001.

Quantile of Ni

min(Ni) 0.10 0.25 0.50 0.75 0.90 0.95 0.99 max(Ni) M
94 541 917 1805 3826 8241 14098 42518 266856 434

In the sequals, we will focus on the common parameter model. Our approach will be
illustrated in the setting of the so-called Master Sampling Plan for household surveys, which
serves as a point of departure for all surveys of households and persons conducted at Statistics
Norway. The design clusters are the municipalities with a total M = 434, and the elements are
the households with a total N = 1.962 million, based on the Norwegian census 2001. Table 3
gives the main characteristics of the distribution of Ni, i.e. the population cluster sizes.
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We shall consider both two-stage cluster sampling and direct sampling of elements, because
both types are being used at the statistical offices, depending on the available sampling frame
and mode of data collection. Two- or multistage sampling designs are necessary when a sampling
frame does not exist for the ultimate sampling units, but are more readily available for the primary
sampling units. They may also be preferred due to cost considerations or other procedural
concerns that are important in practice. A key factor here is the mode of data collection. Face-
to-face interviews call for careful planning at the design stage, where two- or multistage sampling
can greatly reduce the cost required. Indeed, the desire to equalize work loads for interviewers
often leads to equal allocation of the ultimate sampling units to the sample clusters. The
availability of a complete sampling frame for the ultimate sampling units, as well as alternative
mode of data collection such as computer assisted telephone interview (CATI), allows us to
sample elements directly without prohibitive increase in cost. For example, the Norwegian Labour
Force Survey uses a single-stage sampling design. Direct sampling of elements is generally more
efficient than cluster sampling.

The variance assumptions (3) is often used for the study of two-stage sampling designs.
It is less often used when studying direct sampling of elements. Stratified sampling with the
municipalities as the strata is probably more standard. However, detailed statistics are often
of interest either at the municipality level or some regional level, where the regions consist
of neighbouring municipalities. Variance component models with the municipalities being the
“small areas” are frequently used for such purposes (Rao, 2003), which have the same variance
structure. Moreover, it turns out that the choice is not critical for our main findings there.

We notice that in reality Master sampling plan will surely involve some form of stratification
among the municipalities. To limit the scope of the investigation, however, we shall keep away
from this issue and only come back to it in the discussions at the end of the paper. It is also
worth mentioning that the results presented in this Section need to be distinguished from the
situation where the clusters are much smaller and the number of clusters much larger, e.g. when
the households themselves are treated as the clusters, and the members of the households as
the elements. Again, more discussions on this will be given later.

5.2 Two-stage cluster sampling

We consider two-stage sampling designs with equal sample cluster sizes, i.e. ni = n/m, where
m is the number of sample clusters. For simplicity and without loss of generality, we assume that
n/m is naturally an integer. Under the common parameter model, the conditional prediction
MSE for the population total, given any such two-stage cluster sample, is

∆r ∝ (N − n)(1 − ρ) +

M∑
i=1

(1 − γ)(Ni − Iin/m)2ρ + {
M∑
i=1

(1 − γ)(Ni − Iin/m)}2/(mψ)

where γ = (n/m)ρ/{(n/m)ρ + 1 − ρ}, and ψ = (n/m)/{(n/m)ρ + 1 − ρ}, and Ii = 1 if the
ith cluster is selected and Ii = 0 otherwise. Royall (1976) showed that the purposive first-stage
sample consists of the m largest clusters in the population. Nothing specific is implied for
sampling within the clusters: any noninformative scheme is as good as another.

For individual prediction of (gk) �∈ s, we have

∆gk = ∆g ∝ 1 + (1 − Igγ)2/(mψ) − Igγρ = {1 + 1/(mψ)} − IgD
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where D = γ(2 − γ)/(mψ) + γρ. The unconditional prediction MSE is then given by

MSEgk ∝ (1 − πgk){1 + 1/(mψ)} − (πg − πgk)D

because
Ep(Ig|Igk = 0) = P (Ig = 1|Igk = 0) = (πg − πgk)/(1 − πgk)

where πg is the first-stage selection probability of the gth cluster. It is seen that equal individual
prediction implies equal-probability selection within the clusters regardless of πg, which provides
a theoretical justification for the standard practice. Let the second-stage inclusion probability
be pg = πgk/πg = (n/m)/Ng for (gk) ∈ Ug. Provided

∑M
i=1 πi = m, we have

πg = (m/M)(ξg/ξ̄) (6)

where

ξ−1
g = {1 + 1/(mψ)}pg + D(1 − pg) and ξ̄ =

M∑
i=1

ξi/M

The following observations are worth noting. (1) Equal prediction implies equal probability
selection in the case of Ni = N/M . (2) In the case of ρ = 0, ξ−1

g ∝ pg such that πg = mNi/N .
That is, equal prediction implies first-stage pps sampling in the case of independent elements.
The pps-srs two-stage design is a so-called “equal probability selection method” (epsem, Kish,
1965) where πij = n/N . (3) In the case of ρ = 1, ξ−1

g ∝ (1+1/m) such that πg = m/M . That
is, first-stage equal-probability selection, giving rise to the srs-srs (i.e. twice equal-probability)
two-stage design. Together, the pps-srs and srs-srs designs provide much of the basis for two-
stage sampling in practice (Cochran, 1977). (4) Provided ρ ∈ (0, 1), equal prediction implies
that the larger clusters have larger ξ−1

i and, thus, larger inclusion probabilities than average (i.e.
m/M). However, due to the D-term in ξ−1

g , πg is not as high as mNi/N .
Figure 3 compares the pps first-stage selection probabilities to the that of the equal prediction

design (epd), with alternative specifications of the intracluster correlation for the Norwegian
household population, where n = 3000 and m = 100. Clearly, the epd under-samples the larger
cluster and over-samples the smaller ones, compared to the pps scheme. Indeed, there is very
little difference among the selection probabilities for the larger clusters under the epd even in very
weakly clustered population, say, ρ = 0.05, which converge quickly to the srs scheme. Thus,
unconstrained epd entails great loss of efficiency for the population total. We can improve this
by adopting a constrained approach as follows: (a) choose a number of self-inclusion clusters,
denoted by M1, and (b) apply the equal prediction design to the remaining take-some clusters.
More difficult is the choice of ρ. The results in Figure 3 show that equal prediction implies
almost equal first-stage selection probability for the larger clusters. In situations where plausible
value of ρ is lacking, one may start by looking at the constrained srs (csrs) schemes.

Systematic comparisons between the alternative first-stage schemes are given in Figure 4 with
respect to the TMSE and MMSE ratios, and relative standard deviation (RSD), i.e. standard
deviation of the individual MSEs in relation to the overall variance σ2. Random sampling is used
at the second-stage in all the cases. In the top-left plot, the purposive selection is compared
to the pps scheme. Clearly, there is a loss of efficiency for the population total due to the
departure from the optimal design. Next, in the top-right plot, the pps design is compared to
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Figure 3: First-stage selection probability by pps and equal prediction design (epd) for Norwegian
household population (m = 100 and n = 3000). Solid horizontal line marks equal probability selection
πi = m/M . Dashed vertical line marks where pps selection probability exceeds that of epd.

the csrs design with M1 = 23, which is the same number of self-inclusion clusters implied by
the pps scheme. Equal probability selection among the take-some clusters leads to further loss
of efficiency. We can improve the efficiency of the csrs by increasing M1. It can be seen from
the bottom-left plot that, at M1 = 50 which is half of the number of clusters in the sample,
the csrs scheme becomes almost as efficient as the pps scheme throughout the range of ρ.

Finally, in the bottom-right plot, details are given for the cluster-wise individual prediction
MSEs under the various first-stage designs in the case of ρ = 0.2. The csrs scheme yields almost
equal individual prediction for all but the few smallest take-some clusters. The variation is due
to the extreme small sizes of the smallest clusters. If we want, we can reduce the variation
by, first, grouping the smallest clusters together into a primary sampling unit (PSU) and, then,
applying an extra stage of cluster sampling if this regrouped PSU is selected at the first stage.
In other words, multistage cluster sampling, with equal probability selection at evey stage, can
be applied to appropriately chosen sub-populations to emulate the two-stage equal prediction
design. Meanwhile, under the pps first-stage design, the individual MSE decreases with the
population size of the take-some cluster. There is thus a trade-off between the efficiency for
elements from small and large take-some clusters.
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Figure 4: Comparison of alternative first-stage designs for Norwegian household population: purposive
selection (opt) vs pps (top-left), pps vs csrs with M1 = 23 (top-right), and pps vs csrs with M1 = 50
(bottom-left). Bottom right: Cluster-wise individual prediction MSE in case of ρ = 0.2.

Equal prediction means that the sample information is evenly distributed everywhere in the
population on repeated sampling. When the elements are independent with common mean and
variance, this implies equal probability sampling. The pps-srs design is an epsem. It is also an
equal prediction design when ρ = 0. But it will no longer be so provided small departures from
independence. Approximate equal prediction can be achieved through the srs-srs design, possibly
with extra stages of cluster sampling among the smallest clusters, without knowing the ‘true’
intracluster correlation. This is an important advantage over the exact epd. It also means that
the srs-srs design is robust for multiple Y of interest. The loss of efficiency can be controlled
by the number of self-inclusion clusters, leading to the csrs-srs design. Whether or not equal
prediction is important in a given situation, a systematic comparison between the nested set of
csrs-srs designs and the alternative design can be helpful for making a choice between them.
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5.3 Sampling of elements

5.3.1 Prediction of population total

Under the common parameter model, the conditional prediction MSE for the population total is

∆r ∝ (N − n)(1 − ρ) +
M∑
i=1

(1 − γi)(Ni − ni)
2ρ + {

M∑
i=1

(1 − γi)(Ni − ni)}2/(
M∑
i=1

ψi)

where γi = niρ/(niρ+1−ρ), and ψi = ni/(niρ+1−ρ), based on any sample configuration of
(n1, ..., nM). Since the contribution is the same for any element within a cluster, all purposive
samples of elements that minimizes ∆r have the same allocation of sample cluster sizes, to
be referred to as the purposive allocation. Thus, optimal prediction of the population total
implies that we should treat the clusters as strata at the design stage, despite we are working
here under an intracluster correlations model, and apply stratified sampling provided we make
the practical extension of the terminology to allow for take-none strata, just as in the business
surveys. Nothing specific can be said about the within-stratum sampling: any noninformative
scheme is as good as another.

How the purposive allocation looks like is unknown except in two special cases: (i) any
allocation is as good as another if ρ = 0, and (ii) one element for each of the n largest clusters
if ρ = 1. Otherwise, provided an exhaustive search through all possible allocations is too much
an undertaking, we turn to the following greedy algorithm:

1. Sort the clusters such that N1 ≤ N2 ≤ · · · ≤ NM .

2. Assign the first element to the largest cluster, and denote the initial allocation by n(1).

3. Iterate (a) - (b) for k = 2, ..., n.

(a) For each j = mk, ..., M , calculate ∆r that results from allocating the kth element
to the jth cluster (i.e. if possible), where mk is the largest cluster with ni = 0
according to n(k−1), which is the allocation of the first k − 1 elements.

(b) Choose the allocation of the kth element that has the smallest ∆r from (a). In cases
of ties, choose the largest cluster. Set this allocation to be n(k).

4. Set n(n) to be the purposive allocation.

The greedy algorithm is not guaranteed to find a global optimum. The outcome can be controlled
using additional repeated random search as follows:

1. Randomly select a cluster j with nj > 0 and another cluster k where k �= j.

2. Calculate ∆r that would result from re-allocating one element from j to k.

3. Accept the re-allocation if the new ∆r is smaller than before.
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Figure 5: Purposive allocation for Norwegian household population by greedy algorithm, with varying
sample size n and design intracluster correlation rho. Solid line marks the proportional allocation.

The outcome of the greedy algorithm seems a plausible solution, if no re-allocation can be found
after a fair number (say, 10000) of repeated random search.

Some results of the greedy algorithm for the Norwegian household population are given in
Figure 5. The sample size is 3000 in the plots of the top row, and it is 100 in the bottom row.
The design intracluster correlation is 0.05 in the first column, and 0.5 in the second column,
and 0.95 in the last column. No re-allocation was found after 104 random searches in any of the
cases shown. Clearly, the most striking feature is the proportionality between the greedy solution
and the population cluster size. In the case of n = 3000, the purposive allocation is almost
strictly proportional for 0.05 ≤ ρ ≤ 0.95 (marked by the solid lines in the plots). In other words,
the proportional allocation is highly robust as an approximate optimal allocation here. In the
case of n = 100, where the sample size is much smaller than the number of clusters (M = 434),
the proportional allocation holds almost for ρ up to 0.5. For instance, the largest cluster gets
assigned 14 elements at ρ = 0.05, which is the proportional allocation after rounding. It gets
only two fewer at ρ = 0.5. At ρ = 0.95, the purposive allocation looks more like the theoretical
solution at ρ = 1: only the 3 largest clusters gets, respectively, 6, 2 and 2 elements each, with
the next 90 largest clusters getting one each. In practice, the intracluster correlation is positive
but small in many populations, such that the proportional allocation seems robust also here.

20



The result is interesting because it coincides with the optimal allocation for stratified popula-
tions with equal stratum variance (Valliant, Dorfman, and Royall, 2000, Section 6.1). The BLUP
under the stratified model is the usual stratified expansion estimator, for which the proportional
allocation is well known as the Neyman allocation (Neyman, 1934) in the design-based theory,
provided the stratum population variances are equal. There is certainly a connection between
the stratified model with equal stratum variance and the common parameter model. When the
clusters are considered as strata, the stratified model treats the difference between a cluster
mean and the mean of all the cluster means as a fixed effect, whereas the common parameter
model treats the same quantity as a random effect, i.e. the variance component assumption.
Meanwhile, under the random-effect model for the cluster means, the intracluster correlations
are equal only if the stratum variances are equal. In other words, the only difference here is
that in one model the cluster mean effect is treated as fixed, whereas in the other it is treated
as random. Our results above suggest that this difference in models has little practical conse-
quences on the optimal design for population total, i.e. we should treat the clusters as design
strata and apply stratified sampling with proportional allocation no matter which model, with
the corresponding BLUP, is used for estimation.

5.3.2 Constrained equal allocation design

When it comes to individual prediction, the conditional prediction MSE for (gk) �∈ s is

∆gk = ∆g ∝ 1 + hg where hg = (1 − γg)
2/(

m∑
i=1

ψi) − γgρ

Clearly, equal prediction requires πgk = πg, i.e. equal probability sampling within the clusters.
Moreover, ρ = 0 implies that πgk = n/N , i.e. equal probability sampling everywhere. Whereas
ρ = 1 implies that we need at most one element from any cluster. Thus, for 0 < ρ < 1, equal
prediction implies that the expected sample cluster size is lower than nNi/N for large clusters
but higher than that for small clusters.

Since ∆g depends on the sample only through the sample cluster sizes, equal individual
prediction can be achieved straightforwardly using stratified simple random sampling, where the
clusters are set as the design strata. Thus, while optimal prediction of population total points
towards stratified sampling, equal individual prediction implies random sampling within stratum
in addition. Given n, we have Hg = Ep[hg|(gk) �∈ s,n] = hg, and

MSEgk = MSEg ∝ (1 − ng/Ng)(1 + hg)

It follows that, given proportional allocation, the individual prediction MSE is decreasing as the
population cluster size Ni increases. Whereas, given equal allocation, i.e. ni = n/M provided
n > M , the MSE is increasing with Ni because hg is now a constant across the clusters. In
other words, the equal prediction allocation is in general somewhere between proportional and
equal allocation. Actually, rather close to the latter in situations where the overall sampling
fraction is negligible, because 1 − ni/Ni = 1 − n/(MNi) will then be very close to 1 except
perhaps for the few smallest clusters.

Clearly, equal prediction leads to under-sampling among the elements that belong to the
larger clusters and, thus, loss of efficiency for the population total. This can easily be improved

21



by means of constrained equal allocation (cea) as follows: (i) choose a number of the largest
clusters, denoted by M1, to which we apply the proportional allocation, and (ii) apply equal
allocation to the remaining clusters. In this way, we obtain a set of nested cea designs, whose
efficiency for the population total increases monotonically with M1.
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Figure 6: Proportional against constrained equal allocation. Left column: comparative performances
as the underlying intracluster correlation ρ varies between 0 and 1. Right column: illustration of
cluster-wise individual prediction MSEs for ρ = 0.2. Sample size being n = 3000.

In Figure 6 we show some results for the Norwegian household population. In the top row,
the cea is unconstrained (i.e. M1 = 0 and ni = n/M everywhere), where it entails great loss
of efficiency for the population total even for very small intracluster correlation. For instance,
the TMSE ratio is already below 20% at ρ = 0.1. On the other hand, the RSD under the
equal allocation is so close to zero that it yields approximate equal prediction across the whole
range of ρ. The RSD of the proportional allocation starts at zero when ρ = 0, it ends almost
at zero when ρ = 1, because the number of take-none clusters is small in this case (Figure 5).
Between the two ends, it increases to somewhere below 10% for ρ ∈ (0.3, 0.6). In the top-right
plot the individual prediction MSEs are given for the case of ρ = 0.2. Equal allocation yields
almost constant MSE except for elements from the few smallest clusters. To further reduce the
variation, we can reduce the sample sizes in the smallest clusters, and allocate the extra number
of elements equally to the rest of the clusters. This would lead to an equal allocation design
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constrained at the lower end.
In the bottom row of Figure 6, the equal allocation is constrained at M1 = 50, which is just

above 10% of all the clusters. The loss of efficiency is bounded to less than 20%. The variation
among the individual MSEs is almost the same by the two allocations throughout the range of
ρ. The details at ρ = 0.2 (bottom-right plot) show that the equal allocation leads to almost
equal prediction for all the elements from the sub-population where equal allocation is applied,
except for the very few smallest clusters.

Thus, approximate equal prediction can be achieved by means of stratified sampling with
equal allocation of stratum sample size, where the clusters are treated as strata at the design
stage. The strategy is robust towards the unknown intracluster correlation. The constrained
equal allocation design can be used to control the efficiency for population total. There is a
trade-off in terms of the individual MSE in the small and large clusters between the pps and
equal allocation, which provides a basis for the choice of design in practice.

Again, we arrive at practically the same results under the common parameter model as we
would have done under the stratified model with equal stratum variance. The BLUP for any
element outside the sample is simply the corresponding sample stratum mean under the stratified
model. Equal prediction implies then equal stratum sample size, provided equal stratum variance.
To recover some of the lost efficiency, we would retain proportional allocation in a number of
the largest strata, and use equal allocation in the rest of the population, i.e. constrained equal
allocation. The only difference is that equal prediction is exact under the stratified model,
regardless of the size of the strata.

6 Summary and discussion

We have introduced the control of individual prediction as a design criterion in addition to the
efficiency of sampling. This gives rise to (unequal) probability sampling under the model-based
framework of inference. Special attention has been given to the equal prediction design, under
which the expected sample information (measured by the individual prediction MSE) is the
same everywhere in the population, which seems a natural choice in anticipation of multiple
database-like uses of the survey data. General results for the equal prediction design are given
for linear regression populations and clustered populations under the intracluster correlations
model. Various constrained equal prediction designs, which balance between prediction at the
most aggregated and the most dis-aggregated levels, have been studied for the ratio model and
the common parameter model, and illustrated using real-life data.

The constrained equal prediction approach provides theoretical motivations for a number
of well-established sampling practices under a unified framework, and means by which these
methods can be assessed for the given population from a prediction point of view. These
include the use of simple random sampling for homogeneous population and unequal probability
sampling otherwise, the division of take-all, take-some and take-none units in business surveys,
the two basic schemes of two-stage sampling, etc.. None of them has previously received
adequate model-based treatment. The constrained equal prediction approach does not lead to a
single ‘optimal’ design. Rather, it generates sets of nested designs that form a systematic basis
on which reasonable practical choices can be made.
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We would like to close the paper with a few discussions. Firstly, any use of models must
deal with the question of model misspecification. While model misspecification has been cen-
tral in the debate between the model-based and design-based approaches to sample surveys,
the usefulness of models for sampling design has been recognized on both sides (e.g. Hansen,
Madow, and Tepping, 1983; Smith, 1994). Once control over individual prediction is put up as a
design criterion, model becomes necessary. The design-based theory is simply unacceptable here
because nothing can be inferred about the individual values outside of the sample, no matter
how many observations or how much auxiliary information is available. Thus, the question is
not whether models can be used, but how models can be used for sampling design.

Without dominant specific targets, sampling design must balance between a number of
concerns. Combining optimal prediction of the population total and control over the individual
prediction is a way of balancing between multiple uses of survey data. Another concern is
multiple variables of interest. It is important to explore the performance of a particular design
over a wide range of possible underlying populations, such as what happens if the variance of
interest varies from proportional to

√
x to x2, or what if the intracluster correlation varies from

0 to 0.5, and so on. The measure-of-size variable should be relatively stable if the survey is to be
repeated over time, despite more closely correlated auxiliary information may be available, if the
latter fluctuates much more. We can explore alternative models, such as adding intercept to the
ratio model. The risk of misspecifying the linear predictor can be alleviated by referring to the
BP, i.e. to disregard the uncertainty due to the estimation of β. Apart from independence the
only model assumption required for the BP-design is the variance structure, which is monotone
increasing with x, say, σ2

i ∝ xη
i .

Stratification in one or another form is probably used in all sample surveys for statistical
as well as practical reasons. It is necessary when the population is divided into a number of
sub-populations, where the variables of interest follow different distributions. But it may also be
needed in cases where the population follows a single model with only global parameters. Direct
sampling of elements from clustered population with common mean and variance provides an
example, where stratified sampling is necessary for optimal prediction of the population total and
useful for control of individual prediction. However, not all the many good uses of stratification
can be motivated from the two design criteria that we have focused on in this paper. Our
intention here was to address some of the issues for which a theoretical treatment has been
lacking. We have therefore deliberately avoided stratification as far as we could.

Another traditional topic in sampling which we did not consider here is single-stage cluster
sampling. There are two situations. In the first one, the clusters are units of sampling as well
as units of inference, in which case it can be dealt with using the theory for linear regression
models. In the second one, the clusters are the sampling units but the elements are the units
of inference, in which case we refer to the general results of Section 4. A typical example is
inference of persons based on a sample of households. A reasonable design theory must involve
stratification. It is also interesting to compare the performance of single-stage cluster sampling
with that of two-stage cluster sampling. Neither of them, however, is the focus of this paper.
There are many other important issues raised by the conflicting units of sampling and inference
(Kish, 1965, Section 11.6), which again would take us beyond the scope of this paper.
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