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Sammendrag 

Hvordan man best kan identifisere strukturelle parametere har vært et viktig spørsmål i økonometri 

siden fagets begynnelse.  Feenstra (1994) utledet en paneldataestimator for å identifisere 

etterspørselselastisiteter som siden har blitt populær i anvendt forskning. Estimatoren benytter seg av 

panelstrukturen i datasettet som grunnlag for identifikasjon.  Den har siden blitt videreutviklet, blant 

annet av Soderbery (2015) som laget en mer robust estimator mot ekstremobservasjoner (F/S 

estimatoren).   

 

I denne artikkelen konstruerer vi en ny estimator som bygger videre på F/S estimatoren. Estimatoren 

vi konsturerer (2SP-estimatoren) løser to grunnleggende problemer med F/S estimatoren. For det 

første håndterer den ekstremtilfellene når tilbudskurven enten er perfekt elastisk eller perfekt 

inelastisk, som for eksempel er tilfellet i modeller med monopolistisk konkurranse. For det andre løser 

vi problemet med at F/S estimatoren ikke er robust overfor valg av referansegode. Dette gjør vi ved å 

lage estimater basert på alle referansegoder og deretter konstruere en «pooled» estimator som utgjør et 

vektet gjennomsnitt av alle disse estimatene. 

 

Vi analyserer egenskapene til 2SP estimatoren i hele parameterrommet ved bruk av syntetiske data, en 

såkalt Monte Carlo studie. Vi finner at 2SP-estimatoren reduserer Root Mean Square Error (RMSE) til 

F/S estimatoren med 60 til 90 prosent når vi pooler over 10 eller flere referansegoder. I hovedsak 

skyldes dette kombineringen av referansegodene, men også håndteringen av ekstremtilfeller bidrar til 

reduksjonen av RMSE i de tilfellene der den sanne parameteren er på randen av det tillatte 

parameterrommet. Vi finner også at det er en komplimentaritet mellom de to forbedringene av 

estimatoren vi implementerer. Kombineringen av referansegoder reduserer ikke bare RMSE direkte, 

men det gjør også at estimatoren oftere korrekt identifiserer når den sanne parameteren er på randen av 

det tillatte parameterrommet.  

 

I artikkelen utleder vi analytiske uttrykk for asymptotiske standardfeil til den foreslåtte 2SP 

estimatoren. I Monte Carlo studien ser vi nærmere på i hvilken grad 95 prosent konfidensintervallene 

til 2SP estimatoren inneholder den sanne parameteren, og vi finner at denne dekningsgraden ligger 

rundt 80 til 95 prosent. 

  



1 Introduction

The question of how to identify structural parameters has been a core focus in econometrics

since the beginning of the discipline. Simultaneity in a system of equations, i.e. a situation

in which an explanatory variable is correlated with the error term, represents a fundamental

problem for such identification, as noted already by Marschak and Andrews (1944). A key

approach to handling simultaneity involves the use of instrumental variables, see e.g. Angrist

and Krueger (2001), Stock (2001), Bollen (2012) and Imbens (2014). Based on the results in

Leamer (1981), Feenstra (1994) developed an instrumental variable approach which overcomes

the simultaneity problem by utilizing the panel structure of the data set in combination with

orthogonality restrictions on the error terms. In contrast to finding an external variable serving

as an instrument, the system is rewritten in a form in which variety indicators can be used

as instruments. Soderbery (2010) analyzed the properties of the Feenstra estimator and found

substantial biases in estimated demand elasticities due to weak instruments. To incorporate

parameter restrictions, Broda and Weinstein (2006) extended the framework in Feenstra (1994)

using a grid search for admissible values if the initial estimator yields inadmissible estimates,

e.g. elasticities of the wrong sign. Adding to this literature, Soderbery (2015) created a hybrid

estimator (henceforth referred to as the F/S estimator) by combining instrumental variable

estimation with a restricted nonlinear LIML routine which was shown to be more robust to data

outliers when the number of time periods is small or moderate. Ferguson and Smith (2019)

compared the properties of the estimator when using traded quantities instead of traded values,

which has been the common approach in the literature.

The F/S estimator, or some version of it, has been widely applied. For example, the

framework has been used extensively in the literature on international trade, see Imbs and

Mejean (2015), Broda et al. (2017), Feenstra et al. (2018) and Arkolakis et al. (2018). It has also

been used to study price indices, see Broda and Weinstein (2010), Blonigen and Soderbery (2010)

and Feenstra and Romalis (2014). Moreover, some of the elasticities found in the aforementioned

articles are used as inputs by other researchers, see e.g. Arkolakis et al. (2008), Aleksynska and

Peri (2014), Aichele and Heiland (2018) and Melser and Webster (2020).

There are two dimensions of the F/S estimator which may lead to wrongful inference.
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First, the F/S estimator does not consider the boundary cases when there is no simultaneity

problem, i.e. when supply or demand is either perfect elastic or perfect inelastic. These include,

inter alia, the monopolistic competition model with constant elasticity of scale (inelastic supply).

Since there is no simultaneity problem, a more optimal estimator in the boundary cases is

ordinary least squares. Second, the F/S estimator is based on choosing a particular reference

variety. The reference variety is key to the structural estimator as it eliminates variety specific

unobservables by taking pairwise differences between any good and the reference variety for a

given variable. However, an unfortunate consequence of the current procedure is that it makes

the estimator dependent on the ad hoc choice of reference variety. Mohler (2009) showed that

the estimator is sensitive to the choice of reference variety when using trade data for the U.S.

In this paper, we extend the F/S estimator along two dimensions. First, we create a

two-stage estimation framework that exploits cases where there are no simultaneity problems,

i.e. when supply is either perfect elastic or perfect inelastic, to obtain a more efficient estimator.

In those cases where the first-stage estimates of the structural parameter vector is at the boundary

of the parameter space, we switch in the second stage to an estimator that depends on which

boundary that is binding in the first stage. The two-stage estimator is shown to be more efficient

and to have an asymptotic mixture distribution when (the true) structural parameter vector is at

the boundary of the parameter space, with a closed form expressions for the asymptotic standard

error of the estimator.

The second refinement is to generalize the current practice of choosing a particular

reference variety. We extend current practice by generating a sequence of estimates for each

possible reference variety and create a pooled estimator. The pooled estimator is a weighted

average of the estimates corresponding to each reference variety and it is thus not dependent on

a particular choice of reference variety.

We assess the improvements offered by our two-stage pooled estimator (henceforth the

2SP estimator) using a Monte Carlo study. Adding to the study by Soderbery (2015), we consider

the properties of the estimator over the entire parameter space, not just at a single point. We

also consider the distribution of the number of varieties (N) and time series observations per

variety (T ). A wide range of demand and supply elasticities is analyzed, including (perfectly)

elastic and (perfectly) inelastic supply.
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We show that our proposed estimator reduces the Root Mean Squared Error (RMSE)

compared to the F/S estimator by between 60 and 90 percent across the whole parameter space

and for all combinations of N and T . This improvement is partly related to the frequency

with which the 2SP estimator switches to a fixed effects (FE) regression estimator in the second

stage, which is more efficient if the true parameter vector is at the boundary of the parameter

space. The most important contribution to the efficiency gain of our estimator comes from

using several reference varieties. We find that one should choose as many reference varieties

as possible, as doing so costs nothing and the gain is immense. We also find a complementary

relationship between the two refinements we make: choosing many reference varieties not only

reduces RMSE directly, it also increases the probability of switching to a more efficient FE

estimator in the second stage at the boundary of the parameter space.

We provide analytical expressions for the asymptotic standard error of the 2SP estimator,

i.e. both within the interior and at the boundary of the parameter space. In the Monte Carlo

study, we evaluate the performance of our method of obtaining standard errors by simulating

95 percent confidence intervals and calculating the share of simulations (coverage) that include

the true demand elasticity. Coverage typically ranges from 80 to 95 percent and increases with

sample size, showing that the accuracy of the inference is very good in moderate and large

samples.

The rest of the paper proceeds as follows. Section 2 outlines the econometric framework

of the 2SP estimator and compares it with the F/S estimator. Section 3 provides the Monte

Carlo study, showing the efficiency gains of the proposed estimator and Section 4 provides a

conclusion.

2 The two-stage pooled (2SP) estimator

In this section, we describe the structural econometric framework and the theory underlying the

2SP estimator in detail. This includes defining the admissible parameter space of estimation,

illustrating the two stages of the estimator and demonstrating the procedure of pooling estimates

across reference varieties. An expression for the asymptotic standard error of the 2SP estimator

is derived in the last part of the section.

6



2.1 Structural econometric framework

Our point of departure is a panel system of supply and demand equations. To identify structural

parameters in a system of demand and supply equations using panel data on prices and expen-

ditures, we follow Broda and Weinstein (2006). The demand, xD
ft, of the variety f at period t is

assumed to be given by:

ln xD
ft = −σ ln pft + |β|(λD

t + uD
f + eD

ft) (1)

where pft is the price, σ > 1 is the elasticity of substitution, λD
t and uD

f represent fixed time

and variety effects, and eD
ft is an error term (with mean zero and finite variance). For theoretical

underpinning of Equation (1), see Feenstra (1994). The scaling factor |β|, where β = 1 − σ < 0,

ensures well-defined limits when σ → ∞ (perfectly elastic demand). The inverse supply equation

is assumed to be given by:

ln pft = ω ln xS
ft +

1
ω + 1

(λS
t + uS

f + eS
ft) (2)

where ω ≥ 0 is the inverse elasticity of supply. In equilibrium, supply equals demand (xS
ft =

xD
ft = xft) and expenditure equals sft = pftxft. It follows from Equations (1)-(2) that

ln sft = β ln pft + |β|(λD
t + uD

f + eD
ft)

ln pft = α ln sft + λS
t + uS

f + eS
ft (3)

where α = ω/(1 + ω).1 For later use, we rewrite the system (1)-(2) in reduced form:






ln sft

ln pft




 =






β
1−αβ (λS

t − λD
t + uS

f − uD
f + eS

ft − eD
ft)

−αβ
1−αβ (λD

t + uD
f + eD

ft) + 1
1−αβ (λS

t + uS
f + eS

ft)




 . (4)

Let k denote the reference variety and define:

1Equations (3) can similarly be formulated in terms of expenditure share, defining instead sft = pftxft/Et ,
where Et is total expenditure, since Et is captured by the fixed time effect.
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Δ(k)zft = Δzft − Δzkt.

for any variable zft. It follows from the equations in (3) that

Δ(k) ln sft = βΔ(k) ln pft + |β|Δ(k)eD
ft

Δ(k) ln pft = αΔ(k) ln sft + Δ(k)eS
ft. (5)

and, from Equations (5):

(Δ(k) ln pft)
2 = θ1(Δ

(k) ln sft)
2 + θ2(Δ

(k) ln pftΔ
(k) ln sft) + U

(k)
ft (6)

where

θ1 = −
α

β
, θ2 =

1
β

+ α and U
(k)
ft = Δ(k)eD

ftΔ
(k)eS

ft.

Under the identifying assumptions of Feenstra (1994), the idiosyncratic error terms eD
ft and eS

ft

are assumed to be independent for any t, implying that:

E(U (k)
ft ) = 0.

Note that Equation (6) is not a valid regression equation for estimating θ, because the regressors

Δ(k) ln s2
ft and Δ(k) ln pftΔ(k) ln sft are correlated with U

(k)
ft , and must therefore be estimated

using a method of moments estimator, such as Feenstra’s 2SLS estimator or the F/S estimator.

Technically, both these estimators can be seen as instrumental variable estimators, with variety

indicators as instruments (see Feenstra, 1994, p. 164), and they suffer from weak-instrument

bias when the number of observation periods (T ) is small or moderate (see the Monte Carlo

results and discussions in Soderbery, 2015). Moreover, they are based on the assumption of

heteroscedasticity across varieties and equations, so that the regressors in Equation (6) do not

become collinear. Define

σ2
Xf = V ar(eX

ft) for X ∈ D,S.
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Figure 1: The admissible parameter space. The boundary {θ : θ1 > 0 ∩ θ1 + θ2 = 1} corresponds to
inelastic supply (α = 1), {θ : θ1 = 0 ∩ θ2 < 0} to elastic supply (α = 0) and {θ : θ1 = 0 ∩ 0 ≤ θ2 ≤ 1}
to elastic demand (σ = ∞).

Then, a condition for identification is that

σ2
Sf

σ2
Df

6=
σ2

Sk

σ2
Dk

for some f and k,

see Equation (12) in Feenstra (1994, p. 164).

2.2 Parameter restrictions

The restrictions on the structural parameters α and β: 0 ≤ α ≤ 1 and β < 0 (see above), imply restrictions on θ.

First, since θ1 = −α/β, it follows that θ1 ≥ 0. Moreover, α ≤ 1 is equivalent to:2

θ1 + θ2 ≤ 1.

Next, assume that θ1 > 0. Then α−1 and β are (real) solutions to θ1s
2 + θ2s − 1 = 0. That is

α−1 =
−θ2 +

√
θ2
2 + 4θ1

2θ1
> 0 (7)

β =
−θ2 −

√
θ2
2 + 4θ1

2θ1
< 0.

2To see this: α ≤ 1 ⇔
(
−θ2 +

√
θ2
2 + 4θ1

)
/2θ1 ≥ 1 ⇔

√
θ2
2 + 4θ1 ≥ 2θ1+θ2 ⇔ θ2

2 +4θ1 ≥ 4θ2
1 +θ2

2 +4θ1θ2 ⇔

θ1 − θ2
1 − θ1θ2 ≥ 0 ⇔ 1 − θ1 − θ2 ≥ 0 ⇔ θ1 + θ2 ≤ 1.
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Table 1: Parameterisation

Parameter space of θ α and σ as functions of θ

θ1 > 0 and θ1 + θ2 < 1 α−1 =
−θ2+

√
θ2
2+4θ1

2θ1
σ = 1 +

θ2+
√

θ2
2+4θ1

2θ1

θ1 > 0 and θ1 + θ2 = 1 α = 1 σ = 1 + 1
θ1

θ1 = 0 and θ2 < 0 α = 0 σ = 1 − 1
θ2

θ1 = 0 and 0 ≤ θ2 ≤ 1 α = θ2 σ = ∞

Note that the sign restrictions on β and α are automatically fulfilled since
√

θ2
2 + 4θ1 > |θ2|.

Finally, assume θ1 = 0. Then α = 0 or β = −∞ (σ = ∞). If α = 0 and |β| < ∞, σ = 1 − 1/θ2.

If β = −∞, α = θ2 ≥ 0. Figure 1 illustrates the θ-parameter space and its boundaries. The

relationship between θ and the parameters α and σ is summed up in Table 1.

Now define

σ(θ) = 1 +
θ2 +

√
θ2
2 + 4θ1

2θ1
for θ1 > 0,

and

σ(0, θ2) = lim
θ1→0+

σ(θ1, θ2). (8)

Note that σ(θ) = 1 + 1/θ1 when θ1 + θ2 = 1 (α = 1). By L’Hopital’s rule:

σ(0, θ2) = 1 −
1
θ2
if θ2 < 0

σ(0, θ2) = ∞ if θ2 ∈ [0, 1].

Thus σ(θ) expresses σ as a function of θ in accordance with Table 1. We see that σ(θ) is a

continuous function of θ for all θ ∈ Θ, but is not differentiable at θ1 = 0. Given an estimator (θ̂)

of θ that satisfies all the above parameter constraints, the obvious estimator of σ is σ(θ̂).

In the following we first consider the F/S estimator of θ and then propose an (asymp-

totically) more efficient estimator than σ(θ̂) in the case θ1 > 0 and θ1 + θ2 = 1 (inelastic supply)

and θ1 = 0 and θ2 ≤ 0 (elastic supply). Inelastic supply (α = 1) is of particular interest since

this case corresponds to monopolistic competition with elasticity of scale equal to one. In the ex-

isting literature, this fact has been overlooked. For example, the F/S estimator does not explore

solutions at the boundary θ1+θ2 = 1 (see Figure 1). Neither does the search algorithm of Broda

and Weinstein (2006) examine this boundary. Below we propose a consistent estimator of σ ,
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σ̂, that investigates all boundary points in Figure 2. As an extension of the existing literature,

we provide closed form expressons of standard errors of σ̂ for any finite σ – including at the

boundary.

2.3 Stage 1: Constrained estimation of θ

In view of the above discussion, we need to impose the constraints θ1 ≥ 0 and θ1 + θ2 ≤ 1

when estimating the model. This makes the estimation an optimization problem with linear

inequality constraints. If the unrestricted F/S estimator satisfies θ̂1

(u)
≥ 0 and θ̂1

(u)
+ θ̂2

(u)
≤ 1,

all restrictions on α̂ and β̂ are automatically fulfilled (θ is replaced with θ̂ in Equation (8)).

However, if one or both constraints are violated, we need to identify possible solutions at the

boundary of the parameter space, which is complicated. To simplify the problem, we utilize that

the GMM criterion function can be approximated about θ̂(u) by a quadratic form:

Q(θ) = (θ − θ(u))′HT (θ − θ(u)), (9)

where HT is the Hessian of the GMM criterion function evaluated at θ̂(u) and the approximation

error is of order op(1) at the true value of θ (θ0). We will henceforth refer to θ̂(u) as the

unconstrained stage-one estimator.

Next, consider the constrained optimum:

θ̂(c) = arg min
θ∈Θ

Q(θ),

where Θ = {θ : θ1 ≥ 0 ∩ θ1 + θ2 ≤ 1}. The possible boundary solutions are:

Q(r1) = min
θ

Q(θ) s.t. θ1 + θ2 = 1, (10)

or

Q(r2) = min
θ

Q(θ) s.t. θ1 = 0 and θ2 ≤ 1. (11)

Let the corresponding argmin be denoted θ(r1) and θ(r2), respectively. The solution to the
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problem in (10) must satisfy the first-order condition

dQ(θ1, 1 − θ1)
dθ1

∣
∣
∣
∣
θ1=θ

(r1)
1

= 0.

That is, with HT = [hij ] :

θ
(r1)
1 =

h22 − h12

h11 − 2h12 + h22
(1 − θ̂2

(u)
) +

h11 − h12

h11 − 2h12 + h22
θ̂1

(u)
.

Note that θ
(r1)
1 is a weighted average of θ̂1

(u)
and (1− θ̂2

(u)
). Next, consider Q(r2) (see Equation

(11)) with θ(r2) = (0, θ
(r2)
2 ) and θ

(r2)
2 ≤ 1. Then, if θ

(u)
2 ≤ 1,

(

0 1

)

HT






θ
(r1)
1 − θ̂1

(u)

θ
(r1)
2 − θ̂2

(u)




 = 0,

which is equivalent to θ
(r2)
2 = θ̂2

(u)
. On the other hand, if θ

(u)
2 > 1, θ̂(r2) = (0, 1). Then

θ(r2) = (0, min(θ̂2

(u)
, 1)).

Let Θint denote the interior of Θ. Combining all the above cases, we arrive at the following

stage-one constrained estimator:

θ̂(c) =






θ̂(u) if θ̂u ∈ Θint

(θ(r1)
1 , 1 − θ

(r1)
1 ) if θ̂u /∈ Θint, θ

(r1)
1 > 0 and Q(r1) < Q(r2)

(0, min(θ̂2

(u)
, 1)) otherwise

(12)

2.4 Stage 2: Estimation of θ at the boundary

In those cases where the first-stage estimate of θ is at the boundary of the parameter space,

i.e. when θ̂(c) 6= θ̂(u), we potentially switch in the second stage to an estimator that depends on

which boundary is binding in the first stage. We consider the two boundary cases when supply

is either elastic (α = 0) or inelastic (α = 1). In both cases, there is no longer a simultaneity

problem and the optimal estimator is an ordinary FE estimator.
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Estimation of σ when supply is elastic (α = 0)

In this case

ln pft = λS
t + uS

f + eS
ft,

and we obtain the FE regression equation:

ln sft = ψ ln pft + λt + uf + eft. (13)

where the regressor, ln pft, is uncorrelated with the error term, eft, when α = 0 (see Equation

(3) and Equation (13)). Hence ψ̂
P
→ 1−σ < 0 if 1 < σ < ∞. In finite samples, it is possible that

ψ̂ ≥ 0, which has no interpretation. In this case, we use the stage-one constrained estimator:

σ̂ = 1 − 1/θ̂
(c)
2 .

Estimation of σ when supply is inelastic (α = 1)

In this case, we obtain from Equation (3), the fixed effects regression equation:

ln pft = τ(ln pft − ln sft) + λt + uf + eft, (14)

where

τ =






1
σ if σ < ∞

0 if σ = ∞
.

Since the regressor, ln pft − ln sft, is uncorrelated with the error term eft when α = 1 (see

Equation (4) and Equation (14)), τ̂−1 P
→ σ if σ < ∞, and τ̂

P
→ 0 if σ = ∞. In finite samples, we

may get τ̂ < 0. Then we use the stage-one constrained estimator: σ̂ = 1 + 1/θ̂
(c)
1 .

2.5 Pooling of estimates across reference varieties

The F/S estimator requires that a fixed variety (k) is chosen as the reference variety. This makes

the estimator dependent on this ad hoc choice. As a consequence, averaging residuals U
(k)
ft over

f ∈ {1, ..., N} and t ∈ {1, ..., T } will not tend to zero unless T → ∞ (it is not sufficient that

N → ∞). Our proposed remedy is to average U
(k)
ft over several reference varieties, k. Specifically,
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we generate a sequence of unrestricted F/S estimators for n possible reference varieties and then

"pool" the estimators by minimizing the sum of n quadratic GMM criterion functions. Assuming

the varieties are ordered such that the possible reference varieties come first, the pooled GMM

criterion is:

Q(θ)(Pn) =
n∑

k=1

(θ̂(u)
−k − θ)′Hk(θ̂(u)

−k − θ), (15)

where θ̂
(u)
−k is the unconstrained estimator with variety k ∈ {1, ..., n} as the reference variety and

Hk is the Hessian of the k’th GMM criterion function. The minimizer of (15) is:

θ̂(u) =
n∑

k=1

Wkθ̂
(u)
−k ,

where Wk = (
∑n

k=1 Hk)−1Hk.

2.6 The 2SP estimator

The two-stage pooled (2SP) estimator (θ̂ ) is defined in Table 2. The formula in Table 2 applies

regardless of the number of reference varieties used to obtain θ̂(c) (to simplify notation, we

suppress the dependence of θ̂(c) on n). The stage-one constrained estimator, θ̂(c) , is obtained for

any n by replacing Q(θ) with Q(θ)(Pn) in the relevant formulas. Thus, θ̂(c) (see Equation (12)),

equals θ̂(u) if the latter is admissible. If not, θ̂(c) is the trivial minimizer of the quadratic criterion

(15) at the boundary of Θ. If θ̂(c) is at the boundary of the parameter space, i.e. θ̂(c) 6= θ̂(u),

the estimator potentially switches in Stage 2 to one of the FE regression estimators described in

Section 2.3.

2.7 Standard error of the 2SP estimation

We will now derive expressions for the asymptotic standard error of the 2SP estimator, σ̂. Consis-

tency arguments for the stage-one unconstrained estimator rely on T → ∞, see Feenstra (1994).

For given values of θ0, n and N, we have:

√
T (θ̂(u) − θ0)

D
⇒ N(0, Σ),
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Table 2: Two-stage pooled (2SP) estimator

Stage-one constrained estimator θ̂(c) 2SP estimator σ̂ and θ̂

θ̂
(c)
1 > 0 and θ̂

(c)
1 + θ̂

(c)
2 < 1 σ̂ = σ(θ̂(c)) θ̂ = θ̂(c)

θ̂
(c)
1 > 0 and θ̂

(c)
1 + θ̂

(c)
2 = 1 σ̂ =






1
τ̂ if τ̂ > 0

1 + 1

θ̂
(c)
1

if τ̂ ≤ 0
(θ̂1, θ̂2) =

(
1

σ̂−1 , 1 − 1
σ̂−1

)

θ̂
(c)
1 = 0 and θ̂

(c)
2 < 0 σ̂ =






1 − ψ̂ if ψ̂ < 0

1 − 1

θ̂
(c)
2

if ψ̂ ≥ 0
θ̂ = (0, 1

1−σ̂ )

θ̂
(c)
1 = 0 and 0 ≤ θ̂

(c)
2 < 1 σ̂ = ∞ θ̂ = θ̂(c)

where

Σ =






σ11 σ12

σ12 σ22




 .

If θ0
1 > 0 and θ0

1 + θ0
2 < 1 , V ar(σ̂) follows from a Taylor expansion of σ(θ) around θ0:

σ(θ̂(u)) − σ(θ0)
D
' h(θ0)′(θ̂u − θ0),

where
D
' means that the approximation error is of the order op(T−1/2) and

h(θ) =

[

a(θ) + b(θ), b(θ)

]′
,

with

a(θ) + b(θ) =

[
θ2
2 + 4θ1

]− 1
2

θ1
−

(
θ2 +

[
θ2
2 + 4θ1

] 1
2

)

2θ2
1

b(θ) =
1 + θ2

[
θ2
2 + 4θ1

]− 1
2

2θ1
.

Hence, in the interior of the parameter space (i.e. for θ0
1 > 0 and θ0

1 + θ0
2 < 1) :

V ar(σ̂) '
1
T

h(θ0)2h(θ0)′Σh(θ0). (16)
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The formulas for the variance of σ̂ when θ0 is at the boundary of the parameter space are

more complicated. First, if θ0
1 = 0 and 0 ≤ θ0

2 ≤ 1, there are no finite standard errors, because

σ0 = ∞. The results for the other boundary cases are presented in Proposition 1 below (see

Andrews (2002) for related results based on a quadratic approximation of the GMM criterion).

Proposition 1. Assume θ0 is at the boundary of the parameter space and 1 < σ0 < ∞. If

α0 = 1 (inelastic supply) (i.e. θ1
0 > 0 and θ0

1 + θ0
2 = 1) the asymptotic mean and variance of σ̂

are given by

E(σ̂) = σ −
1

√
2Tπ

[

a(θ0)
σ11 + σ12

σ11 + σ22 + 2σ12
+ b(θ0)

]
√

σ11 + σ22 + 2σ12 + op(T
−1/2)

V ar(σ̂) =
1

2T

{

a(θ0)2
[

σ11 −
(σ11 + σ12)2

σ11 + σ22 + 2σ12

]

+

[

a(θ0)
σ11 + σ12

σ11 + σ22 + 2σ12
+ b(θ0)

]2
(σ11 + σ22 + 2σ12)

(

1 −
1
π

)}

+
V ar(τ̂−1)

2
+ op(T

−1)

(17)

If α0 = 0 (elastic supply) (i.e. θ1
0 = 0 and θ0

2 < 0) define

θ∗1 ≡ E(θ̂(u)
1 |θ̂(u)

1 > 0) = n−1/2

√
2σ11

π
+ op(T

−1/2)

and

θ∗2 ≡ E(θ̂(u)
2 |θ̂(u)

1 > 0) = θ0
2 + T−1/2σ12

√
2

πσ11
+ op(T

−1/2)

Then

E(σ̂) = σ +
1
2

[

σ(θ∗) − 1 +
1
θ0
2

]

+ op(T
−1/2)

and

V ar(σ̂) =
1

2T

{

b(θ∗)2
(

σ22 −
σ2

12

σ11

)

+

[

a(θ∗) + b(θ∗)(1 +
σ12

σ11
)

]2
σ11(1 −

2
π

)

}

+
V ar(ψ̂)

2
+

1
4

[

σ(θ∗) − 1 +
1
θ0
2

]2
+ op(T

−1) (18)
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See Appendix A for a proof. Note that p lim θ∗ = θ0 and p lim σ(θ∗) = 1 − 1/θ0
2 . Hence

plim σ̂ = σ.

To use Proposition 1 directly, it is necessary to know θ0. The obvious remedy is to

replace θ0 with θ̂ and apply Proposition 1 if θ̂ 6= θ̂(u) and Equation (16) if θ̂ = θ̂(u). However,

this does not necessarily produce a consistent estimator of V ar(σ̂) , since lim Pr(θ̂ = θ̂(u)) = 0.5

at the boundary of the parameter space. Instead, we propose to use Equation (16) as variance

estimator when i) θ̂ = θ̂(u) and ii) the hypotheses θ0
1 + θ0

2 = 1 and θ1
0 = 0 are both rejected

by χ2(1) tests at a given significance level (say 5 percent). In the cases where θ̂ = θ̂(u) and

the hypotheses in ii) are not both rejected, we construct an upper bound estimator, V̂ ar(σ̂), as

follows (cf. Table 2):

1. If θ0
1 + θ0

2 = 1 is not rejected and Q(r1) < Q(r2) : V̂ ar(σ̂) is the maximum of Equation

(16) (replacing θ0 with θ(u) ) and Equation (17) (replacing θ0 with θ(r1)).

2. If θ1
0 = 0 is not rejected and Q(r2) < Q(r1) , then a): if θ

(r2)
2 < 0, V̂ ar(σ̂) is the maximum

of Equation (16) (replacing θ0 with θ(u) ) and Equation (18) (replacing θ0 with θ(r2)); or

b): if θ
(r2)
2 ≥ 0 , V̂ ar(σ̂)=∞

If θ0 is an interior point of Θ, the restrictions in 1. and 2. will be asymptotically rejected

with probability one and V̂ ar(σ̂) is obtained using Equation (16) (with θ0 replaced by θ̂(u)).

On the other hand, if θ0 is at the boundary of Θ, the hypotheses in 1. or 2. are not rejected

with probability one and V̂ ar(σ̂) will be an upper-bound estimator. Finally, when θ̂ 6= θ̂(u) and

σ̂ < ∞, we use the corresponding formula in Proposition 1 (with θ0 replaced by θ̂).

To apply any of the variance formulas mentioned above, we also need an estimator of

Σ. In the case of one reference variety (n = 1) and iterative GMM, V̂ ar(θ̂(u)) = H−1
T . Then

a consistent estimator is Σ̂ = (HT /T )−1 . In the case of pooling, we can estimate Σ using the

bootstrap. This method is easy and quick as no iterative optimization, like FIML, is needed. See

Appendix B for details.
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3 Monte Carlo Simulations

When presenting the results of the Monte Carlo simulations below, we focus on the relative per-

formance of the 2SP and F/S estimator, measured in terms of RMSE, over the whole parameter

space. In contrast, Soderbery (2015) considers a single point. We also consider the coverage

of confidence intervals based on the formulas derived in Section 2.7. To calibrate an empiri-

cally realistic simulation model, we use real data to estimate parameters of a stochastic variance

model.

3.1 Simulation algorithm

We start by noting that:

Δ(k)eX
ft = eX

ft − eX
f,t−1 − eX

kt + eX
k,t−1 for X ∈ (D,S) (19)

Defining V ar(eX
ft) = σ2

Xf and assuming, like Soderbery (2015), that eX
ft, e

X
fs, e

X
kt and eX

ks are

uncorrelated if f 6= i or t 6= s:

V ar(Δ(k)eX
ft) = 2(σ2

Xf + σ2
Xk)

Next, assume that

σ2
Xf ∼ Gamma(νX , aX) for X ∈ (D,S)

which is the "workhorse" model of marginal variance in the stochastic volatility literature (this

is partly because of computational tractability and partly because it has been found to fit price

data well; see Roberts et al. (2004)). It follows that E(σ2
Xf ) = νX/aX and V ar(σ2

Xf ) = νX/a2
X .

In Appendix C we describe how νX and aX can be estimated from the residuals of the estimated

system of Equation (3).

We make some observations regarding the Monte Carlo setup. First, all the estimators

we examine are invariant to any proportional shift in the (inverse) scale parameters aS and aD

such that aS/aD = κ for a constant κ. Hence, without loss of generality we may assume that

σ2
Df ∼Gamma(νD, 1) and σ2

Sf ∼ κ Gamma(νS , 1). Second, the estimators are invariant to the

18



realized fixed effects. Hence, when we simulate data we assume without loss of generality that

λX
t = uX

f = 0 (of course, we make no such assumptions when estimating the model on the

simulated data).

Algorithm for Monte Carlo simulations:

For every f = 1, ..., N and t = 1, . . . , T (given θ, νS , νD and κ):

1. Draw σ̃2
Df from Gamma(νD, 1) and σ̃2

Sf from Gamma(νS , 1)

2. Draw ẽD
ft from N(0, 1) and ẽS

ft from N(0, 1)

3. Set eD
ft =

√
κσ̃Df ẽD

ft and eS
ft = σ̃Sf ẽS

ft

4. Simulate ln sft and ln pft using Equation (4) with λX
t = uX

f = 0

In all our reported simulation results, we use νS = 0.4 , νD = 0.4 and κ = 1.4, which are the

averages of estimated values (over different goods) using the data described in Brasch et al.

(2018) and the estimator described in Appendix C. 3

3.2 Simulation results

Table 3 shows the simulation results for a balanced sample with N = 100 varieties and T = 25

periods. The results in Table 3 have n = 10 reference varieties. The effect of changing the

number of reference varieties will be reported in Tables 4-5. Although the chosen sample size is

realistic in many applications, we also examine a wide range of other sample sizes in Tables 6-7.

The results in Table 3 focus on the Root Mean Squared Error (RMSE) of the 2SP

estimator (column 4) and the RMSE relative to the F/S estimator (column 5). We consider

a wide range of σ values between 1.1 and 10 and α values between 0 and 1. In the interest

of interpretability, the RMSE has been normalized by dividing by |β| = σ − 1. The normalised

RMSE (NRMSE) expresses the RMSE relative to the distance of σ from boundary 1. The inverse

NRMSE can then be interpreted as the number of standard errors the true σ is distant from this

boundary. For a symmetric confidence interval around σ̂ based on the Z -statistic, the inverse

NRMSE multiplied by z1−a/2 expresses the radius of a 1 − a confidence interval relative to |β|.

This means, as a rule of thumb, that if NRMSE is above 1/1.96, we cannot reject the possibility

that σ = 1 at the 95 percent confidence level. Meaningful inference about σ is clearly not possible

3These – and any other calibrated parameters – can be re-set in the accompanying STATA do-files. Thus, any-
one can easily verify our simulation results or generate additional ones, see https://www.ssb.no/en/forskning/
discussion-papers/a-two-stage-pooled-panel-data-estimator-of-demand-elasticities .
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Table 3: The 2SP vs. the F/S estimator. Results from Monte Carlo
simulations. N=100, T=25 and n =10 (reference varieties)

α σ Share constraineda NRMSEb Relative RMSEc

0.0 1.1 0.60 0.02 0.20
0.0 2.0 0.60 0.02 0.17
0.0 3.0 0.61 0.02 0.16
0.0 4.0 0.61 0.02 0.14
0.0 5.0 0.61 0.02 0.14
0.0 6.0 0.61 0.02 0.16
0.0 10.0 0.60 0.02 0.18
0.2 1.1 0.39 0.02 0.21
0.2 2.0 0.00 0.03 0.05
0.2 3.0 0.00 0.04 0.21
0.2 4.0 0.00 0.05 0.21
0.2 5.0 0.00 0.05 0.15
0.2 6.0 0.00 0.06 0.09
0.2 10.0 0.00 0.09 0.29
0.4 1.1 0.23 0.03 0.38
0.4 2.0 0.00 0.04 0.24
0.4 3.0 0.00 0.05 0.12
0.4 4.0 0.00 0.07 0.07
0.4 5.0 0.00 0.08 0.25
0.4 6.0 0.00 0.09 0.31
0.4 10.0 0.00 0.17 0.25
0.6 1.1 0.16 0.03 0.28
0.6 2.0 0.00 0.05 0.15
0.6 3.0 0.00 0.07 0.09
0.6 4.0 0.00 0.09 0.32
0.6 5.0 0.00 0.12 0.39
0.6 6.0 0.00 0.14 0.22
0.6 10.0 0.00 0.25 0.35
0.8 1.1 0.22 0.03 0.08
0.8 2.0 0.00 0.05 0.34
0.8 3.0 0.00 0.08 0.06
0.8 4.0 0.00 0.12 0.34
0.8 5.0 0.00 0.14 0.30
0.8 6.0 0.00 0.19 0.15
0.8 10.0 0.00 0.37 0.50
1.0 1.1 0.42 0.03 0.28
1.0 2.0 0.40 0.06 0.08
1.0 3.0 0.40 0.08 0.30
1.0 4.0 0.40 0.12 0.29
1.0 5.0 0.40 0.17 0.13
1.0 6.0 0.40 0.19 0.31
1.0 10.0 0.40 0.71 0.41

a Share of estimates at the boundary of the parameter space.
b RMSE of the 2SP estimator divided by |β| = σ − 1.
c RMSE of the 2SP estimator divided by the corresponding RMSE of the
F/S estimator; see Soderbery (2015).
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Table 4: The 2SP estimator. Results from Monte Carlo simulations.
N=100, T=25 and n =1 (reference variety)

α σ Share constraineda NRMSEb Relative RMSEc

0.0 1.1 0.66 0.10 0.84
0.0 2.0 0.53 0.27 2.06
0.0 3.0 0.53 0.28 2.08
0.0 4.0 0.54 0.17 1.10
0.0 5.0 0.54 0.17 1.14
0.0 6.0 0.54 0.15 1.13
0.0 10.0 0.54 0.15 1.26
0.2 1.1 0.57 0.05 0.50
0.2 2.0 0.07 0.22 0.34
0.2 3.0 0.05 3.29 17.10
0.2 4.0 0.06 0.45 1.99
0.2 5.0 0.06 0.76 2.11
0.2 6.0 0.06 1.27 1.92
0.2 10.0 0.08 0.37 1.20
0.4 1.1 0.52 0.06 0.79
0.4 2.0 0.06 3.27 19.09
0.4 3.0 0.06 0.76 1.75
0.4 4.0 0.08 0.20 0.20
0.4 5.0 0.08 0.31 0.98
0.4 6.0 0.08 0.45 1.48
0.4 10.0 0.08 0.43 0.63
0.6 1.1 0.49 0.05 0.50
0.6 2.0 0.10 0.32 1.03
0.6 3.0 0.10 0.26 0.35
0.6 4.0 0.09 0.33 1.14
0.6 5.0 0.09 0.56 1.93
0.6 6.0 0.09 1.53 2.38
0.6 10.0 0.08 1.17 1.63
0.8 1.1 0.54 0.05 0.14
0.8 2.0 0.16 0.12 0.75
0.8 3.0 0.14 0.28 0.21
0.8 4.0 0.13 0.73 2.16
0.8 5.0 0.12 0.41 0.86
0.8 6.0 0.12 0.59 0.46
0.8 10.0 0.12 1.70 2.29
1.0 1.1 0.60 0.06 0.50
1.0 2.0 0.52 0.10 0.14
1.0 3.0 0.53 0.16 0.57
1.0 4.0 0.52 0.21 0.51
1.0 5.0 0.51 0.39 0.31
1.0 6.0 0.52 0.41 0.69
1.0 10.0 0.54 1.13 0.65

a Share of estimates at the boundary of the parameter space.
b RMSE divided by |β| = σ − 1 .
c RMSE divided by the RMSE of the F/S estimator; see Soderbery (2015).
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Table 5: The 2SP estimator. Results from Monte Carlo simulations.
N=100, T=25 and n =100 (reference varieties)

α σ Share constraineda NRMSEb Relative RMSEc

0.0 1.1 0.72 0.02 0.15
0.0 2.0 0.71 0.02 0.14
0.0 3.0 0.71 0.02 0.14
0.0 4.0 0.72 0.02 0.11
0.0 5.0 0.71 0.02 0.12
0.0 6.0 0.72 0.02 0.13
0.0 10.0 0.71 0.02 0.15
0.2 1.1 0.39 0.02 0.18
0.2 2.0 0.00 0.03 0.05
0.2 3.0 0.00 0.04 0.20
0.2 4.0 0.00 0.04 0.18
0.2 5.0 0.00 0.05 0.13
0.2 6.0 0.00 0.06 0.09
0.2 10.0 0.00 0.08 0.28
0.4 1.1 0.20 0.02 0.33
0.4 2.0 0.00 0.04 0.23
0.4 3.0 0.00 0.05 0.11
0.4 4.0 0.00 0.06 0.06
0.4 5.0 0.00 0.07 0.23
0.4 6.0 0.00 0.09 0.30
0.4 10.0 0.00 0.14 0.20
0.6 1.1 0.14 0.03 0.24
0.6 2.0 0.00 0.05 0.15
0.6 3.0 0.00 0.06 0.09
0.6 4.0 0.00 0.08 0.27
0.6 5.0 0.00 0.10 0.33
0.6 6.0 0.00 0.12 0.18
0.6 10.0 0.00 0.26 0.37
0.8 1.1 0.22 0.03 0.07
0.8 2.0 0.00 0.05 0.30
0.8 3.0 0.00 0.07 0.05
0.8 4.0 0.00 0.11 0.31
0.8 5.0 0.00 0.14 0.30
0.8 6.0 0.00 0.18 0.14
0.8 10.0 0.00 0.45 0.61
1.0 1.1 0.30 0.03 0.26
1.0 2.0 0.29 0.06 0.09
1.0 3.0 0.29 0.08 0.30
1.0 4.0 0.29 0.11 0.27
1.0 5.0 0.29 0.17 0.14
1.0 6.0 0.29 0.19 0.32
1.0 10.0 0.29 0.49 0.28

a Share of estimates at the boundary of the parameter space.
b RMSE divided by |β| = σ − 1.
c RMSE divided by the corresponding RMSE of the F/S estimator; see
Soderbery (2015).
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Table 6: Normalized RMSE of the 2SP estimator. Results from Monte Carlo simulation for different
combinations of varieties, N, and time periods, T , and n =10 (reference varieties).

α σ N, T N, T N, T N, T N, T N, T N, T N, T N, T

50, 5 100, 5 50, 10 100, 10 50, 25 100, 25 50, 50 100, 50 50, 100

0.0 1.1 0.10 0.07 0.06 0.04 0.04 0.02 0.02 0.02 0.01
0.0 2.0 0.08 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.01
0.0 3.0 0.09 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.01
0.0 4.0 0.08 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.01
0.0 5.0 0.08 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.01
0.0 6.0 0.08 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.01
0.0 10.0 0.08 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.01
0.2 1.1 0.10 0.07 0.06 0.04 0.03 0.02 0.02 0.02 0.01
0.2 2.0 0.19 0.13 0.11 0.08 0.05 0.03 0.03 0.02 0.02
0.2 3.0 0.25 0.18 0.13 0.10 0.06 0.04 0.03 0.03 0.02
0.2 4.0 0.30 0.21 0.15 0.11 0.06 0.05 0.04 0.03 0.02
0.2 5.0 0.36 0.24 0.17 0.13 0.08 0.05 0.04 0.04 0.02
0.2 6.0 0.41 0.29 0.18 0.14 0.09 0.06 0.05 0.04 0.03
0.2 10.0 0.86 0.57 0.29 0.23 0.13 0.09 0.07 0.06 0.04
0.4 1.1 0.10 0.07 0.06 0.04 0.03 0.03 0.02 0.02 0.01
0.4 2.0 0.25 0.20 0.13 0.09 0.06 0.04 0.03 0.03 0.02
0.4 3.0 0.39 0.24 0.16 0.13 0.08 0.05 0.04 0.04 0.02
0.4 4.0 0.49 0.40 0.22 0.16 0.10 0.07 0.05 0.04 0.03
0.4 5.0 1.21 0.63 0.27 0.20 0.12 0.08 0.06 0.05 0.03
0.4 6.0 1.10 1.55 0.34 0.25 0.14 0.09 0.08 0.06 0.04
0.4 10.0 2.09 0.95 0.76 0.48 0.25 0.17 0.12 0.10 0.06
0.6 1.1 0.10 0.07 0.06 0.05 0.04 0.03 0.02 0.02 0.01
0.6 2.0 0.33 0.21 0.15 0.10 0.06 0.05 0.04 0.03 0.02
0.6 3.0 0.49 0.40 0.22 0.16 0.09 0.07 0.05 0.04 0.03
0.6 4.0 0.86 0.57 0.30 0.21 0.13 0.09 0.07 0.06 0.04
0.6 5.0 1.39 1.50 0.42 0.27 0.15 0.12 0.08 0.07 0.05
0.6 6.0 2.65 2.05 0.55 0.36 0.20 0.14 0.10 0.08 0.05
0.6 10.0 1.74 1.99 1.83 1.13 0.41 0.25 0.19 0.15 0.09
0.8 1.1 0.10 0.07 0.07 0.06 0.04 0.03 0.02 0.02 0.01
0.8 2.0 0.36 0.27 0.17 0.12 0.08 0.05 0.04 0.04 0.02
0.8 3.0 1.21 0.47 0.26 0.21 0.12 0.08 0.06 0.05 0.04
0.8 4.0 1.39 0.78 0.42 0.31 0.15 0.12 0.08 0.07 0.05
0.8 5.0 3.76 1.27 0.61 0.49 0.20 0.14 0.10 0.09 0.06
0.8 6.0 2.57 1.28 0.99 0.58 0.26 0.19 0.14 0.10 0.07
0.8 10.0 1.53 1.98 2.23 1.16 0.88 0.37 0.24 0.21 0.12
1.0 1.1 0.10 0.07 0.07 0.07 0.04 0.03 0.02 0.02 0.01
1.0 2.0 0.39 0.28 0.18 0.12 0.08 0.06 0.04 0.03 0.03
1.0 3.0 1.06 0.70 0.32 0.21 0.13 0.08 0.07 0.05 0.04
1.0 4.0 2.51 2.04 0.52 0.42 0.19 0.12 0.10 0.07 0.05
1.0 5.0 2.46 1.23 0.94 0.54 0.26 0.17 0.12 0.09 0.06
1.0 6.0 2.94 2.24 1.65 0.76 0.33 0.19 0.16 0.12 0.08
1.0 10.0 1.41 1.99 1.34 1.33 1.07 0.71 0.34 0.22 0.13

Median 0.40 0.28 0.18 0.13 0.08 0.06 0.05 0.04 0.03
Mean 0,91 0,66 0,40 0,26 0,15 0,10 0,07 0,06 0,04
N × T 250 500 500 1 000 1 250 2 500 2 500 5 000 5 000
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Table 7: Normalized RMSE of the F/S estimator. Results from Monte Carlo Simulation for different
combinations of varieties, N, time periods, T, and n =10 (reference varieties).

α σ N, T N, T N, T N, T N, T N, T N, T N, T N, T

50, 5 100, 5 50, 10 100, 10 50, 25 100, 25 50, 50 100, 50 50, 100

0.0 1.1 0.56 0.63 0.28 0.40 0.29 0.12 0.06 0.05 0.04
0.0 2.0 0.52 0.64 0.30 0.40 0.23 0.13 0.06 0.04 0.05
0.0 3.0 0.64 0.43 0.29 0.40 0.23 0.13 0.05 0.05 0.04
0.0 4.0 0.54 0.42 2.11 0.40 0.23 0.15 0.08 0.05 0.04
0.0 5.0 0.54 0.43 0.30 0.48 0.30 0.15 0.06 0.05 0.04
0.0 6.0 0.51 0.58 0.21 0.40 0.22 0.14 0.08 0.06 0.04
0.0 10.0 0.62 0.42 0.54 0.40 0.27 0.12 0.09 0.07 0.07
0.2 1.1 0.47 0.67 0.23 0.41 0.22 0.11 0.08 0.05 0.04
0.2 2.0 0.95 1.08 0.32 1.15 0.39 0.63 0.12 0.06 0.05
0.2 3.0 2.24 3.69 2.08 0.81 0.72 0.19 0.15 0.07 0.06
0.2 4.0 2.39 1.22 0.58 2.14 1.93 0.23 0.19 0.08 0.07
0.2 5.0 3.05 1.19 0.91 1.60 1.93 0.36 0.24 0.09 0.08
0.2 6.0 2.19 2.02 1.90 0.36 0.39 0.67 0.19 0.09 0.09
0.2 10.0 2.00 1.13 0.88 0.40 0.67 0.30 0.50 0.13 0.14
0.4 1.1 0.51 0.66 0.36 0.43 0.30 0.07 0.06 0.05 0.04
0.4 2.0 2.58 3.68 0.98 0.87 0.91 0.17 0.15 0.07 0.06
0.4 3.0 3.76 1.17 0.91 3.90 4.63 0.43 0.24 0.09 0.08
0.4 4.0 1.57 0.97 2.22 0.95 0.97 1.01 0.23 0.10 0.11
0.4 5.0 2.27 1.71 1.42 1.81 0.49 0.31 0.36 0.12 0.13
0.4 6.0 3.40 2.44 1.35 1.47 1.08 0.30 0.20 0.14 0.16
0.4 10.0 1.36 1.59 1.94 0.96 0.88 0.68 0.33 0.35 0.23
0.6 1.1 0.61 0.66 0.36 0.63 0.30 0.11 0.08 0.05 0.04
0.6 2.0 4.83 1.86 2.22 2.82 3.33 0.31 0.19 0.08 0.07
0.6 3.0 1.61 3.24 2.11 1.90 0.25 0.74 0.23 0.10 0.11
0.6 4.0 4.00 3.47 1.28 2.57 0.67 0.29 0.50 0.13 0.14
0.6 5.0 1.90 1.81 1.44 0.87 0.60 0.29 1.44 0.17 0.19
0.6 6.0 3.43 2.81 2.30 0.49 0.87 0.64 0.29 0.22 0.19
0.6 10.0 2.11 2.18 1.63 0.90 1.26 0.71 0.80 0.71 0.38
0.8 1.1 0.62 0.69 0.39 0.69 0.31 0.38 0.11 0.05 0.04
0.8 2.0 2.77 8.38 0.96 6.34 7.83 0.16 0.24 0.10 0.08
0.8 3.0 3.95 1.44 5.22 2.02 2.12 1.36 0.37 0.12 0.13
0.8 4.0 1.83 4.27 2.28 1.03 0.62 0.34 0.24 0.17 0.19
0.8 5.0 2.93 2.90 2.41 0.93 0.58 0.47 0.28 0.24 0.20
0.8 6.0 1.84 2.21 3.00 1.02 0.61 1.30 0.46 0.43 0.27
0.8 10.0 1.38 1.82 1.50 1.16 1.37 0.74 1.10 0.63 1.06
1.0 1.1 0.68 0.73 0.37 0.71 0.33 0.11 0.09 0.05 0.04
1.0 2.0 4.32 3.05 10.73 3.07 0.27 0.66 0.19 0.09 0.09
1.0 3.0 4.73 4.72 2.75 5.02 1.10 0.28 0.21 0.17 0.16
1.0 4.0 3.94 4.07 1.99 0.98 0.45 0.42 0.29 0.26 0.19
1.0 5.0 3.48 3.08 2.73 1.14 1.21 1.25 0.44 0.33 0.27
1.0 6.0 2.99 2.91 1.95 0.69 1.95 0.60 0.91 0.54 0.39
1.0 10.0 2.48 2.03 2.38 1.78 1.20 1.73 0.95 1.21 0.56

Median 2.05 1.76 1.43 0.94 0.61 0.31 0.22 0.09 0.09
Mean 2.12 2.03 1.67 1.36 1.06 0.46 0.31 0.18 0.16
N × T 250 500 500 1 000 1 250 2 500 2 500 5 000 5 000
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Table 8: The 2SP estimator: coverage of 95% nominal confidence intervals for σ a. Results from Monte
Carlo Ssmulations for different combinations of varieties, N, time periods, T , and n = 10 (reference varieties).

α σ N, T N, T N, T N, T N, T N, T N, T N, T N, T

50, 5 100, 5 50, 10 100, 10 50, 25 100, 25 50, 50 100, 50 50, 100

0.0 1.1 0.76 0.80 0.89 0.91 0.92 0.92 0.90 0.97 0.88
0.0 2.0 0.70 0.83 0.80 0.87 0.90 0.92 0.90 0.97 0.88
0.0 3.0 0.70 0.83 0.80 0.87 0.90 0.92 0.90 0.97 0.88
0.0 4.0 0.70 0.83 0.80 0.87 0.90 0.92 0.90 0.97 0.88
0.0 5.0 0.70 0.83 0.80 0.87 0.90 0.92 0.90 0.97 0.88
0.0 6.0 0.70 0.83 0.80 0.87 0.90 0.92 0.90 0.97 0.88
0.0 10.0 0.70 0.83 0.80 0.87 0.90 0.92 0.90 0.97 0.88
0.2 1.1 0.78 0.82 0.89 0.93 0.93 0.95 0.94 0.97 0.94
0.2 2.0 0.89 0.90 0.89 0.88 0.90 0.94 0.92 0.95 0.93
0.2 3.0 0.68 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.2 4.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.2 5.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.2 6.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.2 10.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.4 1.1 0.79 0.84 0.91 0.93 0.95 0.95 0.96 0.96 0.95
0.4 2.0 0.68 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.4 3.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.4 4.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.4 5.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.4 6.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.4 10.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.6 1.1 0.80 0.88 0.93 0.91 0.94 0.97 0.96 0.95 0.94
0.6 2.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.6 3.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.6 4.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.6 5.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.6 6.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.6 10.0 0.77 0.86 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.8 1.1 0.84 0.89 0.94 0.92 0.94 0.96 0.95 0.97 0.95
0.8 2.0 0.63 0.80 0.85 0.88 0.91 0.94 0.92 0.95 0.93
0.8 3.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.8 4.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.8 5.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.8 6.0 0.63 0.79 0.84 0.88 0.90 0.94 0.92 0.95 0.93
0.8 10.0 0.83 0.88 0.89 0.88 0.90 0.94 0.92 0.95 0.93
1.0 1.1 0.86 0.93 0.94 0.92 0.94 0.94 0.94 0.97 0.95
1.0 2.0 0.63 0.81 0.85 0.88 0.91 0.94 0.94 0.97 0.95
1.0 3.0 0.63 0.81 0.85 0.88 0.91 0.94 0.94 0.97 0.95
1.0 4.0 0.63 0.81 0.85 0.88 0.91 0.94 0.94 0.97 0.95
1.0 5.0 0.63 0.81 0.85 0.88 0.91 0.94 0.94 0.97 0.95
1.0 6.0 0.74 0.81 0.85 0.88 0.91 0.94 0.94 0.97 0.95
1.0 10.0 0.84 0.91 0.93 0.94 0.91 0.94 0.94 0.97 0.95

Median 0,63 0,80 0,84 0,88 0,90 0,94 0,92 0,95 0,93
Mean 0,69 0,82 0,85 0,89 0,91 0,94 0,92 0,96 0,93
N × T 250 500 500 1 000 1 250 2 500 2 500 5 000 5 000

a Coverage represents the share of simulations where σ lies in the 95% confidence interval σ̂ ± 1.96SE(σ̂) constructed
from the ("upper bound") variance formulas of Section 2.7.
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Figure 2: Normalised RMSE. RMSE divided by |β| = σ − 1

when NRMSE exceeds 0.5.

We see from column 5 in Table 3 that for every combination of parameter values, the

RMSE of the 2SP estimator is at or below 50 percent of the F/S estimator. More typically it

is between 20 and 30 percent, representing a 70-80 percent reduction in the RMSE. We also see

that the NRMSE increases with α and σ. For example, when σ is fixed at 5: the NRMSE is 0.02

when α = 0 , 0.12 when α = 0.6 and 0.17 when α = 1. When α is fixed at 0.4: the NRMSE is

0.03 when σ = 1.1, 0.08 when σ = 5 and 0.17 when σ = 10 .

We note that our method yields a boundary solution with a 60 percent probability when

α = 0 and achieves a NRMSE of 0.02 regardless of the value of σ, which is only slightly higher

than the NRMSE of the corresponding unbiased fixed effect estimator (not displayed). When

α = 1, the probability of a boundary solution is 40 percent and the NRMSE is about twice that

of the corresponding unbiased FE estimator (not displayed) and between 10 and 40 percent of

the F/S estimator. Away from the boundaries, i.e. for 0.2 ≤ α ≤ 0.8 and σ ≥ 2 , the algorithm
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Figure 3: Relative RMSE. RMSE divided by the RMSE from the F/S estimator, see Soderbery (2015).

does not switch in the second stage at all. We conclude that our estimator almost always makes

the right decision not to switch when the true parameter vector is an interior point. Moreover,

it switches with a probability of between 40 and 60 percent when the true parameter vector is at

the boundary (see the mixing distributions of Proposition 1). Part of the success of our estimator

is related to the fact that: 1) it switches with a high probability in Stage 2 to a more efficient

FE estimator at the boundary of the parameter space and 2) it seldom switches when it is away

from the boundary.

Tables 4-5 examine the case of pooling over n reference varieties. First, Table 4 shows

that with n = 1, the 2SP estimator typically performs less well than the F/S estimator (note that

the F/S method does not choose the reference variety randomly, but the "dominant supplier").

The NRMSE is typically between 1 and 2, or even higher in this case of pooling. Table 5

shows the results when the number of reference varieties n, equals 100. The results in Table 5

are surprisingly similar to those in Table 3: only a very modest improvement in the NRMSE
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is achieved by increasing the number of reference varieties from 10 to 100 (with N fixed at

100). These results show that averaging over a modest number of reference varieties lead to a

huge increase in the precision of the Stage 1 estimates. With one reference variety, our method

switches to a more efficient FE estimator at the boundary of the parameter space in Stage 2 less

frequently compared to when n = 10. The practical implications are strong: choose as many

reference varieties as possible, as doing so costs nothing, and even with as few as 10 reference

varieties, the gain is immense relative to the F/S method.

Figures 2-3 illustrate the NRMSE and Relative RMSE graphically. The figures are

constructed using a finer grid of α- and σ-values than reported in the tables. We see from

Figure 3 that the NRMSE increases monotonically in σ. In the depicted part of the parameter

space (σ ≤ 10) , a maximum Relative RMSE of 0.6 is reached at σ = 10 and α l 0.9 (where the

NRMSE exceeds 0.5 – see Figure 2). When α = 1, the relative RMSE is lower than when α = 0.9,

reflecting the effect of switching to the more efficient FE estimator at the boundary, which occurs

with approximately 40 percent probability (see Table 3). Nevertheless, we see from Figure 2 that

the NRMSE increases over the segment α ∈ [0.95, 1] for σ larger than approximately 0.6.

Tables 6-7 show the normalized RMSE for the two estimators as a function of sample size

(N and T ). Table 6 shows that when (T,N) = (5, 50) the mean (median) NRMSE of the 2SP

estimator is 0.93 (0.40), decreasing to 0.15 (0.08) with (T,N) = (25, 50) and 0.04 (0.03) with

(T,N) = (100, 50). Contrary to what is claimed by Soderbery and Feenstra, a doubling of N for

given T changes the NRMSE by a factor of about 0.7, which is consistent with
√

N asymptotics

(1/
√

2=0.707). This is somewhat surprising, since the asymptotic results only demonstrate
√

T

convergence in distribution. Nevertheless, pairwise comparisons of columns with identical NT

in Table 6 (500, 2 500 or 5 000), show that the RMSE decreases by between 20-50 percent when

T is doubled and N is halved (keeping NT constant).

The corresponding results for the F/S estimator are shown in Table 7. With a sample

size of (T,N) = (5, 50) the mean (median) NRMSE is 2.12 (2.05), decreasing to 1.06 (0.61) when

(T,N) = (25, 50) and to 0.16 (0.09) when (T,N) = (100, 50). A comparison of Table 4 and 5

confirms that our method typically decreases RMSE by between 60 and 90 percent compared to

F/S over the parameter space for all combinations of N and T . In fact, by comparing Table 6

and 7, we see that the NRMSE of the 2SP estimator in a sample with NT = 1250 observations
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is of the same magnitude as the NRMSE with the F/S estimator in a sample with NT = 5000.

Finally, we evaluate the performance of our method of obtaining standard errors of es-

timation. We do so by simulating 95 percent nominal confidence intervals σ̂ ± 1.96
√

V̂ ar(σ̂),

where V̂ ar(σ̂) is the estimator defined in Section 2.7. Then we calculate the share of sim-

ulations that includes the true σ (referred to as "coverage" in Table 8). We see from Ta-

ble 8 that for sample sizes up to 1250, the coverage is 80 percent or less. However, with

a moderate or large sample, with 2500 or more observations, the nominal and actual cover-

ages of the confidence intervals become very close. For example, with N = 100 and T = 25,

the lowest coverage in Table 8 is 93 percent and the highest is 96 percent. Thus the accu-

racy of the inference is very high in moderate and large samples. In particular, we note that

T does not need to be particularly high for this to be the case.

4 Conclusion

In this paper, we have extended the F/S estimator along two important dimensions to obtain a

more efficient estimator: We have handled the cases where there are no simultaneity problems, i.e.

when supply is either perfectly elastic or inelastic, and we have generalized the current practice of

choosing a particular reference variety by creating a pooled estimator across all possible reference

varieties. The pooled estimator is an average of the estimates corresponding to each reference

variety and is thus not dependent on a particular choice of reference variety. Our proposed two-

stage pooled estimator (2SP) switches in the second stage to an FE regression estimator if the

stage-one constrained estimates of the demand and supply elasticities are at the boundary of the

parameter space.

We compared the 2SP and F/S estimators using a Monte Carlo study and considered

the properties of the estimator over the entire parameter space. There is a high probability of

the 2SP estimator switching in the second stage if the true parameter is at the boundary of the

parameter space, but it seldom switches if the true parameter is away from the boundary. We

found that as many reference varieties as possible should be chosen, as doing so costs nothing

and the gain in RMSE is immense. There are complementarities between the two refinements we

have made: choosing many reference varieties not only reduces RMSE directly, it also increases
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the probability of the 2SP estimator switching to a more efficient FE estimator when the true

parameter is at the boundary of the parameter space, and of an admissible first-stage estimate

when the true parameter is away from the boundary. Overall, our results show that the 2SP

estimator reduces the RMSE of the F/S estimator by between 60 and 90 percent across the

whole parameter space, irrespective of sample size. For the RMSE of the F/S estimator to be of

the same magnitude as that of the 2SP estimator, roughly four times as many observations are

needed ceteris paribus.

We also provided analytical expressions for the asymptotic standard error of the 2SP

estimator, i.e. both at the interior and at the boundary of the parameter space. In the Monte

Carlo study, we evaluated the performance of our method of obtaining standard errors by sim-

ulating 95 percent confidence intervals and calculating the share of simulations (coverage) that

included the true demand elasticity. Coverage typically ranges from 80 to 95 percent and in-

creases with sample size, showing that the accuracy of the inference is very good in moderate

and large samples.
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A Proof of Proposition 1

In the following we will expand σ(θ̂(u)) around σ(θ∗) for two different values of θ∗ satisfying:

σ(θ̂(u)) − σ(θ∗)
D
' (a(θ∗) + b(θ∗))(θ̂(u)

1 − θ∗1) + b(θ∗)(θ̂(u)
2 − θ∗2)

(see Section 2.7 for explanation of notation).

Case 1: θ1
0 > 0 and θ0

1 + θ0
2 = 1. Here σ0 = 1 + (θ0

1)
−1 and we set

θ∗ = θ0

Asymptotically, with probability 1, either θ̂ = θ(r1) or θ̂ = θ̂(u) is an interior point. To examine

the behavior of θ̂(u) given that θ̂(u) is an admissible interior point, define

Δ = θ̂1

(u)
− θ0

1 + θ̂2

(u)
− θ0

2

= θ̂1

(u)
+ θ̂2

(u)
− 1

Then θ̂ is an interior point if and only if θ̂1

(u)
> 0 and Δ < 0 and θ̂ = θ(r1) is equivalent to

θ̂1

(u)
> 0 and Δ ≥ 0 . Moreover,

Δ
D
' T−1/2σΔZ, where σΔ =

√
σ11 + σ22 + 2σ12 and Z ∼ N(0, 1).

Furthermore

θ̂2

(u)
− θ0

2 = Δ − (θ̂1

(u)
− θ0

1)

where

θ̂1

(u)
− θ0

1

D
' χΔ + ε

with

χ =
Cov(Δ, θ̂1

(u)
)

V ar(Δ)
'

σ11 + σ12

σ2
Δ
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and

ε
D
= N(0, σ2

ε).

Then ε is conditionally independent of Δ with

σ2
ε = T−1

[

σ11 −
(σ11 + σ12)2

σ2
Δ

]

= T−1

[

σ11 −
(σ11 + σ12)2

σ11 + σ22 + 2σ12

]

A Taylor expansion σ(θ̂u) around θ∗ = θ0 gives:

σ(θ̂u) − σ(θ0)
D
'
(
a(θ0) + b(θ0)

)
(θ̂u

1 − θ0
1) + b(θ0)(θ̂u

2 − θ0
2)

= a(θ0)ε +
[
a(θ0)χ + b(θ0)

]
Δ

It follows that

E(σ(θ̂u)|Δ < 0) ' σ(θ0) +
[
a(θ0)χ + b(θ0)

]
E(Δ|Δ < 0)

V ar(g(θ̂u)|Δ < 0) ' a(θ0)2σ2
ε +

[
a(θ0)χ + b(θ0)

]2
V ar(Δ|Δ < 0)

The well-known expressions for E(Z|Z > 0) and V ar(Z|Z > 0) are:

E(Z|Z > 0) = ψ(0)

and

V ar(Z|Z > 0) = 1 − ψ(0)2

where ψ(∙) is the inverse Mills ratio:

ψ(0) = φ(0)/Φ(0) = 2φ(0) =
2

√
2π

=

√
2
π

.

Since Δ
D
' T−1/2σΔZ :

E(Δ|Δ < 0) = −E(−Δ| − Δ > 0) ' −T−1/2σΔE(Z|Z > 0) = −T−1/2σΔψ(0)

V ar(Δ|Δ < 0) ' T−1σ2
ΔV ar(Z|Z > 0) = T−1σ2

Δ(1 − ψ(0)2)
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Hence

E(σ(θ̂u)|Δ < 0) ' σ(θ∗) − [a(θ∗)χ + b(θ∗)] T−1/2σΔψ(0)

V ar(g(θ̂u)|Δ < 0) ' a(θ∗)2σ2
ε + [a(θ∗)χ + b(θ∗)]2 T−1σ2

Δ(1 − ψ(0)2)

Thus σ̂ has an asymptotic mixture distribution:

σ̂ − σ0 D
' 1(Δ < 0)(σ(θ̂u) − σ(θ0)) + (1 − 1(Δ < 0))(τ̂−1 − σ0)

where

Pr(Δ < 0) ' Pr(T−1/2σΔZ < 0) =
1
2

Let D be a binary variable with Pr(D = 1) = P and Y = DY1 + (1 − D)Y0. By the rules of

double expectation and total variance:

E(Y ) = PE(Y1|D = 1) + (1 − P )E(Y0|D = 0)

and

V ar(Y ) = PV ar(Y1|D = 1) + (1 − P )V ar(Y0|D = 0)

+ P (1 − P ) [E(Y1|D = 1) − E(Y0|D = 0)]2

Hence

E(σ̂) ' σ0 +
1
2
(E(σ(θ̂u)|Δ < 0) − σ(θ0)) +

1
2
E(τ̂−1 − σ)

= σ0 +
1
2
(E(σ(θ̂u)|Δ < 0) − σ(θ0))

V ar(σ̂) '
1
2
V ar(σ(θ̂u)|Δ < 0) +

1
2
V ar(τ̂−1)

+
1
4

(
E(σ(θ̂u)|Δ < 0) − σ(θ0)

)2
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That is:

E(σ̂) ' σ0 −
1
2

[
a(θ0)χ + b(θ0)

]
T−1/2σΔψ(0)

= σ0 −
1

√
2πT

[

a(θ0)
σ11 + σ12

σ11 + σ22 + 2σ12
+ b(θ0)

]
√

σ11 + σ22 + 2σ12

and

V ar(σ̂) '
1
2

{
a(θ0)2σ2

ε +
[
a(θ0)χ + b(θ0)

]2
T−1σ2

Δ(1 − ψ(0)2)
}

+
1
2
V ar(τ̂−1)

+
1
4

[(
a(θ0)χ + b(θ0)

)
T−1/2σΔψ(0)

]2

=

{
1
2
a(θ0)2σ2

ε +
1
2

[
a(θ0)χ + b(θ0)

]2
T−1σ2

Δ(1 − ψ(0)2)+

1
4
T−1

[
a(θ0)χ + b(θ0)

]2
σ2

Δψ(0)2
}

+
1
2
V ar(τ̂−1)

=
1

2T

{

a(θ0)2
[

σ11 −
(σ11 + σ12)2

σ11 + σ22 + 2σ12

]

+

[

a(θ0)
σ11 + σ12

σ11 + σ22 + 2σ12
+ b(θ0)

]2
(σ11 + σ22 + 2σ12)

(

1 −
1
π

)}

+
V ar(τ̂−1)

2

Case 2: θ0
1 = 0 and θ0

2 < 0. Here σ0 = 1 − (θ0
2)

−1. We define

θ∗1 = E(θ̂(u)
1 |θ̂(u)

1 > 0)

θ∗2 = E(θ̂(u)
2 |θ̂(u)

1 > 0)

Asymptotically, with probability 1, θ̂2 = θ̂2

u
< 0 and either θ̂1 = θ̂1

u
> 0 or θ̂1

u
≤ 0. In the first

case, σ̂ = σ(θ̂u). We can write

θ̂2

(u)
− θ0

2 = Πθ̂
(u)
1 + η

with

Π =
Cov(θ̂2

(u)
, θ̂1

(u)
)

V ar(θ̂1

(u)
)

'
σ12

σ11
,

and

η
D
= N(0, σ2

η).
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where η is conditionally independent of θ̂
(u)
1 with

σ2
η = T−1

[

σ22 −
σ2

12

σ11

]

If follows that

θ∗1 = E(θ̂(u)
1 |θ̂(u)

1 > 0) ' T−1/2√σ11ψ(0) = T−1/2

√
2σ11

π

θ∗2 = θ0
2 + ΠE(θ̂(u)

1 |θ̂(u)
1 > 0) ' θ0

2 + ΠT−1/2√σ11ψ(0) = θ0
2 + T−1/2σ12

√
2

πσ11

and

θ̂u
2 − θ∗2 = Π(θ̂(u)

1 − θ∗1) + η

We then get

σ(θ̂u) − σ(θ∗)
D
' (a(θ∗) + b(θ∗)) (θ̂u

1 − θ∗1) + b(θ∗)(θ̂u
2 − θ∗2)

= (a(θ∗) + b(θ∗)) (θ̂u
1 − θ∗1) + b(θ∗)(Π(θ̂(u)

1 − θ∗1) + η)

= b(θ∗)η + [a(θ∗) + b(θ∗)(1 + Π)] (θ̂(u)
1 − θ∗1)

Hence

E(σ(θ̂u)|θ̂(u)
1 > 0) ' σ(θ∗)

V ar(σ(θ̂u)|θ̂(u)
1 > 0) ' b(θ∗)2σ2

η + [a(θ∗) + b(θ∗)(1 + Π)]2 T−1σ11(1 − ψ(0)2)

=
1
T

{

b(θ∗)2
[

σ22 −
σ2

12

σ11

]

+

[

a(θ∗) + b(θ∗)(1 +
σ12

σ11
)

]2
σ11(1 −

2
π

)

}

where we have used the fact that

V ar(θ̂(u)
1 |θ̂(u)

1 > 0) ' T−1σ11(1 − ψ(0)2)
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Now consider θ̂1

u
< 0. Then, asymptotically with probability one, θ̂1 = 0 and σ̂ = 1− ψ̂. Hence

σ̂ − σ0 = −ψ̂ + (θ0
2)

−1

and

E(σ̂|θ̂1

u
< 0) ' σ0

V ar(σ̂|θ̂1

u
< 0) ' V ar(ψ̂)

Combining the two outcomes: σ̂ is asymptotically distributed as

σ̂ − σ0 D
' 1(θ̂u

1 > 0)(σ(θ̂u) − 1 + (θ0
2)

−1) + 1(θ̂u
1 < 0)(−ψ̂ + (θ0

2)
−1)]

where

Pr(θ̂u
1 > 0) ' Pr(T−1/2√σ11Z > 0) =

1
2

Hence

E(σ̂) ' σ0 +
1
2

[
σ(θ∗) − 1 + (θ0

2)
−1
]

and

V ar(σ̂) '
1
2
V ar(σ(θ̂u|θ̂u

1 > 0) +
1
2
V ar(σ̂|θ̂1

u
< 0)

+
1
4

[
σ(θ∗) − 1 + (θ0

2)
−1
]2

=
1

2T

{

b(θ∗)2
[

σ22 −
σ2

12

σ11

]

+

[

a(θ∗) + b(θ∗)(1 +
σ12

σ11
)

]2
σ11(1 −

2
π

)

}

+
1
2
V ar(ψ̂) +

1
4

[
σ(θ∗) − 1 + (θ0

2)
−1
]2
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B The bootstrap algorithm

Let N(b), for b = 1, ..., B, denote a set of n reference varieties in the b’th bootstrap sample

(the number might be less than n if less than n potential reference varieties are included in

N(b), but we disregard this possibility to simplify the notation). Moreover, let θ̂
(u)b
−k denote the

unconstrained estimate of θ in the b′th bootstrap sample with k ∈ N(b) as reference variety. The

pooled estimator in the b’th bootstrap is then:

θ̂b =
1
n

∑

k∈N(b)

θ̂
(u)b
−k .

Averaging across all bootstrap samples, b, the pooled bootstrap estimator of θ is:

θ̃ =
1
B

B∑

b=1

θ̂b.

Finally, we estimate Σ by means of the bootstrap variance estimator:

Σ̂ =
1
B

B∑

b=1

(θ̂b − θ̃)(θ̂b − θ̃)′.

C Estimating the distribution of stochastic variance

For given X ∈ (D,S), we use the generic notation:

xft =
(
Δ(k)eX

ft

)2

, xf ∙ =
∑

t

xft

Tf
and x∙∙ =

1
N

∑

f

xf ∙

where Tf is the number of observations on variety f of a given good. From Equation (19):

E(xf ∙|σ
2
Xf , σ2

Xk) = 2(σ2
Xf + σ2

Xk)

V ar(xf ∙|σ
2
Xf , σ2

Xk) =
1

(Tf )2
E

(
∑

t

(xft − E(xf ∙|σ
2
Xf , σ2

Xk))2 + 2(xft − E(xf ∙|σ
2
Xf , σ2

Xk))xf,t−1)|σ
2
f , σ2

k

)
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where the latter equation follows from Cov(xft, xfs|σ2
Xf , σ2

Xk) = 0 if |t − s| > 1. Furthermore,

by the rule of double expectation:

E(x∙f ) = 4νX/aX

V ar(x∙f ) = 8νX/a2
X + E(V ar(x∙f |σ

2
f , σ2

k))

Replacing theoretical moments with sample analogues:

Ê(x∙f ) = x∙∙ and ̂V ar(x∙f ) =
1
N

∑

f

(xf ∙ − x∙∙)
2

̂E(V ar(x∙f |σ
2
f , σ2

k)) =
1
N

N∑

f=1

1
(Tf )2

∑

t

(
(xft − xf ∙)

2 + 2(xft − xf ∙)xf,t−1

)

To obtain moment estimators of νX and aX , we define:

x1 = x∙∙ and x2 = ̂V ar(x∙f ) − ̂E(V ar(x∙f |σ
2
f , σ2

k))

Then

âX = 2
x1

x2

and v̂X =
x2

1

2x2
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