Kristin Aasestad (ed.)

# **The Norwegian Emission Inventory 2008**

Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants *Reports* This series contains statistical analyses and method and model descriptions from the different research and statistics areas. Results of various single surveys are also published here, usually with supplementary comments and analyses.

Reports I denne serien publiseres statistiske analyser, metode- og modellbeskrivelser fra de enkelte forsknings- og statistikkomåder. Ogsåresultater av ulike enkeltundersøkelser publiseres her, oftest med utfyllende kommentarer og analyser.

| ©statistisk sentralbyå, November 2008          | Standardtegn i tabeller               | Symbol |
|------------------------------------------------|---------------------------------------|--------|
| Ved bruk av materiale fra denne publikasjonen, | Tall kan ikke forekomme               |        |
| skal Statistisk sentralbyåoppgis som kilde.    | Oppgave mangler                       |        |
|                                                | Oppgave mangler foreløpig             |        |
| ISBN 978-82-537-7483-1 Trykt versjon           | Tall kan ikke offentliggjøres         | :      |
| ISBN 978-82-537-7484-8 Elektronisk versjon     | Null                                  | -      |
| ISSN 0806-2056                                 | Mindre enn 0,5 av den brukte enheten  | 0      |
|                                                | Mindre enn 0,05 av den brukte enheten | 0,0    |
| Emne                                           | Foreløpige tall                       | *      |
| 01.90                                          | Brudd i den loddrette serien          | —      |
|                                                | Brudd i den vannrette serien          |        |
| Trykk: Statistisk sentralbyå                   | Desimalskilletegn                     | ,      |

# Abstract

The Norwegian emission inventory is a joint undertaking between the Norwegian Pollution Control Authority and Statistics Norway. The Norwegian Pollution Control Authority is responsible for the emission factors and for providing data from specific industries and sources, while emission figures are derived from models operated by Statistics Norway. Statistics Norway is responsible for developing the emission models, for the collection and development of activity data, and for the calculations. Emission data are used for a range of national applications and for international reporting.

This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution).

This report replaces the previous documentations of the emission model, Rypdal (1993), Rypdal (1995b), Flugsrud et al. (2000), Hoem (2005), Hoem (2006) and Aasestad (2007). The most important changes since last year is a revised method for calculation of  $CH_4$  and  $_{N2O}$  emissions from ferroalloy production, revised  $N_2O$  figures from one chemical plant for most years since 1990, increased emission figures for  $CH_4$  for all years since 1990 due to corrections of Statistics Norway's waste statistics and inclusion of  $N_2O$  emissions from human sewage from the part of the population that is not connected to wastewater treatment plants. In addition there have been several minor changes in the figures, e.g., some figures reported from plants to the Norwegian Pollution Control Authority have replaced earlier reported figures. Chapter 8 Recalculation is updated.

The Norwegian Emission Inventory 2008; Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants is also available at http://www.ssb.no.

# Contents

| Abstra           | ct                                                                                    | 3          |
|------------------|---------------------------------------------------------------------------------------|------------|
| 1.               | Introduction                                                                          | 6          |
| 1.1.             | Inventory documentation: Needs and plans                                              |            |
| 1.2.             | Institutional arrangements                                                            | 6          |
| 1.3.             | The process of inventory preparation                                                  | 7          |
| 1.4.             | Definitions and structure                                                             |            |
| 1.5.<br>1.6.     | Quality Assurance and Quality Control (QA/QC)<br>Uncertainties in total emissions     |            |
| 1.6.             | Key category analyses                                                                 |            |
| 1.7.             | Completeness                                                                          | 20         |
| 1.9.             | Indirect CO <sub>2</sub> emissions from CH <sub>4</sub> and NMVOC                     | . 21       |
| 2.               | The Norwegian emission model; general description                                     | 23         |
| 2.1.             | Structure of the general emission model                                               | . 23       |
| 2.2.             | The four axes: Pollutants, industries, sources, and fuels                             |            |
| 2.3.             | Regions: a fifth axis                                                                 | . 26       |
| 3.               | Energy                                                                                | 27         |
| 3.1.             | Overview                                                                              | . 27       |
| 3.2.             | Energy combustion                                                                     | . 27       |
| 3.2.1.           | Overview                                                                              |            |
| 3.2.2.           | Energy industries                                                                     |            |
| 3.2.3.           | Manufacturing industries and construction                                             |            |
| 3.2.4.<br>3.2.5. | Transport<br>Other sectors                                                            |            |
| 3.2.5.           | International bunkers                                                                 |            |
| 3.2.7.           | $CO_2$ emissions from biomass                                                         |            |
| 3.3.             | Energy production (fugitive emissions from fuels)                                     | . 58       |
| 3.3.1.           | Overview                                                                              | . 58       |
| 3.3.2.           | Fugitive emissions from coal mining and handling                                      |            |
| 3.3.3.           | Fugitive emissions from uncontrolled combustion and burning coal dumps                |            |
| 3.3.4.<br>3.3.5. | Oil and natural gas                                                                   |            |
| 3.3.5.           | CO <sub>2</sub> capture and storage at the oil and gas production field Sleipner West |            |
| 4.               | Industrial processes                                                                  |            |
| 4.1.             | Overview.                                                                             |            |
| 4.2.<br>4.2.1.   | Mineral products<br>Cement production                                                 |            |
| 4.2.1.           | Lime production                                                                       |            |
| 4.2.3.           | Limestone and Dolomite Use                                                            | .70<br>.74 |
| 4.2.4.           | Concrete pumice stone                                                                 |            |
| 4.2.5.           | Rock wool production                                                                  | . 75       |
| 4.2.6.           | Glass and glass fibre production                                                      |            |
| 4.2.7.           | Ore mines                                                                             | .77        |
| 4.2.8.<br>4.2.9. | Mining and extraction of stones and minerals<br>Production of mineral white (plaster) |            |
|                  | Construction and repairing of vessels - Sandblasting                                  | . 79<br>80 |
| 4.2.10.          | Sandpit and rock-crushing plant                                                       | . 81       |
| 4.2.12.          | Construction and building                                                             | . 82       |
| 4.2.13.          | Leather preparing                                                                     | . 83       |
| 4.3.             | Chemical Industry                                                                     |            |
| 4.3.1.           | Production of fertilizers                                                             |            |
| 4.3.2.<br>4.3.3. | Carbide production<br>Manufacture of other inorganic chemicals                        |            |
| 4.3.3.           | Metal production                                                                      |            |
| 4.4.1.           | Production of iron and steel.                                                         | . 96       |
| 4.4.2.           | Production of ferroalloys                                                             |            |
| 4.4.3.           | Production of primary aluminium                                                       |            |
| 4.4.4.           | Production of secondary aluminium                                                     | 108        |
| 4.4.5.           | Production of magnesium.                                                              |            |
| 4.4.6.<br>4.4.7. | Other metals                                                                          |            |
| 4.4.7.<br>4.5.   | Manufacture of anodes<br>Other production                                             |            |
| 4.5.1.           | Pulp and paper                                                                        |            |
| 4.5.2.           | Food and Drink                                                                        |            |
| 4.6.             | Consumption of halocarbons and SF <sub>6</sub>                                        | 116        |
| 4.6.1.           | HFCs and PFCs from products and processes                                             | 116        |
| 4.6.2.           | Emissions of SF <sub>6</sub> from products and processes                              | 118        |
| 4.7.             | Other: Lubricants and waxes                                                           |            |
| 4.7.1.           | Paraffin wax use                                                                      | 119        |

| 5.       | Solvent and other product use                                                       | . 121 |
|----------|-------------------------------------------------------------------------------------|-------|
| 5.1.     | Overview                                                                            | . 121 |
| 5.2.     | Solvent losses (NMVOC)                                                              |       |
| 5.3.     | Use of solvents                                                                     |       |
| 5.4.     | Production of asphalt                                                               |       |
| 5.5.     | Other product use                                                                   |       |
| 6.       | Agriculture                                                                         |       |
| 6.1.     | Overview                                                                            | . 128 |
| 6.2.     | Emissions from enteric fermentation in domestic livestock                           |       |
| 6.3.     | Emissions from manure management                                                    | . 131 |
| 6.4.     | Direct and indirect emissions from agricultural soils                               |       |
| 6.5.     | Emissions from agricultural residue burning (agricultural wastes)                   | . 145 |
| 6.6.     | Other agricultural emission sources                                                 |       |
| 7.       | Waste                                                                               | . 150 |
| 7.1.     | Overview                                                                            | . 150 |
| 7.2.     | Solid waste disposal on land                                                        |       |
| 7.3.     | Waste water handling                                                                |       |
| 7.4.     | Waste incineration                                                                  |       |
| 7.5.     | Other emission sources from the waste sector                                        | . 160 |
| 8.       | Recalculations                                                                      | . 162 |
| 8.1.     | Specific description of the recalculations                                          | . 162 |
| 8.2.     | Implications of the recalculations for the greenhouse gases                         |       |
| 8.3.     | Overall description of the recalculations for the long-range transbundary air       |       |
|          | pollutants                                                                          | . 168 |
| 8.4.     | Specific description of the recalculations                                          | . 168 |
| 8.5.     | Implications of the recalculations for the long-range transbundary air pollutants . | . 172 |
| 9.       | Areas for further improvement                                                       | . 174 |
| 9.1.     | Overview                                                                            |       |
| 9.2.     | General                                                                             |       |
| 9.3.     | Energy                                                                              | . 174 |
| 9.4.     | Industry                                                                            | . 174 |
| 9.5.     | Solvent and other product use                                                       |       |
| 9.6.     | Agriculture                                                                         | . 175 |
| Refere   | nces                                                                                | . 176 |
|          |                                                                                     |       |
| Appen    | aix<br>Abbreviations                                                                | 100   |
| А:<br>В. | Emission factors                                                                    |       |
| ь.<br>С. | Activity data and emission figures                                                  |       |
| D.       | Uncertainty estimates for single sources                                            | 201   |
| E.       | Key category analysis for GHG                                                       |       |
| F.       | Economic sectors in the Norwegian emission model                                    | 228   |
| G.       | Source classifications used in the Norwegian emission inventory                     | . 232 |
| H.       | Methane emissions from enteric fermentation in Norwegian's cattle and               |       |
|          | sheep population. Method description                                                | . 235 |
| I        | QA/QC performed for GHG emissions from industrial plants included in the            |       |
|          | national GHG inventory                                                              | . 246 |
| l ist of | Figures and Tables                                                                  | 249   |
| =.5. 01  |                                                                                     |       |

# 1. Introduction

# **1.1.** Inventory documentation: Needs and plans

Emission data are used in many contexts nationally, and also reported internationally. There is widespread interest for the emission figures and for the methods used to perform the calculations. The emission data are based on a mix of measurements and calculations. The purpose of this report is to document the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report (SFT 2008) submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution).

The structure of this report follows, as does the National Inventory Report (SFT 2008), guidelines given by UNFCCC. However, the National Inventory Report discusses only greenhouse gases, and also includes LULUCF emissions. As the latter emissions not are included in the emission figures estimated and presented by Statistics Norway, they are not discussed in this report.

It is planned that this documentation report will be updated annually in connection with publishing of emission data at the beginning of the year. Users of the printed version of the documentation should consequently consult the web version (at www.ssb.no/english/subjects/01/04/10/) for possible recent updates.

The documentation report is a further development of Rypdal (1993), Rypdal (1995b), Flugsrud et al. (2000) and Hoem (2005), Hoem (2006) and Aasestad (2007). The most important changes since last year is a a revised method for calculation of  $CH_4$  and  $N_2O$  emissions from ferroalloy production, revised  $N_2O$  figures from one chemical plant for most years since 1990, increased emission figures for  $CH_4$  for all years since 1990 due to corrections of Statistics Norway's waste statistics and inclusion of  $N_2O$  emissions from human sewage from the part of the population that is not connected to wastewater treatment plants. In addition there have been several minor changes in the figures, e.g., some figures reported from plants to the Norwegian Pollution Control Authority have replaced earlier reported figures.

The Division for Environmental Statistics at Statistics Norway has prepared this report. The report has been edited by Kristin Aasestad, with contributions from Ketil Flugsrud, Kathrine Loe Hansen, Britta Hoem, Lisbet Høgset, Marte Kittilsen and Trond Sandmo at Statistics Norway. The Norwegian Pollution Control Authority have also contributed to the report.

# 1.2. Institutional arrangements

#### 1.2.1. Responsibilities for emission calculations

The Norwegian emissions inventories has been produced in more than two decades as a collaboration between Statistics Norway (SSB) and the Norwegian Pollution Control Authority (SFT).

Statistics Norway is responsible for the official statistics on emissions to air. This includes:

- collection of activity data
- operation and further development of models for emission estimation
- emission calculations
- filling in most of the tables for international reporting to UNFCCC and UNECE
- publishing national official statistics on emissions to air.

SFT is responsible for:

- overall responsibility for international reporting to UNFCCC and UNECE
- emission factors for all sources
- quality of measured emission data from large industrial plants based on individual reports submitted to SFT on a regular basis
- submitting amounts of import and export data of HFCs, PFCs and SF<sub>6</sub>.

SFT has been appointed by the Ministry of the Environment as the national entity for greenhouse gas inventories as defined by Article 5.1 of the Kyoto Protocol, see chapter 1.2.2 below.

Activity data1 are collected either internally at Statistics Norway (e.g. data on energy use, industrial production, number of animals, etc.) or reported to Statistics Norway from external sources such as the Norwegian Petroleum Directorate (OD) and the Public Road Administration (VD). Emission figures are derived from models operated by Statistics Norway. In the modelling activities Statistics Norway makes use of the data collected by SFT on emission factors, emissions from industrial plants and on imports and exports of HFCs, PFCs and SF<sub>6</sub>.

SFT is responsible for quality control of the data they deliver to the Statistics Norway model, but Statistics Norway makes an additional consistency check (see Chapter 1.5). Statistics Norway is responsible for quality control of the activity data and the emission figures from the model, but SFT also participates in this quality control.

#### 1.2.2. National entity under the Kyoto protocol

SFT has been appointed by the Ministry of the Environment as the national entity for greenhouse gas inventtories as defined by Article 5.1 of the Kyoto Protocol through the budget proposition to the Storting (Norwegian parliament) for 2006, which states that *"The Norwegian system will build on an existing cooperation between SFT and i.a. Statistics Norway. On this background SFT is appointed as a national entity with overall responsibility for the inventory and reporting".* (St. prop. No. 1 (2005-2006)). The Ministry of the Environment proposes building the national system around well-established institutional cooperation. The data collection and data management is secured through three main acts, the Pollution Control Act (forurensningsloven), the Greenhouse Gas Emission Trading Act (klimakvoteloven) and the Statistical Act (statistikkloven).

The Norwegian national system for production of greenhouse gas inventories is based on an extensive institutional cooperation. The Norwegian Pollution Control Authority, Statistics Norway and the Norwegian Forest and Landscape Institute are the core institutions in the national system. The Norwegian Forest and Landscape Institute is responsible for the calculations of emission and removals from the IPCC sector 5, Land Use and Land Use Change and Forestry - LULUCF (until 2006 the Norwegian Institute of Land Inventory (NIJOS)) and Article 3.3 and 3.4 under the Kyoto Protocol. Sector 5 is not included in this report since sinks and sources of greenhouse gases from LULUCF are not included in the national emission data presented by Statistics Norway each year.

#### 1.3. The process of inventory preparation

The Norwegian emission inventory is based on a general emission model and a series of more detailed satellite models, which cover specific emission sources and pollutants (e.g. road traffic, air traffic, landfills, solvents, HFCs, SF<sub>6</sub>, PFCs). These models are operated by Statistics Norway.

<sup>1</sup> Data on the magnitude of human activity resulting in emissions or removals taking place during a given period of time.

Data and information on point sources are recorded at the Norwegian Pollution Control Authority under the Norwegian Pollutant Release and Transfer Register (PRTR) (http://www.sft.no/bmi/). This register, nationally known as bmi (bedriftsspesifikk miljøinformasjon) or INKOSYS, was introduced in 1978 as an internal tool for the authorities. It was upgraded in 1992, and has over the last years been under continuous development in order to harmonise with the PRTR adopted by the OECD in 1996. Each polluting industrial installation or plant is subjected to licensing and is obliged to produce an annual report to the pollution control authorities. The report should provide activity data, emission figures and information about the particular source and it should address compliance with current environmental standards. SFT supplies Statistics Norway with data from INKOSYS relevant for the preparation of the national emission inventory.

#### 1.3.1. Data collection, processing and archiving

Statistics Norway collects the majority of data necessary to run the Norwegian emission model. These are as follows: activity levels, emission factors, aggregated results from the satellite models and emission figures for point sources.

| Table 1.1. Definition of polluta<br>Class | nts in the Norwegian em<br>Pollutant   | Symbol            | Definition                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|----------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | FUIIUIAIII                             | Symbol            | Deminition                                                                                                                                                                                                                                                                                                                                                     |
| Greenhouse gases                          |                                        | ~~                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Carbon dioxide                         | CO <sub>2</sub>   |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Methane                                | CH₄               |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Nitrous oxide                          | N <sub>2</sub> O  |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Perfluorocarbons                       | PFCs              | $CF_4 + C_2F_6$                                                                                                                                                                                                                                                                                                                                                |
|                                           | Hydrofluorocarbons                     | HFCs              |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Sulphur hexafluoride                   | $SF_6$            |                                                                                                                                                                                                                                                                                                                                                                |
| Acidifying gases                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Sulphur dioxide                        | SO <sub>2</sub>   |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Nitrogen oxides                        | NOx               | $NO + NO_2$                                                                                                                                                                                                                                                                                                                                                    |
|                                           | Ammonia                                | NH <sub>3</sub>   |                                                                                                                                                                                                                                                                                                                                                                |
| Heavy metals (HM)                         |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Lead                                   | Pb                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Cadmium                                | Cd                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Mercury                                | Hg                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Arsenic                                | As                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Chromium                               | Cr                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                        | Cu                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Copper                                 | Cu                |                                                                                                                                                                                                                                                                                                                                                                |
| Persistent organic pollutants (POPs)      |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Polycyclic Aromatic<br>Hydrocarbons    | PAH               | Emissions are calculated for PAH-total, PAH-6 and PAH-4.<br>PAH-total includes 16 components according to Norwegian<br>Standard (NS9815). PAH-6 is OSPARs Borneff-6 and include 6<br>components. PAH-4 is consisting of four components used as<br>an indicator for PAH emissions required for reporting to<br>CLRTAP.                                         |
|                                           | Dioxins                                | -                 | Dioxin emissions are given in the unit I-TEQ, which is required<br>for reporting to CLRTAP. I-TEQ is based on the international<br>model ("Nato-modell") and is the sum of PCDD/PCDF<br>multiplied by the components toxicity equivalency factor (I-<br>TEF). TEQ = sum (PCDD <sub>i</sub> * TEF <sub>i</sub> ) + sum (PCDD <sub>i</sub> * TEF <sub>i</sub> ). |
| Particulates                              |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Total suspended<br>particulates        | TSP               |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | -                                      | PM <sub>10</sub>  | Particulate matter with diameter less than 10µm                                                                                                                                                                                                                                                                                                                |
|                                           | -                                      | PM <sub>2.5</sub> | Particulate matter with diameter less than 2.5µm                                                                                                                                                                                                                                                                                                               |
| Other pollutants                          |                                        |                   | '                                                                                                                                                                                                                                                                                                                                                              |
|                                           | Carbon monoxide                        | CO                |                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Non-methane volatile organic compounds | NMVOC             |                                                                                                                                                                                                                                                                                                                                                                |

 Table 1.1.
 Definition of pollutants in the Norwegian emission inventory

The collected data are subjected to the Quality Assurance and Quality Control (QA/QC) routines described in section 1.5 as well as source specific routines as described under each source chapter. They are subequently processed by Statistics Norway into a format appropriate to enter the emission models. The models are designed in a manner that accommodates both the estimation methodologies reflecting Norwegian conditions and those recommended internationally.

Input data used and the model output are all stored at Statistics Norway. Relevant information including dates and procedures followed are also recorded.

## 1.4. Definitions and structure

The structure of this documentation follows the nomenclature used for reporting to UNFCCC in the Common Reporting Format (CRF) and to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) as Nomenclature For Reporting (NFR).

The main sectors here are:

- 1A. Energy combustion
- 1B. Energy production
- 2. Industrial processes
- 3. Solvent and other product use
- 4. Agriculture
- 5. Land use change and forestry
- 6. Waste

The description of the pollutants included is given in table 1.1.

Emissions of heavy metals, POPs and particulates are further described in the reports Finstad et al. (2001), Finstad et al. (2002a), Finstad and Rypdal (2003) and Finstad et al. (2003).

# 1.5. Quality Assurance and Quality Control (QA/QC)

This chapter describes general QA/QC procedures. For source specific QA/QC, see each source sector for detailed descriptions.

The QA/QC work has several dimensions. In addition to accuracy, also timeliness is essential. As these two aspects may be in conflict, the QA/QC improvements in recent years have been focused on how to implement an effective QA/QC procedure and how to obtain a more efficient dataflow in the inventory system.

During the past years several quality assurance and quality control procedures for the preparation of the national emission inventory have been established in Norway. Statistics Norway made its first emission inventory for some gases in 1983 for the calculation year 1973. The emission estimation methodologies and the QA/QC procedures have been developed continuously since then. Norway has implemented a formal quality assurance/quality control or verification plan. A detailed description of this was presented in Annex VI in the Revised National Inventory Report 2007 (SFT 2007).

The established QA/QC procedures include the following:

- the Norwegian Pollution Control Authority is the national entity designated to be responsible for the reporting of the national inventory of greenhouse gases to the UNFCCC. This includes coordination of the QA/QC procedures;
- Statistics Norway is responsible for the quality control system with regard to technical activities of the inventory preparation;
- A Tier 1 general inventory level QC procedures, as listed in Table 8.1 of the IPCC Good Practice Guidance is performed each year;

• Source category-specific QC procedures are performed for all key categories and some non-key categories; with regard to emission factors, activity data and uncertainty estimates (Tier 2).

#### 1.5.1. QA Procedures

According to the IPCC Good practice guidance, good practice for QA procedures requires an objective review to assess the quality of the inventory and to identify areas where improvements could be made. Furthermore, it is good practice to use QA reviewers that have not been involved in preparing the inventory. In Norway, the Norwegian Pollution Control Authority is responsible for reviewing the inventory with regard to quality and areas for improvement. For most sources it is a person within the the Norwegian Pollution Control Authority who has not been involved in the calculations and the quality controls who performs the QA for the particular source.

Norway has performed several studies comparing inventories from different countries. Verification of emission data is another element to be assessed during the elaboration of a QA/QC and verification plan.

Each of the institutions Statistics Norway, the Norwegian Pollution Control Authority have established procedures with regard to documentation and archiving of the information which have been used to produce the national emissions inventory estimates. A joint, formalised procedure with regard to archiving will be implemented as part of the the National System.

#### 1.5.2. General QC procedures

The Norwegian emission inventory is produced in several steps. Preliminary estimates are first produced three months after the end of the inventory year (for  $SO_2$  six months later). These data are based on preliminary statistics and indicators and data that have been subjected to a less thorough quality control. The "final" update takes place about one year after the inventory year. At this stage, final statistics are available for all sources and also regional emission data are calculated. Recalculations of the inventory are performed annually caused by methodological changes and refinements. In itself, this stepwise procedure is a part of the QA/QC-procedure since all differences in data are recorded and verified by the Norwegian Pollution Control Authority before publication of the emission figures (see Section 1.2).

For each of the steps described above, general quality control procedures are performed, but with different levels of detail and thoroughness as mentioned. The national emission model was revised in 2002 in order to facilitate the QC of the input data rather than the emission data only. Input data include emissions reported from large plants, activity data, emission factors and other estimation parameters.

In the following the procedures listed in Table 8.1 of the Good Practice Guidance (IPCC 2001) is gone through; the Tier 1 General Inventory Level QC Procedures, and it is described how these checks are performed for the Norwegian greenhouse gas emission inventory.

# Check that assumptions and criteria for the selection of activity data and emissions factors are documented

Thorough checks of emission factors and activity data and their documentation have been performed for existing emission sources. When new sources appear (for example a new industrial plant) or existing sources for the first time are recognised as a source, the Norwegian Pollution Control Authority delivers all relevant information to Statistics Norway. This information is then thoroughly checked by two members of the inventory team at Statistics Norway. All changes in methodologies or data are documented and kept up to date.

#### Check for transcription errors in data input and references

Activity data are often statistical data. Official statistical data undergo a systematic revision process, which may be manual or, increasingly frequently, computerised. The revision significantly reduces the number of errors in the statistics used as input to the inventory.

#### Check that emissions are calculated correctly

When possible, estimates based on different methodologies are compared. An important example is the metal production sector where CO<sub>2</sub> estimates reported by the plants are compared with estimates based on the Good Practice methodology corrected for national circumstances. In this case, both production based and reducing agent based calculations are performed to verify the reported value. The Norwegian Pollution Control Authority and Statistics Norway control and verify emission data reported to the Norwegian Pollution Control Authority by industrial enterprises, registered in INKOSYS. First the Norwegian Pollution Control Authority checks the data received from these plants, and if errors are discovered, they may then ask the plants' responsible to submit new data. Subsequently, Statistics Norway makes, where possible, comparable emission calculations based on activity data sampled in official statistics and deviations are explained through contact with the plants. Regarding more detailed information about the QC of data reported by industrial plants, see Section 1.5.3.

# *Check that parameter and emission units are correctly recorded and that* appropriate conversion factors are used

All parameter values are compared with values used in previous years and with any preliminary figures available. Whenever large deviations are detected, the value of the parameter in question is first checked for typing errors or unit errors. Changes in emissions from large plants are compared with changes in activity level. If necessary, the primary data suppliers (e.g. the Norwegian Forest and Landscape Institute, OD, VD, various plants etc) are contacted for explanations and possibly corrections.

#### Check the integrity of database files

Control checks of whether appropriate data processing steps and data relationships are correctly represented are made for each step of the process. Furthermore, it is verified that data fields are properly labelled and have correct design specifications and that adequate documentation of database and model structure and operation are archived

#### Check for consistency in data between source categories

Emission data for the last year are compared with data for the previous year to check the consistency and explain any changes in the data behaviour. For example, in 2003 Statistics Norway/the Norwegian Pollution Control Authority calculated emission data for 2002 for the first time. These data were compared with the 2001 figures for detection of any considerable deviations. There may be large deviations that are correct, caused for instance by the shutdown of large industrial plants or the launch of new ones.

*Check that the movement for inventory data among processing steps is correct* Statistics Norway has established automated procedures to check that inventory data fed into the model does not deviate too much from the figures for earlier years, and that the calculations within the model are correctly made. Checks are also made that emissions data are correctly transcribed between different intermediate products. The model is constructed so that it gives error messages if factors are lacking, which makes it quite robust to miscalculations.

*Check that uncertainties in emissions and removals are estimated correctly* A new uncertainty analysis for greenhouse gases was undertaken in 2006, see further information in Section 1.6.1 and Appendix D.

#### Undertake review of internal documentation

For some sources expert judgements dating some years back are employed with regard to activity data/emission factors. In most of the cases these judgements have not been reviewed since then, and may not be properly documented, which may be a weakness of the inventory. The procedures have improved the last few years, and the requirements for internal documentation to support estimates are now quite strict; all expert judgements and assumptions made by the Statistics Norway staff must be documented. This should enable duplication of emissions and uncertainty estimates. The new model at Statistics Norway has improved the process of archiving inventory data, supporting data and inventory records, which does facilitate review. The model runs are stored and may be reconstructed, and all input data from the Norwegian Pollution Control Authority as well as notes with explanations on changes in emissions are stored. This is a continuous process of improvement at Statistics Norway.

#### Check methodological data changes resulting in recalculations

Emission time series are recalculated every year in order to account for methodological changes. The recalculated emission data for a year is compared with the corresponding figures estimated the year before. For example,  $CO_2$  data calculated for 1990 in 2004 are compared with the 1990  $CO_2$  data calculated in 2005. It is our intention to explain all major differences as far as possible. Changes may be due to revisions in energy data, new plants, correcting for former errors, new emission methodologies or there may be caused by new errors. These checks lead to corrections and re-runs of the emission model.

#### Undertake completeness checks

Estimates are reported for all source categories and for all years as far as we know, apart from a few known data gaps, which are listed in the Section on completeness (Section 1.8.). There may of course, exist sources of greenhouse gases which are not covered. However, we are quite certain that emissions from potentially additional sources are very small or negligible.

#### Compare estimates to previous estimates

Internal checks of time series for all emission sources are performed every year when an emission calculation for a new year is done. It is then examined whether any detected inconsistencies are due to data or/and methodology changes. For example, in 2003 Statistics Norway/the Norwegian Pollution Control Authority calculated emission data for 2002 for the first time. These data were compared with the 2001 figures for detection of any considerable deviations. There may be large deviations that are correct, caused for instance by the shutdown of large industrial plants or the launch of new ones.

#### 1.5.3. Source category-specific QC procedures

Statistics Norway and the Norwegian Pollution Control Authority have carried out several studies on specific emission sources, e.g. emissions from road, sea, and air transport, emissions from landfills as well as emissions of HFCs and SF<sub>6</sub>. These projects are repeated in regular intervals when new information is available. During the studies, emission factors have been assessed and amended in order to represent the best estimates for national circumstances, and a rational for the choice of emission factor is provided. The emission factors are often compared with factors from literature. Furthermore, activity data have been closely examined and quality controlled and so has the uncertainty estimates.

The QC procedures with regard to emissions data, activity data and uncertainty estimates for the different emission sources are described in the QA/QC-chapters of the relevant source-categories. The source category-specific analyses have primarily been performed for key categories on a case-by-case basis, which is described as being good practice. The QA/QC process for many of the sources

could be improved. The QC procedures is described in the report on the National System whitch was submitted by 1. January 2007.

The ERT requested in 2005 further information regarding the verification of quality of data reported by companies. The general checks performed are described under Section 1.5.2. In the following is a more detailed description of QC of emission data reported from plants:

Plant emission data that are used in the emission trading system will undergo annual QC checks. The source-specific QC checks for other plants are performed less frequently (every 3 years) for emission estimates used in key categories, which account for 25-30 per cent of the total of that category. The frequency of checking of non-key plants which are not included in the emission trading scheme is every 5 years. Statistics Norway is responsible for reporting the results of the key category analysis to the Norwegian Pollution Control Authority, while the Norwegian Pollution Control Authority will perform the assessment of the "key plants" within a category.

The QC checks include:

- An assessment of the internal QA/QC of the plants reporting data to the Norwegian Pollution Control Authority
  - Their QA/QC system including archiving
  - Any changes to the QA/QC system
- An assessment and documentation of measurements and sampling
  - Measurement frequency
  - o Sampling
  - o Use of standards (e.g. ISO)
  - Documentation for archiving
- An assessment and explanation of changes in emissions over time (e.g. changes in technology, production level or fuels) (annual check)
- An assessment of time-series consistency back to 1990 in cooperation with the Norwegian Pollution Control Authority (if plant emission data are missing for some years and estimates are made using aggregate activity data and emission factors)
- A comparison of plant emissions to production ratios with those of other plants, including explanations of differences
- A comparison of the production level and/or fuel consumption with independent statistics
- An assessment of reported uncertainties (including statistical and non-statistical errors) to the extent this has been included in the reporting

The QC checks are made in close cooperation with the emission reporting plants.

For more details of QA/QC of specific source categories, see "source specific QA/QC" in relevant chapters.

#### 1.5.4. Verification studies

In general, the final inventory data provided by Statistics Norway are checked and verified by the Norwegian Pollution Control Authority. A formal verification procedure is about to be established in Norway as part of the implementation of the National System.

In the following, some verification studies which have been performed are briefly described. Emission estimates for a source are often compared with estimates performed with a different methodology. In particular, Norway has conducted a study on verification of the Norwegian emission inventory (Statistics Norway/SFT 2000). The main goals of that work were to investigate the possibility of using statistical data as indicators for comparing emission figures between countries on a general basis, and to test the method on the Norwegian national emission estimates.

In the report Norwegian emission data are compared with national data for Canada, Sweden and New Zealand. It was concluded that no large errors in the Norwegian emission inventory were detected. The process of verification did, however, reveal several smaller reporting errors; emissions that had been reported in other categories than they should have been. These errors have been corrected in later reports to the UNFCCC. We do realise that this method of verification only considers consistency compared with what other countries report. It is not a verification of the scientific value of the inventory data themselves.

In 2002, a project initiated by the Nordic Council of Ministers was completed, where the results for emissions of greenhouse gases from the agricultural sector in the national emission inventories were compared with the results using the IPCC default methodology and the IPCC default factors. The results for the Nordic countries were collected in a report (Petersen and Olesen 2002).

In 2004, the Nordic Council of Ministers initiated a new project that was finalised in 2006. This project focused on NMVOC, heavy metals and POPs. A final report will be published with the following elements:

- comparisons of the emission estimation methodologies and emission factors used in each country (review)
- identification of gaps in knowledge
- identification of possible "burden sharings" with respect to research areas (research taking place in one country, but used in all countries)
- discussions of the particular Nordic aspects influencing the emissions
- discussions of the possible contributions from research in the Nordic countries
- proposals for research areas

In 2006, the Nordic Council of Ministers initiated a new project that will be finalised in 2008. This project focuses on emission of particulate matter. A final report will be published with the following elements:

- comparisons of the emission estimation methodologies and emission factors used in each country (review)
- identification of gaps in knowledge
- discussions of the particular Nordic aspects influencing the emissions
- discussions of the possible contributions from research in the Nordic countries
- proposals for research areas
- recommendations for further work

#### 1.5.5. Archiving

The national emissions inventory is a part of Statistics Norway's data archiving system. All input data to and results from the general Norwegian emission model from every publication cycle are stored and documented in this system.

Several input data are used in preliminary calculations before entering into the general Norwegian emission model. This includes satellite models such as road traffic and air traffic, as well as a number of simpler calculations that do not fit into the framework of the general model. The preliminary calculations are not included in the central archiving system, which is not suited for such a diverse collection of data. For some satellite models there is an established archiving routine where all input data and results from every calculation cycle are stored.

### 1.6. Uncertainties in total emissions

The uncertainty in the Norwegian emission inventory has been investigated systematically in three reports (SFT 1999a, Rypdal and Zhang 2000 and 2001). The first two reports are focusing on the uncertainty in the greenhouse gas emissions, and the last report is investigating the uncertainty in the emission estimates of long-range air pollutants. The uncertainty in the greenhouse gas emissions has been

investigated systematically again in 2006 and the results are described in section 1.6.1 and in Appendix D.

#### 1.6.1. Greenhouse gases

The uncertainty analysis performed in 2006 was an update of the uncertainty analysis *Uncertainties in the Norwegian Greenhouse Gas Emission Inventory,* documented in (Rypdal and Zhang 2000), which also includes more detailed documentation of the analysis method used, and result discussions. In this note we mainly focus on the changes since (Rypdal and Zhang 2000). This includes new methodology for several source categories as well as revised uncertainty estimates.

The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements. Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC Tier 2 method, as described in (IPCC 2001). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry).

#### 1.6.1.1. Uncertainty in emission level

The estimated uncertainties of the level of total emissions and in each gas are shown in Table 1.2 and 1.3.

The total national emissions of GHG in Norway in 1990 are estimated with an uncertainty of 7 per cent of the mean. The main emission component  $CO_2$  is known with an uncertainty of 3 per cent of the mean. In 2004, the total uncertainty has decreased to 6 per cent of the mean.

By including the LULUCF sector the results from the analysis show a total uncertainty of 14 per cent of the mean both in 1990 and in 2004. The doubling of uncertainty is caused mainly by forest biomass and grassland histosoils.

|                  | Excluding the LOLO | SF Sector                      |                                      |
|------------------|--------------------|--------------------------------|--------------------------------------|
| 1990             | μ (mean)           | Fraction of total<br>emissions | Uncertainty 2σ<br>(per cent of mean) |
| Total            | 50 mill. tonnes    | 1                              | 7                                    |
| CO <sub>2</sub>  | 35 mill. tonnes    | 0.69                           | 3                                    |
| CH₄              | 4.8 mill. tonnes   | 0.10                           | 15                                   |
| N <sub>2</sub> O | 5.0 mill. tonnes   | 0.10                           | 57                                   |
| HFC              | 18 tonnes          | 0.00                           | 49                                   |
| PFC              | 3.4 mill. tonnes   | 0.07                           | 21                                   |
| $SF_6$           | 2.2 mill. tonnes   | 0.04                           | 2                                    |
| 2004             | μ (mean)           | Fraction of total emissions    | Uncertainty 2σ<br>(per cent of mean) |
| Total            | 55 mill. tonnes    | 1                              | 6                                    |
| CO2              | 44 mill. tonnes    | 0.80                           | 3                                    |
| CH₄              | 4.8 mill. tonnes   | 0.09                           | 14                                   |
| N <sub>2</sub> O | 4.9 mill. tonnes   | 0.09                           | 59                                   |
| HFC              | 401 ktonnes        | 0.01                           | 51                                   |
| PFC              | 880 ktonnes        | 0.02                           | 20                                   |
| SF <sub>6</sub>  | 274 ktonnes        | 0.00                           | 15                                   |

 Table 1.2.
 Uncertainties in emission level. Each gas and total GWP weighted emissions.

 Excluding the LULUCF sector

| Including the LULUCF sector |                  |                                |                                      |
|-----------------------------|------------------|--------------------------------|--------------------------------------|
| 1990                        | μ (mean)         | Fraction of total<br>emissions | Uncertainty 2σ<br>(per cent of mean) |
| Total                       | 35 mill. tonnes  | 1                              | 14                                   |
| CO <sub>2</sub>             | 20 mill. tonnes  | 0.56                           | 20                                   |
| CH₄                         | 4.9 mill. tonnes | 0.14                           | 16                                   |
| N <sub>2</sub> O            | 5.0 mill. tonnes | 0.14                           | 59                                   |
| HFC                         | 18 tonnes        | 0.00                           | 51                                   |
| PFC                         | 3.4 mill. tonnes | 0.10                           | 20                                   |
| $SF_6$                      | 2.2 mill. tonnes | 0.06                           | 2                                    |
|                             |                  |                                |                                      |
| 2004                        | μ (mean)         | Fraction of total<br>emissions | Uncertainty<br>2σ (per cent of mean) |
| Total                       | 34 mill. tonnes  | 1                              | 14                                   |
| CO <sub>2</sub>             | 23 mill. tonnes  | 0.67                           | 18                                   |
| CH₄                         | 4.8 mill. tonnes | 0.14                           | 14                                   |
| N <sub>2</sub> O            | 4.9 mill. tonnes | 0.14                           | 53                                   |
| HFC                         | 401 ktonnes      | 0.01                           | 52                                   |
| PFC                         | 880 ktonnes      | 0.03                           | 20                                   |
| SF <sub>6</sub>             | 274 ktonnes      | 0.01                           | 15                                   |

Table1.3. Uncertainties in emission level. Each gas and total GWP weighted emissions. Including the LULUCF sector

In the uncertainty analysis carried out in the year 2000 (Rypdal and Zhang 2000), the uncertainty for the total national emissions of GHG (LULUCF sector excluded) in 1990 was estimated to be 21 per cent of the mean. In the new analysis the uncertainty estimate is reduced to one third. There are several reasons for the new lower estimate. One reason is that Statistics Norway and the Norwegian Pollution Control Authorities have increased the inventory quality by using higher tiers2 for some key categories and also improved methodologies for other sources. But the main reason for the reduced uncertainty is that Statistics Norway has collected new and lower uncertainty estimates for some activity data and emission factors that contributed substantially to the total uncertainty in the emission estimate. This means that the total uncertainty of the inventory have not been reduced as much as the estimates indicates, since it is partly the uncertainty estimates themselves that have been improved.

The main reduction lies is in the estimate of the uncertainty for the N<sub>2</sub>O emissions. In 2000 the uncertainty in this components estimate was estimated to 200 per cent of the mean. In this years' analysis the uncertainty estimate is reduced to 57 per cent of the mean, see explanation to this reduction in the paragraph below. For  $CO_2$  the uncertainty estimate is unchanged between the two analyses (3 per cent), while all the other emission components show a decrease in the uncertainty estimates in the new analysis compared to the analysis from 2000.

The main reason for the high uncertainty estimate for the  $N_2O$  emissions in the 2000 analysis was the high uncertainty estimate used for the emission factor used for estimating  $N_2O$  from agricultural soils (2 orders of magnitude). This uncertainty is in the new analysis reduced to an uncertainty of factor 5 for direct soil emission, factor 2 for animal production and factor 3 for indirect soil emission. These new uncertainty estimates are collected from the guidelines IPCC (2001) and IPCC (1997b), where also the emission factor used is collected.

As mentioned above, another reason for the reduced uncertainty is that in the years between the two analyses important inventory improvement work has been carried through.

<sup>&</sup>lt;sup>2</sup> Higher tiers means more advanced methods.

#### 1.6.1.2. Uncertainty in emission trend

The estimated uncertainties of the trend of total emissions and each gas are shown in Table 1.4 and 1.5.

| rable iiii       |                                                                  |                              |  |
|------------------|------------------------------------------------------------------|------------------------------|--|
|                  | Per cent change                                                  | Uncertainty                  |  |
|                  | ((µ <sub>2004</sub> -µ <sub>1990</sub> )*100/µ <sub>1990</sub> ) | (2*σ*100/μ <sub>1990</sub> ) |  |
| Total            | 10                                                               | 4                            |  |
|                  |                                                                  |                              |  |
| CO <sub>2</sub>  | 26                                                               | 4                            |  |
| CH₄              | -1                                                               | 11                           |  |
| N <sub>2</sub> O | -2                                                               | 18                           |  |
| HFC              | -                                                                | -                            |  |
| PFC              | -74                                                              | 15                           |  |
| SF <sub>6</sub>  | -88                                                              | 0                            |  |
|                  |                                                                  |                              |  |

 Table 1.4.
 Uncertainty of emission trend. 1990-2004. Excluding the LULUCF sector

|                  | Per cent change                                                  | Uncertainty                  |  |
|------------------|------------------------------------------------------------------|------------------------------|--|
|                  | ((µ <sub>2004</sub> -µ <sub>1990</sub> )*100/µ <sub>1990</sub> ) | (2*σ*100/μ <sub>1990</sub> ) |  |
| Total            | -2.1                                                             | 7                            |  |
|                  |                                                                  |                              |  |
| CO <sub>2</sub>  | 18                                                               | 11                           |  |
| CH₄              | -1                                                               | 12                           |  |
| N <sub>2</sub> O | -2                                                               | 20                           |  |
| HFC              | -                                                                | -                            |  |
| PFC              | -74                                                              | 15                           |  |
| SF <sub>6</sub>  | -88                                                              | 0                            |  |

The result shows that the increase in the total GHG emissions from 1990 to 2004 is  $10 \pm 4$  per cent when the LULUCF sector is not included. Norway has by the ratification of the Kyoto Protocol obliged to limit the emissions of greenhouse gases in the period 2008-2012 to 1 per cent over the emissions in 1990 after trading with CO<sub>2</sub> quotas and the other Kyoto mechanisms is taken into account. It is important to keep in mind that the emission figures reported to the Kyoto Protocol has an uncertainty connected to the reported values.

In (Rypdal and Zhang 2000) the increase from 1990 to 2010 (in a given projection scenario) was  $21 \pm 4$  per cent. It is reasonable that the emission increase was higher in the 2000 analysis, since it was estimated for a longer period.

With the sector LULUCF included in the calculations there has been a decrease in the total trend uncertainty with  $-2 \pm 7$  per cent.

#### 1.6.2. Acidifying substances and NMVOC

The emission estimates for long-range air pollutants in the Norwegian emission model may be ranked roughly in order of increasing uncertainty as follows:

 $SO_2 < NO_X < NH_3 \approx NMVOC$ 

The sources of uncertainty in the emission estimates include sampling errors, poor relevance of emission factors or activity data, and gross errors.

Evaluation of the uncertainty in the long-range air pollutants is given in the report Rypdal and Zhang (2001). Summary tables with the results are given in Appendix D.

#### 1.6.3. Heavy metals and POPs

The uncertainty is generally higher for HM and POPs than for other components in the Norwegian emission model except for  $N_2O$ . There are various reasons for this high uncertainty. The most important reason is that there is limited information about emission factors and it is not clear how usable the emission factors found in

international literature are for Norwegian conditions. Emission factors for some HM and POPs components are insufficient for some sources, so emission factors for similar sources have then been used. In addition it is not certain that all emission sources are known or sufficiently mapped. The industrial reporting to the Norwegian Pollution Control Authority has improved in recent years. The reported figures can however vary a great deal from one year to another. For earlier years they can be insufficient and since HM and POPs are to be calculated from 1990, recalculations are necessary. These recalculations are necessary based on assumptions and knowledge of the plants. Emission figures from the early 1990s are therefore more uncertain than figures produced today.

#### 1.7. Key category analyses

For the greenhouse gases a key category analysis was performed in 2006, following the IPCC Good Practice Guidance (IPCC 2001).

For SO<sub>2</sub>, NO<sub>X</sub>, NMVOC, NH<sub>3</sub> and heavy metals (HM) and POPs no systematic key category analyses have been made.

#### 1.7.1. Greenhouse gases

According to the IPCC definition, key categories are those that add up to 90 per cent of the total uncertainty in level and/or trend. In the Norwegian greenhouse gas emission inventory key categories are primarily identified by means of a Tier 2 method, as recommended by IPCC's Good Practice Guidance (IPCC 2001). A description of the methodology is presented in Appendix E.

A Tier 2 key category analysis was performed in April 2006. The Table 1.6 below lists the 32 identified key categories arranged primarily according to contribution to the uncertainty in level (Tier 2). In addition we have also chosen to include  $CO_2$  from cement and ammonia production as key categories in terms of the absolute level of emissions in 2004 (Tier 1).

Additionally, we have included fugitive emissions from coal mining and handling as a key category due e.g. to the fact that the national emission factors used is an order of magnitude less than IPCC's default factors. The last identified key category is  $CO_2$  capture and storage. This removal category is considered key since there is presently no methodology as such defined in the IPCC guidelines and because these operations are unique internationally.

The Tier 2 analysis was performed at the level of IPCC source categories and each greenhouse gas from each source category was considered separately with respect to total GWP weighted emissions, except land-use, land-use change and forestry. The advantage in using a Tier 2 methodology is that uncertainties are taken into account and the ranking shows where uncertainties can be reduced.

There are only small changes from key category analysis in 2006 (Hoem 2006). The main difference is due to a reallocation of auto diesel oil from road traffic to other mobile sources. As a result, IA3e - Other mobile -  $N_2O$  is now identified as key, and CO<sub>2</sub> from the same source has moved to a higher rank. In addition, small changes in the trend assessment values has led to inclusion of IA1 Energy Industries, Gas - CH<sub>4</sub>, IA3b Road Transportation - CH<sub>4</sub> and IA4 Other Sectors, Gas - CO<sub>2</sub>.. These categories were just below the threshold in the 2006 analysis.

Only one source that was identified as key in 2006 is absent from the new tier 2 analysis. *2.D.2 Food and drink* was identified in the trend analysis in 2006. Due to a slight change in overall trend, the source was only identified in the tier 1 analysis in the current report. Table 1.7 shows LULUCF key categories identified in a Tier 2 analysis. The categories are the same as in 2006.

# Table 1.6. Summary of identified key categories for the greenhouse gases except LULUCF. Per cent contribution to the total uncertainty in level and/or trend. Bold numbers are key

|             |                                                                      |                  | Level<br>assessment | Level<br>assessment | Trend<br>assessment Tier | Method      |
|-------------|----------------------------------------------------------------------|------------------|---------------------|---------------------|--------------------------|-------------|
|             | Source category                                                      | Gas              | Tier 2 1990         | Tier 2 2005         | 2 1990-2005              | (Tier) 2005 |
| 4D1         | Direct soil emissions                                                | N <sub>2</sub> O | 25.72               | 23.21               | 8.99                     | Tier 1a     |
| 1A3b        | Road Transportation                                                  | CO <sub>2</sub>  | 8.08                | 9.47                | 4.19                     | Tier 2      |
| 1A1         | Energy Industries, Gas                                               | $CO_2$           | 4.51                | 8.06                | 11.25                    | Tier 2      |
| 4D3         | Indirect emissions                                                   | N <sub>2</sub> O | 5.75                | 5.35                | 1.51                     | Tier 1a     |
| 1B2a        | Oil (incl. oil refineries, gasoline distribution)                    | $CO_2$           | 4.66                | 4.87                | 0.49                     | Tier 2      |
| 4A          | Enteric Fermentation                                                 | CH₄              | 5.03                | 4.60                | 1.56                     | Tier 1/2*** |
| 6A          | Solid Waste Disposal on Land                                         | CH₄              | 6.16                | 4.02                | 7.09                     | Tier 2      |
| 1A4         | Other Sectors, Oil                                                   | CO <sub>2</sub>  | 4.32                | 3.01                | 4.38                     | Tier 2      |
| 1B2c        | Venting and Flaring                                                  | $CH_4$           | 1.58                | 2.79                | 3.85                     | Tier 2      |
| 1A3d        | Navigation                                                           | CO <sub>2</sub>  | 2.04                | 2.42                | 1.13                     | Tier 2      |
| 1A3e        | Other (snow scooters, boats, motorized equipment)                    | CO <sub>2</sub>  | 1.59                | 2.36                | 2.43                     | Tier 2      |
| 2F          | Consumption of Halocarbons and Sulphur Hexafluoride                  | HFCs             | 0.00                | 2.28                | 7.32                     | Tier 2      |
| 2C3         | Aluminium Production                                                 | CO <sub>2</sub>  | 1.50                | 2.17                | 2.08                     | Tier 2      |
| 1A3a        | Civil Aviation                                                       | CO <sub>2</sub>  | 1.39                | 1.77                | 1.17                     | Tier 2      |
| 1A3b        | Road Transportation                                                  | N <sub>2</sub> O | 0.48                | 1.61                | 3.61                     | Tier 2      |
| 2C3         | Aluminium Production                                                 | PFCs             | 6.91                | 1.58                | 17.37                    | Tier 2      |
| 4D2         | Animal production                                                    | N <sub>2</sub> O | 1.70                | 1.56                | 0.49                     | Tier 1a     |
| 1A2         | Manufacturing Industries and Construction, Gas                       | CO <sub>2</sub>  | 0.91                | 1.43                | 1.61                     | Tier 2      |
| 1B2c        | Venting and Flaring                                                  | CO <sub>2</sub>  | 1.64                | 1.33                | 1.04                     | Tier 2      |
| 2B2         | Nitric Acid Production                                               | N <sub>2</sub> O | 1.46                | 1.29                | 0.60                     | Tier 2      |
| 1A3e        | Other (snow scooters, boats, motorized equipment)                    | N <sub>2</sub> O | 0.67                | 1.14                | 1.50                     | Tier 2      |
| 1B2a        | Oil (incl. oil refineries, gasoline distribution)                    | CH₄              | 0.67                | 1.09                | 1.34                     | Tier 2      |
| 1A4         | Other Sectors, Wood etc.                                             | CH₄              | 0.88                | 1.06                | 0.54                     | Tier 2      |
| 4B          | Manure Management                                                    | N <sub>2</sub> O | 1.02                | 0.88                | 0.50                     | Tier 1      |
| 6B          | Wastewater Handling                                                  | N <sub>2</sub> O | 0.69                | 0.80                | 0.32                     | Tier 1      |
| 4B          | Manure Management                                                    | CH₄              | 0.77                | 0.76                | 0.07                     | Tier 1      |
| 2C2         | Ferroalloys Production                                               | $CO_2$           | 0.78                | 0.68                | 0.34                     | Tier 2      |
| 1A2         | Manufacturing Industries and Construction, Oil                       | $CO_2$           | 0.88                | 0.57                | 1.05                     | Tier 2      |
| 1A4         | Other Sectors, Oil                                                   | N <sub>2</sub> O | 0.75                | 0.55                | 0.67                     | Tier 2      |
| 1A1         | Energy Industries, Gas                                               | CH₄              | 0.33                | 0.53                | 0.61                     | Tier 2      |
| 1A1         | Energy Industries, Waste                                             |                  | 0.30                | 0.50                | 0.65                     | Tier 2      |
| 1A3b        | Road Transportation                                                  | CH₄              | 0.43                | 0.26                | 0.57                     | Tier 2      |
| 1B2b        | Natural Gas                                                          | CH₄              | 0.02                | 0.25                | 0.75                     | Tier 2      |
| 1A4         | Other Sectors, Gas                                                   |                  | 0.02                | 0.22                | 0.67                     | Tier 2      |
| 2B4         | Carbide Production                                                   |                  | 0.42                | 0.09                | 1.07                     | Tier 2      |
| 2D4<br>2A1  | Cement *                                                             |                  | 0.42                | 0.09                | 1.07                     | Tier 2      |
| 2B1         | Ammonia Production *                                                 |                  |                     |                     |                          | Tier 2      |
| 2C1         | Iron and Steel Production*                                           |                  |                     |                     |                          | Tier 2      |
| 2C4         | $SF_6$ used in Aluminium and Magnesium Foundries*                    | SF <sub>6</sub>  |                     |                     |                          | Tier 2      |
| 1B1a        | Coal Mining and Handling **                                          | CH₄              |                     |                     |                          | Tier 2      |
| 1214        | Capture and storage **                                               |                  |                     |                     |                          | CS (Tier 2) |
| * Idoptific | ed as key category because of large contribution to the total emissi |                  |                     |                     |                          |             |

\* Identified as key category because of large contribution to the total emissions (Tier 1).

\*\* Defined as key category from qualitative criteria

\*\*\* Tier 2 used for the significant animal groups

#### Table 1.7. Summary of identified key categories – LULUCF. Per cent. Bold numbers are key

| IPCC<br>Category |                                                                 | Gas             | Level ass | Level assessment |           | Method<br>(Tier) |
|------------------|-----------------------------------------------------------------|-----------------|-----------|------------------|-----------|------------------|
|                  |                                                                 |                 | 1990      | 2005             | 1990-2005 | 2005             |
| 5A1              | Forest land remaining forest land, living biomass, other        | CO <sub>2</sub> | 11.55     | 18.07            | 25.51     | Tier 3           |
| 5C1              | Grassland remaining grassland, soils, histosols                 | CO <sub>2</sub> | 13.44     | 11.10            | 6.82      | Tier 2*          |
| 5A1              | Forest land remaining forest land, dead biomass, other          | CO <sub>2</sub> | 2.50      | 6.32             | 11.06     | Tier 3           |
| 5A1              | Forest land remaining forest land, soils                        | CO <sub>2</sub> | 6.31      | 4.98             | 2.66      | Tier 3           |
| 5A1              | Forest land remaining forest land, soils, drained organic soils | CO <sub>2</sub> | 2.37      | 2.06             | 1.46      | Tier 1           |
| 5E2              | Forest converted to Settlements, Living biomass                 | $CO_2$          | 0.68      | 1.30             | 2.04      | Tier 3           |
| 5B1              | Cropland remaining cropland, histosols, soils                   | CO <sub>2</sub> | 1.49      | 1.23             | 0.76      | Tier 2           |

\* Country specific emission factors.

#### 1.8. Completeness

An assessment of the completeness of the emission inventory should, according to the IPCC Good Practice Guidance (IPCC 2001), address the issues of spatial, temporal and sectoral coverage along with all underlying source categories and activities. Confidentiality is an additional element of relevance.

#### 1.8.1. Greenhouse gases

In terms of spatial coverage, the GHG emission calculated covers all activities within Norway's jurisdiction.

In the case of temporal coverage, complete sets of emission figures are produced and updated every year for the years 1980, 1987 and for all years from 1989.

With regard to sectoral coverage, emissions from the IPCC sector 5 LULUCF (Land Use, Land Use Change and Forestry) are not included in this documentation. The reason for this exclusion is that this sector is not part of the calculations in the Norwegian emission model operated by Statistics Norway, and it is not included in the national emission data presented by Statistics Norway each year. Norway reports emissions and removals from this sector to the UNFCCC, though. A further description of the calculations of the data Norway report for LULUCF to the UNFCCC, is given in SFT (2008).

Otherwise the Norwegian GHG emission inventory includes estimates from all known relevant sources or sinks. There are, however, a few exceptions of minor sources/sinks, which are not covered. These are:

- Emissions of CH<sub>4</sub> from agricultural waste, after it is applied to soils. In the IPCC Guidelines it is written that "Agricultural soils may also emit CH<sub>4</sub>", but no calculation methodology is proposed.
- Carbon stock change of harvested wood products. The IPCC default method is used, where harvested wood is counted as emissions the year the harvest takes places.

The reason for not including the above activities is lack of data and/or exclusion from the list of priorities in the national inventory work because of the source's insignificant contribution to the national total.

Emissions from the use of feedstock are in accordance with Good Practice Guidance, and they are generally accounted for in the industrial processes sector in the Norwegian inventory. By-products from processes like CO gas that is sold and combusted are accounted for and reported under the energy sector.

#### 1.8.2. Other pollutants

Norway is requested to report emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). Minimum reporting request each year includes the acidifying pollutants (NO<sub>X</sub>, SO<sub>2</sub>, NH<sub>3</sub>) and NMVOC, the heavy metals Pb, Cd and Hg, particulate matter (TSP,  $PM_{10}$  and  $PM_{2.5}$ ) and CO. Norway also report, under the section "additional reporting", the heavy metals As, Cr and Cu, and the POPs dioxins and PAH.

In terms of spatial coverage, the calculated air emissions cover all activities within Norway's jurisdiction.

In the case of temporal coverage, emission figures for CO,  $SO_2$ ,  $NO_X$ ,  $NH_3$  and NMVOC are produced and updated every year for the years 1980, 1987 and for all years from 1989. For HM, POPs and particles, emission figures are produced for all years from 1990.

With regard to sectoral coverage, the following sources with relevant emission amounts are not covered in the inventory even if emissions can be expected: Energy sector:

- NH<sub>3</sub> emissions from Civil aviation, domestic cruise (1A3aii (ii))
- Emissions of particulate matters from clutch wear (1A3b)
- Emissions of particulate matters from use of unpaved roads (1A3b)
- Emissions of particulate matters from sand strewing (1A3b)
- Fugitive emissions of HM from solid fuel transformation (1B1b)
- Fugitive emissions of NO<sub>x</sub> from natural gas (by land-based desulphurisation) (1B2b)

Industry sector:

- Emissions of NMVOC from asphalt roofing (2A5) and NMVOC and PAH from road paving with asphalt (2A6)
- Emissions of NO<sub>X</sub>, NMVOC and NH<sub>3</sub> from ammonia production (2B1)
- Emissions of NMVOC from Nitric acid production (2B2)
- Emissions of NO<sub>X</sub> from production of NPK-fertilizers (2B5) and emissions of Cd from production of Phosphate fertilizers (2B5)
- Emissions of NMVOC from the pulp and paper industry (2D1)
- Emissions of NH<sub>3</sub> from refrigeration and air conditioning equipments using other products than halocarbons (2G)

Agricultural sector:

- Emissions of NMVOC from manure management (4B)
- Emissions of NMVOC from agricultural soils (4D)
- Emissions of NMVOC from field burning of agricultural wastes (4F)

Waste sector:

- Emissions of NO<sub>X</sub>, NMVOC, NH<sub>3</sub> and CO from solid waste disposal on land (6A)
- Emissions of NMVOC and NH<sub>3</sub> from waste-water handling (6B)
- Emissions of particulate matters and POPs from burning of bonfire, emissions of POPs from burning of garden waste, and emissions of particulate matters, POPs and HM from burning of animal carcasses and burning of waste in household stoves (6C)
- Emissions of HM and POPs in connection with fires and open burning at landfills (6C)
- Evaporation of Hg from landfills and emission of Pb by detonation of explosives (6C)
- Emissions of dioxins by smoking processes for preservation of meat and fish (6C)

The reasons for not including these emission sources are mainly lack of activity data, emission factors or known calculation methodology.

# 1.9. Indirect $CO_2$ emissions from $CH_4$ and NMVOC

According to the reporting guidelines to the Climate Convention all emissions of carbon from fossil compounds are to be included in the national emission inventory. When methane or NMVOC are oxidised in the atmosphere indirect  $CO_2$  emissions are formed. The emissions of  $CH_4$  and NMVOC from some sources will partly be of fossil origin and should therefore be included. Fossil carbon in fuels combusted are automatically included in the emission inventory due to the fact that the guidelines for calculating the emissions take into account the fossil carbon in the fuel. These indirect  $CO_2$  emissions are included in the Norwegian emission inventory. However, indirect  $CO_2$  emissions from non-combustion sources originating from the fossil part of  $CH_4$  and NMVOC are taken into account separately calculated on the basis of average carbon content.

Fossil carbon in the emissions of  $CH_4$  and NMVOC from the following noncombustion sources are included in the Norwegian emission inventory:

- 1B1a Coal mining
- 1B2a Loading and storage of crude oil, oil refineries, gasoline distribution
- 1B2b Gas terminals
- 1B2c Venting (extraction and production drilling)
- 2B5.1 Methanol production
- 2B5.4 Plastic production
- 3 Solvent and other product use
- 3 Solvent and other product use

The indirect  $CO_2$  emissions from oxidised  $CH_4$  and NMVOC are calculated from the content of fossil carbon in the compounds. The average amount of carbon is estimated to be 75 per cent in methane and 82 per cent in NMVOC. This leads to the emission factors 2.75 kg  $CO_2/kg$  CH<sub>4</sub> and 3 kg  $CO_2/kg$  NMVOC.

# 2. The Norwegian emission model; general description

This chapter describes the general structure of the Norwegian emission model "Kuben" ("the Cube"). The model was developed by Statistics Norway (Daasvatn et al. 1992, 1994). It was redesigned in 2003 in order to improve reporting to the UNFCCC and UNECE, and to improve QA/QC procedures.

The Norwegian emission model is organised around a general emission model called "Kuben" ("the Cube"). Several emission sources, e.g. road traffic, air traffic and solvents are covered by more detailed satellite models. Aggregated results from the side models are used as input to the general model. The satellite models are presented in the appropriate sections of chapters 3-7. This chapter describes the general emission model.

## 2.1. Structure of the general emission model

The general emission model is based on equation (2.1).

(2.1)  $Emissions(E) = Activity level(A) \cdot Emission Factor(EF)$ 

For emissions from *combustion*, the activity data concern energy use. In the Norwegian energy accounts, the use of different forms of energy is allocated to industries (economic sectors). In order to calculate emissions to air, energy use must also be allocated to technical sources (e.g. equipment). After energy use has been allocated in this way, the energy accounts may be viewed as a cube in which the three axes are fuels, industries, and sources.

The energy use data are combined with a corresponding matrix of emission factors. In principle, there should be one emission factor for each combination of fuel, industry, source, and pollutant. Thus, the factors may be viewed as a four-dimensional cube with pollutants as the additional dimension. However, in a matrix with a cell for each combination, most of the cells would be empty (no consumption). In addition, the same emission factor would apply to many cells.

Emissions of some pollutants from major manufacturing plants (point sources) are available from measurements or other plant-specific calculations. When such measured data are available it is possible to replace the estimated values by the measured ones:

#### (2.2) $Emissions (E) = [(A - A_{PS}) \cdot EF] + E_{PS}$

where  $A_{PS}$  and  $E_{PS}$  are the activity and the measured emissions at the point sources, respectively. Emissions from activity for which no point source estimate is available (*A*-*A*<sub>*PS*</sub>) are still estimated with the regular emission factor.

*Non-combustion* emissions are generally calculated in the same way, by combining appropriate activity data with emission factors. Some emissions may be obtained from current reports and investigations, and some are measured directly as described in chapters 3-7. The emissions are fitted into the general model using the parameters industry, source, and pollutant. The fuel parameter is not relevant here. The source sector categories are based on EMEP/NFR and UNFCCC/CRF categories, with further subdivisions where more detailed methods are available. An overview of the source sector categories used is given in Appendix G.

# 2.2. The four axes: Pollutants, industries, sources, and fuels

The model currently includes 21 *pollutants*. They are given in table 1.1, see section 1.4.

The model uses approximately 130 *industries* (economic sectors). The classification is common with the Energy Accounts, and is almost identical to that used in the National Accounts, which is aggregated from the European NACE (rev. 1) classification (Daasvatn et al. 1994). The allocation of energy use and emissions to industries is the basis for combining inventory results with economic data in economic/ environmental accounts (Erlandsen et al. 2002) and with economic models. The large number of sectors is an advantage in dealing with important emissions from manufacturing industries. The disadvantage is an unnecessary disaggregation of sectors with very small emissions. To make the standard sectors more appropriate for calculation of emissions, a few changes have been made, e.g. "Private households" is defined as a sector. The list of sectors is shown in Appendix F.

The *fuels* and technical *sources* used for combustion with energy use (NFR source sector 1A) are shown in tables 2.1-2.3.

| Energy commodity          | Aggregate fuel category in CRF |
|---------------------------|--------------------------------|
| Coal                      | Solid Fuels                    |
| Coke                      | Solid Fuels                    |
| Petrol coke               | Liquid Fuels                   |
| Wood                      | Biomass                        |
| Wood waste                | Biomass                        |
| Black liquor              | Biomass                        |
| Wood pellets              | Biomass                        |
| Wood briquettes           | Biomass                        |
| Charcoal                  | Biomass                        |
| Natural gas               | Gaseous Fuels                  |
| Refinery gas              | Liquid Fuels                   |
| Blast furnace gas         | Solid Fuels                    |
| Landfill gas              | Biomass                        |
| Biogas                    | Biomass                        |
| Fuel gas                  | Liquid Fuels                   |
| LPG                       | Liquid Fuels                   |
| Gasoline (road transport) | Liquid Fuels                   |
| Aviation gasoline         | Liquid Fuels                   |
| Kerosene (heating)        | Liquid Fuels                   |
| Jet kerosene              | Liquid Fuels                   |
| Autodiesel                | Liquid Fuels                   |
| Marine gas oil            | Liquid Fuels                   |
| Light fuel oils           | Liquid Fuels                   |
| Heavy distillate          | Liquid Fuels                   |
| Heavy fuel oil            | Liquid Fuels                   |
| Municipal waste           | Other Fuels                    |
| Special waste             | Liquid Fuels                   |

 Table 2.1.
 Energy commodities in the Norwegian emission inventory

| Source                             | CRF/NFR             |
|------------------------------------|---------------------|
| Stationary combustion              |                     |
| Direct fired furnaces              | 1A1, 1A2            |
| Gas turbines                       | 1A1c, 1A3e, 1A4a    |
| Boilers                            | 1A1, 1A2, 1A4, 1A5  |
| Small stoves                       | 1A2, 1A4, 1A5       |
| Flaring                            | 1B2C, 6C            |
| Mobile combustion*                 |                     |
| Passenger car                      | 1A3b i, 1A5b        |
| Light duty vehicles                | 1A3b ii, 1A5b       |
| Heavy duty vehicles                | 1A3b iii, 1A5b      |
| Motorcycle                         | 1A3b iv             |
| Moped                              | 1A3b iv             |
| Snowscooter                        | 1A4b, c             |
| Railway                            | 1A3c                |
| Aviation jet/turboprop (0-100 m)   | 1A3a ii (i), 1A5b   |
| Aviation jet/turboprop (100-1000m) | 1A3a ii (i), 1A5b   |
| Aviation jet/turboprop (cruise)    | 1A3a ii (ii), 1A5b  |
| Aviation helicopter (0-100 m)      | 1A3a ii (i)         |
| Aviation helicopter (100-1000m)    | 1A3a ii (i)         |
| Aviation helicopter (cruise)       | 1A3a ii (ii)        |
| Aviation small craft (0-100 m)     | 1A3a ii (i)         |
| Aviation small craft (100-1000m)   | 1A3a ii (i)         |
| Aviation small craft (cruise)      | 1A3a ii (ii)        |
| Ships                              | 1A3d, 1A4c, 1A5b    |
| Small boats 2 stroke               | 1A4b                |
| Small boats 4 stroke               | 1A4b, c             |
| Equipment 2 stroke                 | 1A3e, 1A4c          |
| Equipment 4 stroke, tractor        | 1A3e, 1A4b, c, 1A5b |

\* For road transport the source split is more detailed in the sub-model. See section 3.2.4.2.

 Table 2.3.
 Combinations of fuels and sources in use

|                       | Direct fired furnaces | Gas turbines | Boilers | Small stoves | Flaring | Passenger car | Light duty vehicles | Heavy duty vehicles | Motorcycle | Moped | Snowscooter | Railway | Aviation jet/turboprop | Aviation helicopter | Aviation small craft | Ships | Small boats 2 stroke | Small boats 4 stroke | Equipment 2 stroke | Equipment 4 stroke, tractor |
|-----------------------|-----------------------|--------------|---------|--------------|---------|---------------|---------------------|---------------------|------------|-------|-------------|---------|------------------------|---------------------|----------------------|-------|----------------------|----------------------|--------------------|-----------------------------|
| Coal                  | х                     |              | х       | х            |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Coke                  | х                     |              | х       | х            |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Petrol coke           | х                     |              | х       |              |         |               |                     |                     |            |       |             |         |                        |                     |                      |       |                      |                      |                    |                             |
| Fuel wood             |                       |              | ••      | х            |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Wood waste            |                       |              | х       |              |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Black liquor          |                       |              | х       |              |         |               |                     |                     |            |       |             |         |                        |                     |                      |       |                      |                      |                    |                             |
| Wood pellets          |                       |              | х       | х            |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Wood briquettes       |                       |              | х       |              |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Charcoal              |                       |              |         | х            |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Natural gas           | х                     | х            | х       |              | х       | х             |                     | Х                   |            |       |             |         |                        | ••                  |                      | х     |                      |                      |                    |                             |
| Refinery gas          | х                     |              | х       |              | х       |               |                     |                     |            |       |             |         |                        |                     |                      |       |                      |                      |                    |                             |
| Blast furnace gas     | х                     |              | х       |              |         |               |                     |                     |            |       |             |         |                        |                     |                      |       |                      |                      |                    |                             |
| Landfill gas          |                       |              | х       |              | х       |               |                     |                     |            |       |             |         |                        |                     |                      |       |                      |                      |                    |                             |
| Biogass               |                       | х            | ••      |              |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Fuel gas              | х                     |              | х       |              |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| LPG                   |                       |              | Х       | Х            |         | х             |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Motor gasoline        |                       |              |         |              |         | х             | Х                   | х                   | Х          | х     | х           |         |                        |                     |                      |       | х                    | Х                    | х                  | х                           |
| Aviation gasoline     |                       |              |         |              |         |               |                     | ••                  |            |       |             |         |                        |                     | х                    |       |                      |                      |                    |                             |
| Kerosene (heating)    |                       |              | х       | х            |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |
| Jet kerosene          |                       |              |         |              |         |               |                     |                     |            |       |             |         | х                      | Х                   |                      |       |                      |                      |                    |                             |
| Auto diesel           |                       |              | х       |              |         | х             | х                   | х                   |            |       |             | х       |                        |                     |                      |       |                      | х                    |                    | х                           |
| Marine gas oil/diesel | х                     | х            | х       |              |         |               |                     |                     |            |       |             |         |                        |                     |                      | х     |                      |                      |                    |                             |
| Light fuel oils       |                       |              | х       | х            |         |               |                     |                     |            |       |             |         |                        |                     |                      | х     |                      |                      |                    | х                           |
| Heavy distillate      | х                     |              | х       |              |         |               |                     |                     |            |       |             |         |                        |                     |                      | х     |                      |                      |                    |                             |
| Heavy fuel oil        | х                     |              | х       |              |         |               |                     |                     |            |       |             |         |                        |                     |                      | х     |                      |                      |                    |                             |
| Municipal waste       |                       |              | х       |              |         | ••            |                     | ••                  |            |       |             |         |                        | ••                  |                      |       | ••                   |                      |                    |                             |
| Special waste         | х                     |              | х       |              |         |               |                     |                     |            |       |             |         |                        | ••                  |                      |       |                      |                      |                    |                             |

The sources for non-combustion emissions and for combustion without energy use are based on EMEP/NFR and UNFCCC/CRF categories, with further subdivisions where more detailed methods are available (Appendix G).

#### 2.3. Regions: a fifth axis

Information about the geographical distribution of emissions is useful for modelling and control purposes. The spatial distribution of emissions introduces another dimension (axis) to the general model.

#### 2.3.1. Municipalities

The municipalities, of which there are 431 on the mainland (in 2006), have been chosen as the smallest unit for regionalisation. In addition we have included the regions Svalbard, sea areas north and south of 62  $^{\circ}$ N, and air space 100-1000 m and more than 1000 m above ground level.

Emissions are allocated to geographical units *after* the national totals have been calculated. Emissions are allocated in one of three ways:

- Emissions from *point sources* are allocated directly to municipalities.
- When figures for the activity used to calculate emissions are available *directly* at municipal level, these figures are used. Examples are fuel combustion in manufacturing industries and emissions from animals.
- When the activity at the municipal level is unknown, the national emissions are allocated *indirectly* using surrogate statistical data. For example, fuel combustion in service industries is allocated using employment figures. In a number of cases the activity is known directly at the intermediate level (county), but allocation within counties uses surrogate data.

Data from several important sources, e.g. industrial statistics, are not available at the municipal level until one and a half years after the year of emissions.

#### 2.3.2. EMEP grid squares

Emissions by EMEP 50 km x 50 km grid square are reported to the UNECE and used in models of long-range air pollution. The emissions are allocated to grid squares as follows:

- Emissions from large point sources are allocated directly to the appropriate squares. From 2000, this also includes emissions from offshore petroleum activities.
- Emissions at sea from national sea traffic and offshore petroleum activities (before 2000) are allocated to squares on the basis of a detailed analysis of 1993 activity data (Flugsrud and Rypdal 1996). The 1993 emissions are projected using national emission trends for each of the categories fishing, other sea traffic, flaring, other combustion, and other emissions in the petroleum sector.
- The remaining emissions in each municipality are allocated to squares according to the proportion of the area of the municipality in each square.

The method assumes that emissions are evenly distributed within municipalities. In reality, emissions often occur only in small parts of a municipality. If a municipality is large relative to the grid squares, the emissions may be allocated wrongly. However, few municipalities measure more than 50 km across and the larger municipalities are usually sparsely populated, with small emissions. It is therefore assumed that the level of error due to the method is acceptable. The direct allocation of large point sources also reduces the potential error.

# 3. Energy

## 3.1. Overview

This chapter provides descriptions of methodologies employed to calculate emissions from the energy sector. The disposition of the chapter is following the IPCC and NFR classifications of the emission sources. In section 3.2 emission estimations from energy combustion are described. This includes combustion emissions from energy industries, manufacturing industries and construction, transport and other combustion sources. Section 3.2 also includes memo items about international bunker fuels and  $CO_2$  emissions from biomass.

In section 3.3 a description is given for fugitive emissions from fuels. This includes fugitive emissions from coal mining and handling, and from oil and natural gas. Section 3.3 also includes a description of the  $CO_2$  capture and storage at the oil and gas production field Sleipner West.

# 3.2. Energy combustion

IPCC 1A NFR 1A Last update: 24.09.08

#### 3.2.1. Overview

Combustion of fossil fuels and biomass leads to emissions of greenhouse gases, acidifying pollutants, NMVOC, particulate matter, heavy metals, PAH and dioxins. Small amounts of  $NH_3$  can also be emitted.

Emissions from energy combustion include contributions from all sources addressed in the IPCC/UNECE Guidelines. Emissions from waste incineration at district heating plants are accounted for under the energy sector, as the energy is utilised. Methane from landfills used for energy purposes is also accounted for in this sector. Emissions from flaring in the energy sectors are described in section 3.3 *Energy production*. Coal and coke used as reducing agents and gas used for production of ammonia (non-energy part) are accounted for under industrial processes. Flaring outside the energy sectors is described in Chapter 7 *Waste*. The same applies to emissions from cigarettes, accidental fires etc. Emissions from burning of crop residues and agricultural waste are accounted for under Chapter 6 *Agriculture*.

#### 3.2.1.1. Method

Emissions from energy combustion are estimated at the sectoral level in accordance with the IPCC sectoral approach Tier 2/Tier 3. Often total fuel consumption is better known than the sectoral consumption.

The general method to estimate emissions from fuel combustion is multiplication of fuel consumption by source and sector by an appropriate emission factor. Exceptions are road and air transport where more detailed estimation models are used, involving additional activity data (see section 3.2.4.2 and 3.2.4.1 respectively). Fuel consumption figures are taken from the Norwegian energy accounts. The mean theoretical energy content of fuels and their density are listed in table 3.1.

| Table 3.1. Average energy con          | tent and density of fuels                   |                                |
|----------------------------------------|---------------------------------------------|--------------------------------|
| Energy commodity                       | Theoretical energy content <sup>1</sup>     | Density                        |
| Coal                                   | 28.1 GJ/tonne                               |                                |
| Coal coke                              | 28.5 GJ/tonne                               |                                |
| Petrol coke                            | 35.0 GJ/tonne                               |                                |
| Crude oil                              | 42.3 GJ/tonne = 36.0 GJ/m <sup>3</sup>      | 0.85 tonne/m <sup>3</sup>      |
| Refinery gas                           | 48.6 GJ/tonne                               |                                |
| Natural gas (2006) <sup>2</sup>        | 39.87 GJ/1000 Sm <sup>3</sup>               | 0.85 kg/Sm <sup>3</sup>        |
| Liquefied propane and butane (LPG)     | 46.1 GJ/tonne = 24.4 GJ/m <sup>3</sup>      | 0.53 tonne/m <sup>3</sup>      |
| Fuel gas                               | 50.0 GJ/tonne                               |                                |
| Petrol                                 | 43.9 GJ/tonne = 32.5 GJ/m <sup>3</sup>      | 0.74 tonne/m <sup>3</sup>      |
| Kerosene                               | 43.1 GJ/tonne = 34.9 GJ/m <sup>3</sup>      | 0.81 tonne/m <sup>3</sup>      |
| Diesel oil, gas oil and light fuel oil | 43.1 GJ/tonne = 36.2 GJ/m <sup>3</sup>      | 0.84 tonne/m <sup>3</sup>      |
| Heavy distillate                       | 43.1 GJ/tonne = 37.9 GJ/m <sup>3</sup>      | 0.88 tonne/m <sup>3</sup>      |
| Heavy fuel oil                         | 40.6 GJ/tonne = 39.8 GJ/m <sup>3</sup>      | 0.98 tonne/m <sup>3</sup>      |
| Methane                                | 50.2 GJ/tonne                               |                                |
| Wood                                   | 16.8 GJ/tonne = 8.4 GJ/solid m <sup>3</sup> | 0.5 tonne/solid m <sup>3</sup> |
| Wood waste (dry wt)                    | 16.25-18 GJ/tonne                           |                                |
| Black liquor (dry wt)                  | 7.2-9.2 GJ/tonne                            |                                |
| Waste                                  | 10.5 GJ/tonne                               |                                |

able 3.1. Average energy content and density of fuels

<sup>1</sup> The theoretical energy content of a particular energy commodity may vary; Figures indicate mean values. <sup>2</sup> Sm<sup>3</sup> = standard cubic metre (at 15 °C and 1 atmospheric pressure).

Source: Energy statistics, Statistics Norway.

 Table 3.2.
 Overview of estimated and reported greenhouse gases CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O for the energy combustion in 2005

|                                                                                         | CO <sub>2</sub>       | CH₄         | $N_2O$ |
|-----------------------------------------------------------------------------------------|-----------------------|-------------|--------|
| A. Fuel Combustion Activities (Sectoral Approach)                                       |                       |             |        |
| 1. Energy Industries                                                                    |                       |             |        |
| a. Public Electricity and Heat Production                                               | E/R                   | E           | E      |
| b. Petroleum Refining                                                                   | R                     | R           | E      |
| c. Manufacture of Solid Fuels and Other Energy Industries                               | E/R                   | E/R         | E/R    |
| 2. Manufacturing Industries and Construction                                            |                       |             |        |
| a. Iron and Steel                                                                       | E/R                   | E           | E      |
| b. Non-Ferrous Metals                                                                   | E                     | E           | E      |
| c. Chemicals                                                                            | E/R                   | E/R         | E/R    |
| d. Pulp, Paper and Print                                                                | E/R                   | E/R         | E/R    |
| e. Food Processing, Beverages and Tobacco                                               | E                     | E           | E      |
| f. Other (Oil drilling, construction, other manufacturing)                              | E                     | E           | E      |
| 3. Transport                                                                            |                       |             |        |
| a. Civil Aviation                                                                       | E                     | E           | E      |
| b. Road Transportation                                                                  | E                     | E           | E      |
| c. Railways                                                                             | E                     | E           | E      |
| d. Navigation                                                                           | E                     | E           | E      |
| e. Other Transportation (Snow scooters, boats, motorized                                |                       |             |        |
| equipment, pipeline transport)                                                          | E                     | E           | E      |
| 4. Other Sectors                                                                        |                       |             |        |
| a. Commercial/Institutional                                                             | E                     | E           | E      |
| b. Residential                                                                          | E                     | E           | E      |
| c. Agriculture/Forestry/Fisheries                                                       | E                     | E           | E      |
| 5. Other (Military)                                                                     | E                     | Е           | E      |
| <sup>1</sup> P means that omission figures in the national omission inventory are based | l on figuros reportor | hy the plan | to E   |

<sup>1</sup> R means that emission figures in the national emission inventory are based on figures reported by the plants. E means that the figures are estimated by Statistics Norway (Activity data \* emission factor).

For some major manufacturing plants (in particular offshore activities, refineries, gas terminals, cement industry, production of plastics, ammonia production), emissions of one or more compounds, reported to the Norwegian Pollution Control Authority from the plants, are used instead of figures calculated as described above. In these cases, the energy consumption of the plants in question is subtracted from the total energy use before the general method is used to calculate the remaining emissions of the compound in question, in order to prevent double counting. An overview of the type of emissions (i.e. estimated and/or reported) used in the inventory for the different sectors is given in table 3.2 for the greenhouse gases  $CO_2$ ,  $CH_4$  and  $N_2O$ .

In the last years three documentation reports have been published describing the methodologies used for road traffic (SFT 1999c), aviation (Finstad et al. 2002b) and navigation (Tornsjø 2001).

#### 3.2.1.2. Activity data

The energy consumption data used in the emission calculations are, with few exceptions, taken from the annual energy accounts, compiled by Statistics Norway. The energy accounts survey the flow of the different energy carriers within Norwegian economic activities. The energy accounts include energy carriers used as raw materials and reducing agents - these are subtracted in the data used to estimate emissions from combustion. Some emissions vary with the combustion technology; a distribution between different sources is thus required. Total use of the different oil products is based on the Norwegian sales statistics for petroleum products. For other energy carriers, the total use of each energy carrier is determined by summing up reported/estimated consumption in the different sectors. A short summary of the determination of amounts used of the main groups of energy carriers and the distribution between emission sources is given below.

#### Natural gas

Most of the combustion of natural gas is related to extraction of oil and gas on the Norwegian continental shelf. The amounts of gas combusted, distributed between gas turbines and flaring, are reported annually to Statistics Norway by the Norwegian Petroleum Directorate (NPD). These figures include natural gas combusted in gas turbines on the various oil and gas fields as well as on Norway's two gas terminals on shore. The data are of high quality, due to the Norwegian system of CO<sub>2</sub> taxation on fuel combustion. Statistics Norway's annual survey on energy use in manufacturing industries and sales figures from distributors give the remainder. Some manufacturing industries use natural gas in direct-fired furnaces; the rest is burned in boilers and, in some cases, flared.

#### LPG and other gases

Consumption of LPG in manufacturing industries is reported by the plants to Statistics Norway in the annual survey on energy use. Figures on use of LPG in households are based on sales figures, collected annually from the oil companies. Use in agriculture and construction is based on non-annual surveys; the figure for agriculture is held constant, whereas the figure for construction is adjusted annually, based on employment figures. Use of refinery gas is reported to Statistics Norway from the refineries. The distribution between the sources direct-fired furnaces, flaring and boilers is based on information collected from the refineries in the early 1990's. At some industrial plants, excess gas from chemical and metallurgical industrial processes is burned, partly in direct-fired furnaces and partly in boilers. These amounts are reported to Statistics Norway. Two ferroalloy plants sell excess gas (CO gas) to some other plants, where it is combusted for energy purposes. Amounts sold are annually reported to Statistics Norway. One sewage treatment plant utilizes biogas extracted at the plant, and reports quantities combusted (in turbines) and calculated CO2 emissions. Other emissions are estimated by Statistics Norway, using the same emission factors as for combustion of natural gas in turbines. The  $CO_2$  emissions have erroneously been included in the 2008 inventory, but will be removed in next year's submission, as emissions from bio energy not shall be estimated.

#### Oil products

Total use of the different oil products is based on Statistics Norway's annual sales statistics for petroleum products. The data are considered very reliable since all major oil companies selling oil products have interest in and report to these statistics3. The use of sales statistics provides a given total for the use of oil products, which the use in the different sectors must sum up to. This is not the case for the other energy carriers. The method used for oil products defines use as identical to sales; in practice, there will be annual changes in consumer stocks, which are not accounted for.

<sup>3</sup> The statistics are corrected for direct import by other importers or companies.

Stationary use takes place in boilers and, in some manufacturing industries, in direct-fired furnaces. There is also some combustion in small ovens, mainly in private households. Mobile combustion is distributed between a number of different sources, described in more detail under Chapter 3.2.4 Transport. In addition to oil products included in the sales statistics, figures on use of waste oil are given in Statistics Norway's industry statistics. Statistics Norway also collects additional information directly from a few companies about the use of waste oil as a fuel source.

#### Coal

Use of coal, coke and petrol coke in manufacturing industries is annually reported from the plants to Statistics Norway. The statistics cover all main consumers and are of high quality. Combustion takes place partly in direct-fired furnaces, partly in boilers. Figures on some minor quantities burned in small ovens in private households are based on sales figures. In addition, an insignificant figure on use of coal in the agricultural sector has formerly been collected from the farmers. Since 2002, there has been no use of coal in Norwegian agriculture.

#### Wood, wood waste and black liquor

Use of wood waste and black liquor in manufacturing industries is taken from Statistics Norway's annual survey on energy use in these sectors. Use of wood in households is based on figures on the amount of wood burned from the annual survey on consumer expenditure for the years before 2005. The statistics cover purchase in physical units and estimates for self-harvest. The survey figures refer to quantities acquired, which not necessarily correspond to use. The survey gathers monthly data that cover the preceding twelve months; the figure used in the emission calculations (taken from the energy accounts), is the average of the survey figures from the year in question and the following year. For 2005 and 2006 the figures are based on responses to questions relating to wood-burning in Statistics Norway's Travel and Holiday Survey. The figures in the new survey refer to quantities of wood used. The survey quarterly gathers data that cover the preceding twelve months. The figure used in the emission calculations is the average of 5 quarterly surveys. Figures on some minor use in agriculture and in construction are derived from earlier surveys for these sectors. Combustion takes place in boilers and in small ovens in private households. Consumption figures for wood pellets and wood briquettes are estimates, based on annual information from producers and distributors.

#### Waste

District heating plants and incineration plants annually report combusted amounts of waste (boilers) to Statistics Norway and the Norwegian Pollution Control Authority. There is also some combustion in manufacturing industries, reported to Statistics Norway.

According to the Norwegian Pollution Act, each incineration plant has to report emission data for  $SO_2$ ,  $NO_x$ , CO,  $NH_3$ , particles, heavy metals and dioxins, and the amount of waste incinerated to the county governor. The county governor then reports this information to the Norwegian Pollution Control Authority. If emissions are not reported, the general method to estimate emissions from waste incineration is to multiply the amount of waste used by an appropriate emission factor. Normally a plant specific emission factor is made for the component in question. This factor is based on the ratio between previous emission figures and quantities of waste burned. This factor is then multiplied with the amount of waste incinerated that specific year.

#### Energy balance sheets vs. energy accounts

There are two different ways of presenting energy balances: Energy balance sheets (EBS) and energy accounts. The energy figures used in the emission calculations are based on the energy accounts. The energy accounts follow the energy

consumption in Norwegian economic activity in the same way as the National accounts. All the energy used by Norwegian enterprises and households is to be included. Energy used by Norwegian transport trades and tourists' abroad is also included, while the energy used by foreign transport industries and tourists in Norway is excluded.

The energy sources balance sheet follows the flow of energy within Norway. This means that the figures only include energy sold in Norway, regardless the users' nationality. This includes different figures between the energy sources balance sheet and the energy account, especially for international shipping and for aviation.

The energy sources balance sheet has a separate item for energy sources consumed for transportation purposes. The energy accounts place the consumption of all energy under the relevant consumer sector, regardless of whether the consumption refers to transportation, heating or processing.

Figures from the energy sources balance sheet are reported to international organisations such as the OECD and the UN. The energy balance sheet will therefore usually be comparable with international energy statistics.

Important differences between figures presented in the energy balance sheet (EBS) and figures used in the emission calculations (EC) are:

- *Fishing*: EC use only energy sold in Norway, whereas EBS also includes an estimate for energy purchased abroad.
- *Air transport*: EC use only Norwegian domestic air traffic (excluding military), while EBS includes all energy sold in Norway for air transport, including military and energy used for international air transport.
- *Coal/coke for non-energy purposes*: This consumption is included in net domestic consumption in EBS, whereas EC include only energy used for combustion in the calculation of emissions from energy.

#### 3.2.1.3. Emission factors

Emission factors used for the energy sector are given in Appendix B. Emission factors for  $CO_2$  and  $SO_2$  are independent of technology, and emissions factors are described here. For the other emission components further descriptions are also given for each source sector.

#### $CO_2$

Emission factors for  $CO_2$  are independent of technology. The factors for different fuels are based on the average carbon content in each fuel.

#### $CH_4$ and $N_2O$

For  $CH_4$  and  $N_2O$ , information on emission factors is generally very limited, because, unlike the  $CO_2$  emission factors, they depend on the source of the emissions and the sector where the emissions take place. The emission inventory uses mostly default factors from IPCC (1997b). The emission factor for methane from fuel wood is taken from SINTEF (1995). Due to lack of data, some emission factors are used for sector/source combinations other than those they have been estimated for.

#### $SO_2$

The emission factors for  $SO_2$  change yearly, in accordance with changes in the sulphur content in the products.

#### 3.2.1.4. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D, as well as under the individual underlying source categories.

Generally, the total energy use is less uncertain than the energy use in each sector. For some sectors (e.g. the energy and manufacturing industries) the energy use is well known, while it is more uncertain in households and the service sectors. The energy use in the most uncertain sectors has been adjusted in the official energy statistics, so that the sum of the energy use in all sectors equals the total sales.

#### 3.2.1.5. Completeness

All known combustion with energy utilization in different industries and private households is included.

#### 3.2.1.6. QA/QC

The emission sources in the energy sector are subjected to the QA/QC procedures described in section 1.5. In the last years three documentation reports have been published describing the methodologies used for road traffic (SFT 1999c), aviation (Finstad et al. 2002b) and navigation (Tornsjø 2001).

#### 3.2.2. Energy industries

IPCC 1A1, Key category in level and trend for  $CO_2$  from combustion of gas and in trend for combustion of waste. Key category in trend for  $CH_4$  for combustion af gas NFR 1A1

Last update: 26.05.08

#### 3.2.2.1. Description

Energy industries include emissions from electricity and heat generation and distribution, extraction of oil and natural gas, coal production, gas terminals and oil refineries. Norway produces electricity mainly from hydropower, so emissions from electricity production are small compared to most other countries. Due to the large production of oil and gas, the emissions from combustion in energy production are high.

#### 3.2.2.2. Method

A general description of the method used for estimation of emissions from fuel combustion is given in section 3.2.1.1. For waste incineration also a more detailed description of the methodology for some components is given in this section.

#### Waste incineration

 $CO_2$  and  $CH_4$ 

Net  $CO_2$  emissions from wood/ biomass burning are not considered in the inventory, because the amount of  $CO_2$  released during burning is the same as that absorbed by the plant during growth. Carbon emitted in compounds other than  $CO_2$ , e.g. as CO, CH<sub>4</sub> and NMVOC, is also included in the CO<sub>2</sub> emission estimates. This double counting of carbon is in accordance with the IPCC guidelines (IPCC 1997b).

#### $N_2O$ and $NO_x$

Emissions of  $NO_x$  are reported from each plant to the Norwegian Pollution Control Authority. An estimated amount of 2.5 per cent of this  $NO_x$  is subtracted and reported to UNFCCC as  $N_2O$  (SFT 1996). Accordingly, the net  $NO_x$  emissions constitute 97.5 per cent of the emissions reported by the plants. For some years, emissions of  $NO_x$  have not been reported for a number of plants. In these cases, specific emission factors for the plants have been made, based upon earlier emissions and amounts of waste incinerated. These new factors have been used to estimate the missing figures.

#### **Particles**

Emissions of particles from district heating plants are reported to the Norwegian Pollution Control Authority. The different plants started to report particulate emissions at various points in time. Most of them started reporting from 1994. Emissions of particles in the years before reporting have been assumed to be the same as in the first year the plant reported. New control device systems (mainly wet scrubbers) were installed at the end of the 1980s at the largest plants. Around 1995 more control device systems were installed as a result of stricter emission requirements. Most plants today have fabric filter or electrofilter together with wet scrubbers. Only two plants do not have wet scrubbers.

The emission permits do not state which particle fraction that is going to be measured. It is common to measure total amount of particles. It is however presumed that the particles emitted are less than  $PM_{2.5}$ . TSP and  $PM_{10}$  are therefore the same as  $PM_{2.5}$ .

#### Dioxin

Emissions of dioxin from waste burning at district heating plants are reported to the Norwegian Pollution Control Authority. We have reported data for each plant from the period 1994/1995. Before 1994 we have only national totals. For estimating the emissions of dioxin for each plant before 1994 we derived an emission factor from total amount of waste burned together with the total dioxin estimate. The emissions of dioxin were estimated by multiplying the given emission factor of 20  $\mu$ g/tonne waste by the amount of waste burned at each plant. This calculation was done for each of the missing years for plants that did not report emissions.

#### Heavy metals

The estimate of heavy metals from waste combustion at district heating plants is reported to Norwegian Pollution Control Authority. Before 1999 many emissions of heavy metals were reported together as one group. This made it difficult to use the data to estimate the emission of each component. From 1999 there are separate data for each component, but for As, Cr and Cu there are a few plants that have insufficient reporting. To calculate the emissions of heavy metals before 1999 we have estimated an emission factor for each plant with the aid of reported emission data and amount of waste burned at each plant. The emission factor derived has been used to calculate emissions for previous years by multiplying each specific emission factor with the amount burned for the corresponding year for each plant.

Every district heating plant had stricter emission requirements for particles from 1995. It is expected that the emissions of heavy metals, except for mercury, were reduced analogously. At the same time the emission of mercury was regulated from 0.1 mg/Nm<sup>3</sup> to 0.05 mg/Nm<sup>3</sup>. These regulations are considered while calculating emissions for previous years.

#### 3.2.2.3. Activity data

#### Electricity and heat generation and distribution

The energy producers annually report their use of different energy carriers to Statistics Norway. There is only some minor use of oil products at plants producing electricity from hydropower. Combustion of coal at Norway's only dual purpose power plant at Svalbard/Spitsbergen is of a somewhat larger size. The amount of waste combusted at district heating plants is reported annually both to Statistics Norway and the Norwegian Pollution Control Authority. The data are considered to be of high quality.

#### Extraction of oil and natural gas

Production of oil and natural gas is the dominating sector for emissions from combustion in the energy industries in Norway. The Norwegian Petroleum Directorate annually reports the amounts of gas combusted in turbines and diesel burned in turbines and direct-fired furnaces on the oil and gas fields. The data are of high quality due to the  $CO_2$  tax on fuel combustion. These activity data are used for 1990-2002. From 2003 onwards, reported emission figures from the field operators are used.

#### Coal production

Norway's coal production takes place on Svalbard. The only coal producing company annually reports its coal consumption and some minor use of oil products. In addition to emissions related to Norway's own coal production, also emissions from Russian activities are included in the Norwegian emission inventory. Russian activity data are scarce, and emissions from an estimated quantity of coal combusted in Russian power plants are calculated. Since 1999 there has been only one such plant, in earlier years there were two of those.

#### Gas terminals

Norway has two gas terminals, where natural gas from the Norwegian continental shelf is landed, treated and distributed. Annual figures on natural gas combusted in turbines and flared are reported to the Norwegian Petroleum Directorate (figures on flaring at one plant is reported to the Norwegian Pollution Control Authority).

#### Oil refineries

The oil refineries annually report their use of different energy carriers to Statistics Norway. Refinery gas is most important, but there is also some use of LPG and oil products.

#### 3.2.2.4. Emission factors

Emission factors used for the energy sector are given in Appendix B. For some industries and components more information about the derivation of the emission factors are given in this section.

#### 3.2.2.4.1. CO<sub>2</sub>

*Waste incineration* The emission factor for combustion of waste (fossil part only) was calculated by SFT (1996).

#### Extraction of oil and natural gas

For all years up to 2002 emissions of  $CO_2$  from gas combustion offshore are calculated by Statistics Norway on the basis of activity data reported by the oil companies to NPD (the Norwegian Petroleum Directorate) and the Norwegian Pollution Control Authority and appropriate emission factors. For 2003-2005 the data used in the inventory are emissions reported directly by the field operators. The latter are obliged to report these and other emissions annually to NPD and the Norwegian Pollution Control Authority.

The  $CO_2$  emission factor used for all years leading up to 1998, and for all fields except one, is an average (standard) factor based upon a survey carried out in the early 1990s (OLF 1993, 1994). From 1999 onwards, the emission factors employed increasingly reflect field specific conditions as individual emission factors have been reported directly from the fields. Appendix B displays the time series of such emission factors, expressed as averages.

#### Gas terminals

The CO<sub>2</sub> emission factor for combustion of natural gas on gas terminals differs from the general emission factor used for combustion of natural gas.

#### 3.2.2.4.2. CH<sub>4</sub>

*Waste incineration* The emission factor for combustion of waste (fossil part only) was calculated by SFT (1996).

#### 3.2.2.4.3. TSP, PM<sub>10</sub> and PM<sub>2.5</sub>

*Electricity and heat generation* Emission factors for TSP,  $PM_{10}$  and  $PM_{2.5}$  are based on emission data given in EPA (2002). EPA (2002) gives emission data based on measurements made from various boilers using different control device systems. The power plant at Svalbard is equipped with a multicyclone, and emission factors derived from measurements from boilers controlled with multicyclone device systems are used.

#### 3.2.2.4.4. Dioxins and PAH

#### Electricity and heat generation

Dioxin emissions from coal combustion at the power plant at Svalbard are derived from emission factors found in literature. The emission factor used is the emission factor recommended in Bremmer et al. (1994). The same emission factor is also used in Parma et al. (1995) and Hansen (2000). Burning of coal at power plants is also expected to give particle-bound dioxin emissions, but because of the effective control device using multicyclone collector, the emissions are expected to be low. Emission factors for PAH-4, PAH-6 and PAH-total are derived from an emission profile developed from emission measurements from boilers using different control device systems (EPA 1998).

PAH emissions from waste incineration are calculated by emission factors and amount of waste burned. The emission factor used for calculating emissions of PAH before 1995 is 2.5 g PAH/tonne waste burned. It is assumed that the emissions have been reduced by 70 per cent since then because of stricter emission requirements from 1995. The new emission factors have been identified using information from Sweden. We have no plant or country specific emission profile of PAH from waste incineration at district heating plants in Norway. Instead an emission profile from a district heating plant in Sweden, burning wood powder is used (NILU/NIVA (1995)/ Karlsson et al. (1992)).

#### 3.2.2.4.5. Heavy metals

#### Electricity and heat generation

The emission factors for heavy metals used for calculating emissions from coal fired power plants are from EEA (2001). The factors are, however, not specific for coal fired power plants but standard factors recommended for calculating emissions from coal combustion in energy and transformation industries.

#### 3.2.2.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range air pollutants are given in Appendix D. Since the energy use is well known for the energy industries, the uncertainty in the activity data is considered to be minor.

The uncertainty in the activity data is  $\pm 3$  per cent of the mean for oil,  $\pm 4$  per cent for gas and  $\pm 5$  per cent of the mean for coal/coke and waste.

In the case of the emission factors for  $CO_2$ , the uncertainty is  $\pm 3$  per cent of the mean for oil,  $\pm 7$  per cent for coal/coke and gas and  $\pm 30$  per cent of the mean for waste.

Emission factors for  $CH_4$  and  $N_2O$  are very uncertain. Distributions are strongly skewed with uncertainties which lie below and above the mean by a factor of 2 and 3, respectively.

#### 3.2.2.6. Completeness

Major missing emission sources are not likely.

#### 3.2.2.7. Source specific QA/QC

The energy industries are subjected to the general QA/QC procedures described in section 1.5. Some source specific QA/QC activities were conducted in the following industries:

#### Heat generation in district heating plants

Emissions of heavy metals and POPs from waste incineration have been subject to detailed control. The estimates are based on measurements, but the values are uncertain due to high variability. Reported emission values can vary by orders of magnitude from year to year. Each historical value has been checked in the QA/QC process, and some data have been rejected and replaced by calculated values.

#### Extraction of oil and natural gas

For emissions of  $NO_X$  from turbines offshore, time series over the emissions calculated with field specific emission factors have been compared with the emissions given using the earlier used average emission factor.

From 2003 onwards field specific emission figures reported from the companies are used directly in the emission model. These figures are compared with emissions calculated on the basis of field specific activity data and emission factors.

#### Oil refineries

The  $CO_2$  emissions reported from the refineries are compared with the emissions estimated by Statistics Norway on the basis of activity data and emission factors for the different energy carriers used.

Results from the above studies have so far shown that emission estimates are in agreement with the reported figures

#### 3.2.3. Manufacturing industries and construction

*IPCC 1A2, Key category for CO<sub>2</sub> from gas and oil NFR 1A2 Last update: 01.09.05* 

#### 3.2.3.1. Description

Emissions from the sector of manufacturing industries and construction include industrial emissions originating to a large extent from the production of raw materials and semi-manufactured goods (e.g. alloys, petrochemicals, paper and minerals). These emissions are related to fuel combustion only, that is, emissions from use of oil or gas for heating purposes. Consumption of coal as feedstock and reduction medium is not included in this sector, but it is accounted for under the industrial processes sector.

#### 3.2.3.2. Activity data

Most of the emission figures are calculated on the basis of activity data and emission factors. For a few plants the emission figures are based on reported figures from the plants.

Statistics Norway carries out annual surveys on energy use in manufacturing industries, which supply most of the data material for the calculation of combustion emissions in these sectors. The energy use survey covers 90 per cent of the energy use in this sector. For the remaining companies, figures are estimated based on data from the sample together with data on economic turnover, taking into account use of different energy carriers in the same industries and size groups. A change in methodology from 1998 has had minor consequences for the time series, since the energy use is mainly concentrated to a few major plants within the industry, from which data were collected both in the present and the earlier method. The data on energy use in manufacturing industries are considered to be of high quality. Information on use of waste oil and other hazardous waste is also collected through the energy use statistics.

For the construction industry, the figures on use of the different energy carriers are partly taken from the annual sales statistics for petroleum products and partly projected from earlier surveys; the energy data are considered rather uncertain.

In some sectors autodiesel is mainly used in machinery and off-road vehicles, particularly in mining and construction. This amount of fuel is based on reported consumption of duty-free autodiesel in the manufacturing industries and on reported sales of duty-free autodiesel to construction. The methods for calculating emissions are discussed in section 3.2.4.7. Emissions from off-road machinery in industry are currently reported in the CRF/NFR category 1A3e *Other transportation*. According to the guidelines, they should be included in category 1A2. In the NFR, emissions from off-road machinery in industry are specifically assigned to category 1A2f *i*.

#### 3.2.3.3. Emission factor

Emission factors used for the energy sector are given in Appendix B.

#### 3.2.3.4. Uncertainties

Uncertainty estimates for greenhouse gases and long-range air pollutants are given in Appendix D. The energy use is considered well known for the manufacturing industries.

#### 3.2.3.5. Completeness

Major missing emission sources are not likely.

#### 3.2.3.6. Source specific QA/QC

There is no specific QA/QC procedure for this source. See section 1.5.1 for the description of the general QA/QC procedure.

#### 3.2.4. Transport

IPCC 1A3 NFR 1A3

**3.2.4.1.** Aviation IPCC 1A3a, Key category for CO<sub>2</sub> NFR 1A3a Last update: 13.06.06

#### 3.2.4.1.1. Method

The calculation methodology applied is described in Finstad et al. (2002b). According to the IPCC Good Practice Guidance the methodology used is Tier 2 based on the detailed methodology in EEA (2001). This methodology allows estimation of emissions and fuel consumption for different types of aircraft according to the average flying distance and numbers of landings and take-offs (LTO). All movements below 1000 m are included in the "Landing Take Off" (LTO) cycle. Movements over 1000 m are included in the cruise phase. All emissions from international aviation are excluded from national totals, and are reported separately (see section 3.2.6.3).

#### 3.2.4.1.2. Activity data

Statistics Norway annually collects data on use of fuel from the air traffic companies. These data include specifications on domestic use and amounts bought in Norway and abroad. The types of fuel used in aircraft are both jet fuel (kerosene) and aviation petrol. The latter is used in small aircraft only. Emissions from the consumption of jet kerosene in domestic air traffic are based directly on these reported figures. Domestic consumption of jet kerosene has been reported to Statistics Norway by the airlines since 1993. The survey is annual, but data from the surveys for 1993 and 1994 have not been used here, as one of the largest airlines in Norway was not included. Domestic consumption prior to 1995 is estimated by extrapolation on the basis of domestic kilometres flown and is more uncertain (Finstad et al. 2002b). Sales figures are used for the minor use of aviation petrol.

#### **3.2.4.1.3.** Emission factors

Emission factors used are given in Appendix B, table B1 and B3, and tables B7-B9.

The Norwegian Petroleum Industry Association provides emission factors for  $CO_2$  and  $SO_2$  for the combustion of jet fuel and gasoline (Finstad et al. 2002b). The emission factor for  $SO_2$  varies depending on the sulphur content of the fuel used. Emission factors for particles are from Brock et al. (1999) and Döpelheuer and Lecht (1998), and all particles are found to be less than  $PM_{2.5}$  (Finstad et al. 2002b).

A default emission factor for  $N_2O$  for all aircraft is used (IPCC 2001) and is valid for both LTO and the cruise phase. EEA (2001) and IPCC (2001) suggest using an emission factor for CH<sub>4</sub>, given in Olivier (1991), to be 10 per cent of total VOC. This is, however, only valid for LTO since studies indicate that only insignificant amounts of methane is emitted during the cruise phase. No methane is therefore calculated for the cruise phase and all emissions are assumed to be VOC (HC).

The  $NO_X$ , CO and VOC emission factors are aircraft specific as given in EEA (2001).

Only aggregated emission factors (kg/tonnes fuel used) are used in the Norwegian inventory. The emission factors are calculated based on total emission divided by activity data for LTO and in the cruise phase, respectively.

Recalculations have been done based on the new methodology (EEA 2001 and Finstad et al. 2002b) and this led to a change in emission factors for previous years. New emission factors back to 1980 have therefore been used in the inventory. Emission factors were calculated with activity data for 1989, 1995, and 2000. Factors for the years 1990-1994 and 1996-1999 were interpolated. Factors before 1989 and after 2000 were kept constant.

Emission factors for small aircraft are the same for the whole period.

#### 3.2.4.1.4. Uncertainties

Activity data

The uncertainty in the activity data for civil aviation is estimated to be  $\pm 20$  per cent of the mean, primarily due to the difficulty in separating domestic emissions from emissions from fuel used in international transport (Rypdal and Zhang 2000). In a recent study on emissions from aircraft (Finstad et al. 2002b), fuel consumption was also estimated bottom-up and compared to the reported figures (see also section 3.2.4.1.6.). The estimated and reported data differed by about 10 per cent. However, the reported data are considered most accurate and were used in the calculation. As described above, data before 1995 are more uncertain than for later years.

#### Emission factors

The uncertainty in the  $CO_2$  emission factors is  $\pm 3$  per cent. The uncertainty in the emission factors for  $CH_4$  and  $N_2O$  lies below and above the mean by a factor of 2 and 3, respectively.

#### 3.2.4.1.5. Completeness

Major missing emission sources are not likely.

#### 3.2.4.1.6. Source specific QA/QC

In 2002 a methodology improvement was made in the emission calculations for civil aviation (Finstad et al. 2002b). According to the IPCC Good Practice Guidance the methodology used is Tier 2 based on the detailed methodology in EEA (2001). This methodology allows estimation of emissions and fuel consumption for different types

of aircraft according to the average flying distance and numbers of landings and takeoffs (LTO).

#### 3.2.4.2. Road transport

*IPCC 1A3b, Key category for CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O NFR 1A3b i-v Last update: 13.04.07* 

#### 3.2.4.2.1. Method

A model for estimating emissions from road traffic was developed in 1993 (SFT 1993) and revised in 1999 (SFT 1999c). The results (expressed as average aggregated emission factors) from this model have been used as input to the general emission model.

#### 3.2.4.2.1.1. Model structure

A fuel-based model has been chosen, where the total consumption of various fuels provides the framework for determining the emissions. The emission factors depend on the kind of vehicle (type, weight, technology, age), fuel type, and driving mode. The total number of vehicle-kilometres does not enter the calculations directly. However, fractions of the total mileage are estimated for each combination of vehicle category and driving mode. These fractions are used to allocate fuel consumption to the various combinations. Emission factors may be given as emissions per vehicle-kilometre or per unit fuel consumed.

Total emissions (Q) of a pollutant (j) from fuel type (k), while driving with a warm engine may be calculated from equations (3.1) and (3.2) below:

(3.1) 
$$Q_{jk} = M_k \sum_{i} \left( p_{ijk} \cdot \frac{l_{jk}}{\overline{l_k}} \cdot \left( \frac{T_{ik}}{T_k} \right) \right)$$

or

(3.2) 
$$Q_{jk} = M_k \sum_{i} \left( q_{ijk} \cdot \frac{1}{\overline{l_k}} \cdot \left( \frac{T_{ik}}{T_k} \right) \right)$$
$$q_{ijk} = p_{ijk} \cdot l_{ik}$$

where

- Q: Total emissions
- M: Total fuel consumption
- p: Emission factor, g/kg
- q: Emission factor, g/km
- l: Fuel consumption, kg/km
- T: Vehicle-kilometres
- k: Fuel type
- i: Combination of vehicle type, fuel type, and driving mode
- j: Pollutant

 $l_k$  is the average consumption, kg/km, of fuel (*k*) and is determined by equation (3.3).

(3.3) 
$$l_k = \sum_k l_{ik} \cdot \left(\frac{T_{ik}}{T_k}\right)$$

Emissions from evaporation and cold starts are added to the tailpipe emissions from warm motors.

The fuel-based model calculates changes in emissions between years from changes in  $M_k$  (total fuel consumption) and:

- The number of vehicles in the various categories
- Technologies in use
- Annual average distance (km) driven per vehicle
- Driving patterns

| Table 3.3. | Vehicle categories <sup>1,2</sup> | in the emission model for road traffic |
|------------|-----------------------------------|----------------------------------------|
|------------|-----------------------------------|----------------------------------------|

| Fuel     | Туре              | Total weight |  |
|----------|-------------------|--------------|--|
| Gasoline | Passenger car     |              |  |
| "        | Light duty        | < 3.5 t      |  |
| "        | Heavy duty        | > 3.5 t      |  |
| "        | Bus               | > 3.5 t      |  |
| Diesel   | Passenger car     |              |  |
| "        | Light duty        | < 3.5 t      |  |
| "        | Light heavy duty  | 3.5 - 7.5 t  |  |
| "        | Medium heavy duty | 7.5 - 16 t   |  |
| "        | Heavy heavy duty  | > 16 t       |  |
| "        | Bus               | > 3.5 t      |  |

<sup>1</sup>Emissions from motorcycles and mopeds are calculated with a simplified method.

<sup>2</sup>The model may also be extended to include LPG and CNG vehicles.

#### *3.2.4.2.1.2. Model parameters*

Road traffic emissions are calculated for each combination of the following parameters:

- Pollutants: the same pollutants as in the general emission model, excluding heavy metals and POPs
- Vehicle categories: there are 10 classes, which are different combinations of vehicle type, weight, and fuel, see table 3.3.
- Vehicle age (0-29 and 30+ years, 31 age classes in all)

| ٠ | Driving | mode:Five | modes are | considered, | namely: |
|---|---------|-----------|-----------|-------------|---------|
|---|---------|-----------|-----------|-------------|---------|

| Urban Speed | limit | 30 km/h or less |
|-------------|-------|-----------------|
| Urban       | "     | 40 and 50 km/h  |
| Rural       | "     | 60 and 70 km/h  |
| Rural       | "     | 80 km/h         |
| Highway     | "     | 90 km/h         |

Note: The names of the driving modes do not indicate where driving actually takes place: for instance, driving is classified as urban driving if the speed limit is less than 50 km/h, even outside an urban area.

The modes apply only to driving with a warm engine. Emissions from cold start and evaporation are calculated separately as described in section 0.

#### 3.2.4.2.2. Activity data

All activity data are, as far as possible, updated for every year of the inventory. Data are taken primarily from official registers, public statistics and surveys. However, some of the data are based on assumptions. The sources of activity data are listed below:

- Total fuel consumption: the total amounts of fuels consumed are corrected for off-road use (in boats, snow scooters, motorized equipment, etc.). These corrections are estimated either from assumptions about the number of units, annual operation time, and specific fuel consumption, or from assumptions about and investigations of the fraction of consumption used off-road in each sector. The Norwegian Petroleum Industry Association supplies the data for total fuel consumption.
- Number of vehicles: the number of vehicles in the various categories and age groups is taken from the official register of the Norwegian Directorate of Public Roads.

- Average annual mileage: most figures are determined from surveys by Statistics Norway or the Institute of Transport Economics. In some instances assumptions are needed.
- Driving modes: the Directorate of Public Roads has data on the annual number of vehicle-kilometres driven on national and county roads. The data are allocated by speed limits and vehicle size (small/ large). Similar data exist for municipal roads in the ten largest cities. The same distribution is assumed to be valid for other municipal roads.

The fraction  $T_{ik}/T_k$  of the vehicle-kilometre total for each fuel is calculated using the following variables:

- Number of vehicles, by category and age
- Average annual mileage, by category
- Average annual mileage, by age and aggregate vehicle category

These fractions are used together with specific fuel consumption factors to allocate fuel used by road traffic to categories defined by the parameters vehicle type, vehicle age and driving mode.

#### 3.2.4.2.3. Emission factors

The emission factors are based on several sources. Complete lists of sources with references are given in SFT (1999c). The most important references are listed below:

- Copert II (EEA 1997), a computer program to calculate emissions from road traffic. Both this and the following report have been used for several purposes, including warm engine emissions from light and heavy vehicles, cold start emissions and emissions from mopeds and motorcycles.
- Previous version of Copert (Eggleston et al. 1991).
- A detailed report for the German *Umweltbundesamt* (Hassel et al. 1994) based on measurements from TÜV (Technischer Überwachungs-Verein Rheinland), is used for emissions from light vehicles.
- Measurements performed by the National Institute of Technology in Norway (SFT 1993), used for emissions from light vehicles.
- Several reports from AB Svensk Bilprovning in Sweden (listed in SFT 1993), used for emissions from heavy vehicles.
- The Corinair Emission Inventory Guidebook (EEA 1996), used for evaporation.
- Results from the MEET programme (Methodologies for Estimating Air Pollution Emissions from Transport) (Sérié and Journard 1996), are used for cold start emissions.

All factors are given by vehicle category and technology, and refer to new vehicles. Some factors also distinguish between driving modes. In addition, emission factors (hot and cold) and fuel consumption factors are corrected to take into account the change in values as the vehicles age.

 $N_2O$  factors were revised in 2005 based primarily on Gense & Vermeulen (2002), Riemersma *et al.* (2003) and EPA (2004). The factors are listed in Appendix B.

#### 3.2.4.2.4. Emissions from evaporation and cold starts

Emissions and fuel consumption from evaporation and cold starts are calculated separately. Evaporation of NMVOC from gasoline vehicles is calculated using the method given in the Corinair Emission Inventory Guidebook (EEA 1996). Emissions from running losses, hot soak emissions, and diurnal emissions are included. Average emission factors have been calculated, taking Norwegian climate conditions into account. Factors are given by vehicle category and technology.

In most cases, driving with a cold engine gives higher emissions than driving with a warm one, particularly for CO and NMVOC. The extra emissions are called cold start emissions. These are calculated as an additional emission contribution per start. Factors are given by vehicle category and technology. They are mainly taken from Copert (EEA 1997) and Sérié and Joumard (1996). Detailed driving patterns and regional temperature data are used. The driving patterns are taken from a travel survey (Haukeland et al. 1999) and include trip length and time between trips. Engine temperatures are corrected for the use of engine pre-heaters.

The extra fuel consumption caused by evaporation and cold starts is subtracted from the total consumption before emissions from warm engines are calculated.

#### 3.2.4.2.5. Uncertainties

With regard to  $CO_2$  emissions from road transportation, the uncertainty in the activity data and emission factors is found to be ±10 per cent and ±3 per cent of the mean, respectively. In the case of  $CH_4$  and  $N_2O$  the uncertainty in the emission factors lies below and above the mean by a factor of 2 and 3, respectively. The uncertainty estimates are given in Appendix D.

#### 3.2.4.2.6. Completeness

Major missing emission sources are not likely.

#### 3.2.4.2.7. Source specific QA/QC

Top down and bottom up data on fuel consumption are compared for gasoline and diesel vehicles on an annual basis. The consumption of gasoline and auto diesel for road traffic is estimated as total sales minus consumption for other uses, i.e a top down approach. The emission model for road traffic (SFT 1993; SFT1999c) also makes bottom up estimates of consumption, which can be compared with the top down data. For gasoline, the agreement is very good (difference < 5 per cent for most years). For auto diesel the agreement is poorer, with the top down estimate up to 40 per cent above the bottom up estimate. The causes are on the one hand uncertainties in the amount of non-road use and on the other hand uncertainties in mileage and specific consumption.

However, the total consumption of auto diesel, and hence the  $CO_2$  emission from this fuel, is well known. The uncertainty concerns the allocation between road and non-road use. For  $CH_4$  and  $N_2O$  the total emission is sensitive to the allocation due to different emission factors.

#### 3.2.4.3. Railways

IPCC 1A3c NFR 1A3c Last update: 13.06.06

#### 3.2.4.3.1. Description

Railway traffic in Norway uses mainly electricity. Auto diesel is used at a small number of lines, for shunting etc.

#### 3.2.4.3.2. Method

General estimation methodology for calculating combustion emissions from consumption figures and emission factors is used.

#### 3.2.4.3.3. Activity data

Consumption figures for auto diesel used in locomotives are collected annually from the Norwegian State Railways.

#### 3.2.4.3.4. Emission factors

Emission factors for  $NO_x$ , HC, CO, and  $PM_{10}$  were estimated by Bang (1993) based on a literature survey and data on Norwegian usage profiles. The HC factor of 4 g/kg was used directly for NMVOC.

The other emission factors are the same as for diesel machinery in mining and quarrying (see section 3.2.4.7.4), with the following exceptions:

- N<sub>2</sub>O: 1.2 g/kg vs 1.3 g/kg for machinery (IPCC Guidelines)
- NH<sub>3</sub>: 0 g/kg vs 0.005 g/kg for machinery.

#### 3.2.4.3.5. Uncertainties

The consumption data are of high quality. Their uncertainty is estimated to be  $\pm 5$  per cent of the mean. The uncertainty in the emission factor for CO<sub>2</sub> is  $\pm 3$ per cent of the mean, whereas for CH<sub>4</sub> and N<sub>2</sub>O the uncertainty is below and above the mean by a factor of 2 and 3, respectively.

#### 3.2.4.3.6. Completeness

Major missing emission compounds are not likely.

#### 3.2.4.3.7. Source specific QA/QC

Consumption data from the Norwegian State Railways are compared with sales to railways according to the Petroleum statistics. However, the latter includes some consumption by buses operated by the State Railways. Since 1998, the reported sales of "tax-free" auto diesel to railways have been around 20 per cent higher than the consumption data from the State Railways. Until 1997, the reported sales were around 5 per cent higher. The reason for this discrepancy has not been checked. "Tax-free" auto diesel is only for non-road use, so consumption by buses should not be the cause.

#### 3.2.4.4. Electric railway conductions

*IPCC 1A3c NFR 1A3c Last update: 01.09.05* 

#### 3.2.4.4.1.Method

Electric railway conductions contain copper that is emitted in contact with trains. In the inventory copper emissions are calculated by emission factors and activity data.

#### 3.2.4.4.2. Activity data

The activity data used for calculating emissions of copper from electric wires are annual train kilometers given by the Norwegian State Railway (NSB).

#### **3.2.4.4.3.** Emission factors

According to Norwegian State Railway (Rypdal and Mykkelbost 1997) the weight of a contact wire is 0.91 kg/meters. The weight is reduced by 20 per cent after 3 million train passes. This gives an emission factor of 0.06 g/train kilometers. It is, however, uncertain how much of this is emitted to air. In the inventory it is assumed that 50 per cent is emitted to air. This gives an emission factor of 0.03 g/ train kilometer.

Table 3.4. Emission factor for electric railway conductions. g/km

| Cu 0.03 |  |
|---------|--|

#### 3.2.4.4.4. Uncertainties

The emission factor used is uncertain. First, there is an uncertainty connected to the reduction of 20 per cent after 3 millions train passes. Secondly, there is uncertainty regarding the assumption that 50 per cent are emissions to air (Finstad and Rypdal 2003).

#### 3.2.4.4.5. Completeness

No major components are assumed missing.

#### **3.2.4.4.6.** Source specific QA/QC

There is no specific QA/QC procedure for this source. See section 1.5.1 for the description of the general QA/QC procedure.

#### 3.2.4.5. Navigation

*IPCC 1A3d, Key category for CO*<sub>2</sub> *NFR 1A3d Last update: 13.06.06* 

#### 3.2.4.5.1. Description

According to CLRTAP and UNFCCC, Norwegian national sea traffic is defined as ships moving between two Norwegian ports. In this connection installations at the Norwegian part of the continental shelf are defined as ports.

Fishing is described in section 3.2.5

#### 3.2.4.5.2. Method

Emissions from navigation are estimated according to the Tier 2 IPCC methodology. The levels and the spatial distribution of emissions from national sea traffic are estimated by an updated and improved methodology presented in Tornsjø (2001). The improvement is due to the collection of new data on fuel use for the different vessel categories and the registration of changes in regular coastal trade (connections/distances). Mobile drilling rigs are also included in the calculations. Emissions from international marine bunkers are excluded from the national totals and are reported separately (section 3.2.6), in accordance with the IPCC Good Practice Guidance.

Annual emissions are estimated from sales of fuel to domestic shipping, using average emission factors in the calculations. For 1993 and 1998 emissions have also been estimated based on a bottom up approach (Tornsjø 2001). This was alsow done for 2004. Fuel consumption data were collected for all categories of ships (based on the full population of Norwegian ships in domestic transport); freight vessels (bulk and tank by size), oil loading vessels, supply/standby ships, tug boats, coastal ferries, military ships and other ships. Emissions were estimated from ship and size specific emission factors and fuel use. From this information, average emission factors were estimated for application in the annual update based on fuel sales. This approach is unfortunately too resource demanding to perform annually. Sale of fuel to domestic shipping and fishing were about 15 per cent higher, in both 1993 and 1998, than the fuel consumption estimated as described in section 3.2.4.5.3 for the same years. Some explanations may be that the sales figures also include sales to foreign vessels bunkering in Norway. Norwegian vessels bunkered abroad are not included.

#### 3.2.4.5.3. Activity data

The annual sales statistics for petroleum products gives figures on the use of marine gas oil, heavy distillates and heavy fuel oil in domestic navigation. Information on fuel used in freighters is gathered from surveys performed by Statistics Norway. In cases where information on oil related vessels is lacking, data are collected directly. Data on fuel consumed by public road ferries are available from the Directorate of Public Roads, whereas the consumption by other ferries and regular coastal trade vessels is obtained directly from the companies. This information has been received from "Ferjefaktautvalget" for 2004. The consumption figures for other types of ships and boats are mainly taken from Flugsrud and Rypdal (1996). Information on use (wether it is used for drilling, stationary combustion

etc, ) is taken from Environmental Web (reported from oile companies to Norrwegian Pollution Control Authority).

For marine gas oil, the sales figures are adjusted up or down when problems in balancing the overall use against the total sale of this energy carrier arise, thus introducing an element of uncertainty regarding the quality of the figures actually used in the emission estimates. The total fuel use has been verified in Tornsjø (2001), showing a deviation of about 15 per cent. This can be explained by the fact that the bottom up method does not cover all ships, but it may also be that the domestic/international distinction is not precise enough in the sales statistics. The increase in bottom up consumption and sales between 1993 and 1998 is quite similar.

#### 3.2.4.5.4. Emission factors

Emission factors used for navigation are given in Appendix B, table B1, table B3 and tables B13-B16.

#### $CO_2$

For CO<sub>2</sub> the following standard emission factors based on carbon content are used:

- Marine gas oil/diesel and special distillate: 3.17 kg/kg fuel
- Heavy fuel oil: 3.20 kg/kg fuel

#### $N_2O$ and $CH_4$

For liquid fuels the general/standard emission factors for  $N_2O$  and  $CH_4$  used in the emission inventory are taken from IPCC/OECD: 0.23 kg  $CH_4$ /tonne fuel and 0.08 kg  $N_2O$ /tonne fuel.

In the case of oil drilling, the employed factors are as follows:

- CH<sub>4</sub>: 0.8 kg/tonne marine gas oil/diesel; 1.9 kg/tonne heavy fuel oil
- N<sub>2</sub>O: 0.02 kg/tonne marine gas oil/diesel

Some natural gas is combusted in ferry transportation; the  $CH_4$  emission factor used in this case is  $40.029 \text{ kg}/1000 \text{ Sm}^3$  fuel.

#### $SO_2$

The emission factors are determined from the sulphur content of the fuel.

#### 3.2.4.5.5. Uncertainties

The estimated bottom-up emission figures are uncertain. The most important sources of error are assumed to be estimation of fuel used by fishing vessels, delimitation of national sea traffic and the emission factors. Generally there is also uncertainty connected to cases where calculations are necessary because of the lack of data on fuel consumption. This applies particularly to large ships, as these usually use more fuel and accordingly have greater significance for the emissions. No analysis on levels of error has been made. National emission figures are generally more certain than the figures for the different vessel categories.

The uncertainty in the activity data is assessed to be  $\pm 10$  per cent. For CO<sub>2</sub> the uncertainty in the emission factors for ships and fishing vessels is  $\pm 3$  per cent of the mean, while for CH<sub>4</sub> it ranges between -50 and +100 per cent of the mean. For N<sub>2</sub>O the uncertainty range is between -66 and +200 per cent of the mean (Rypdal and Zhang 2000). Uncertainties in emission factors are shown in table 3.5.

Table 3.5. Uncertainties in emission factors for ships and fishing vessels. Per cent

| Standard deviation ( $2\sigma$ ) |                                                |
|----------------------------------|------------------------------------------------|
| ±3                               |                                                |
| -50 to +100                      |                                                |
| -66 to +200                      |                                                |
| ±25                              |                                                |
| ±15                              |                                                |
| ±50                              |                                                |
| -                                | ±3<br>-50 to +100<br>-66 to +200<br>±25<br>±15 |

<sup>1</sup> The interval within Marintek believe with 95 % certainty that the true emissionfactor lies is estimated to be in te range 10-30 % of the new NO<sub>X</sub> emissions factors (Buhaug 2006) Source: Rypdal and Zhang (2000, 2001).

#### 3.2.4.5.6. Completeness

Major missing emission sources are not likely.

#### 3.2.4.5.7. Source specific QA/QC

In 2001, bottom-up (from surveys) and top down data (from sales) on fuel consumption were compared (Tornsjø 2001). The outcome showed that data from sales were 15 per cent higher than data from reported consumption. This can be explained by the fact that the bottom up method does not cover all ships, but it may also be that the domestic/international distinction is not specified precisely enough in the sales statistics. Another element, which not has been taken into account, is possible changes in stock. A similar deviation has been found for the years 1993 and 1998. In the calculations, sales figures are used, as they are assumed to be more complete and are annually available. As mentioned, emission estimates for ships have been made bottom up for 1993 and 1998 (Tornsjø 2001). These results have been compared with the annual estimates. The agreement is reasonable, given the uncertainty in the fuel data determined by both methods.

#### 3.2.4.6. Pipeline

IPCC 1A3e NFR 1A3e i Last update: 01.09.05

#### 3.2.4.6.1. Method

Emissions are estimated through the general methodology described earlier, involving consumption figures and appropriate emission factors.

#### 3.2.4.6.2. Activity data

Figures on natural gas used in turbines for pipeline transport at two separate facilities are reported annually from the Norwegian Petroleum Directorate to Statistics Norway. Energy generation for pipeline transport also takes place at the production facilities. These emissions are reported under NFR/IPCC 1A1.

#### 3.2.4.6.3. Emission factors

The emission factors employed are the standard factors used for turbines fired with natural gas (Appendix B). Sources for the factors used are SFT/NPD and IPCC (1997b).

#### 3.2.4.6.4. Uncertainties

Uncertainty estimates for greenhouse gases and long-range air pollutants are given in Appendix D.

#### 3.2.4.6.5. Completeness

Major missing emission sources are not likely.

#### 3.2.4.6.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5.1 for the description of the general QA/QC procedure.

#### 3.2.4.7. Motorized equipment

*IPCC 1A3e* etc. *Key category for*  $CO_2$  *and*  $N_2O$  *from other mobile. NFR 1A3e ii* etc. *Last update:* 13.04.07

#### 3.2.4.7.1. Description

The category "motorized equipment" comprises all mobile combustion sources except road, sea, air, and railway transport. Farm and construction equipment are the most important categories. Other categories include mines and quarries, forestry, snow scooters, small boats and miscellaneous household equipment.

Emissions from motorized equipment are reported under several categories:

- Agriculture/Forestry/Fishing: NFR 1A4c-ii /IPCC 1A4c
- Households: NFR 1A4b-ii /IPCC 1A3e
- Military: NFR 1A5b /IPCC 1A5b
- Other: NFR 1A3e-ii /IPCC 1A3e

Only consumption of gasoline and auto diesel is considered. A small amount of fuel oil used for equipment in construction is also accounted for.

#### 3.2.4.7.2. Method

Emissions are estimated through the general methodology described earlier, involving consumption figures and appropriate emission factors.

#### 3.2.4.7.3. Activity data

Gasoline and auto diesel are handled differently. Consumption of *gasoline* is estimated bottom-up for each type of machinery based on data on the number of each type of equipment, usage and specific consumption.

*Snow scooters*: Number of equipment is obtained annually from the Norwegian Public Roads Administration. We assume a mileage of 850 km/year and a specific consumption of 0.15 l/km (TI 1991). A portion of 16 per cent of petrol consumption in agriculture is assigned to snow scooters. The remaining snow scooter fuel consumption is assigned to households.

*Chainsaws and other two-stroke equipment*: Only consumption in forestry is considered, based on felling data. Felling statistics are gathered by Statistics Norway. 50 per cent is supposed to be felled with use of chain saws, with a consumption of 0.33 l/m<sup>3</sup>. Note: Consumption has been kept fixed since 1994 based on a calculation by the Institute of Technology (Bang 1996).

*Lawn mowers and other four-stroke equipment*: Only consumption in households considered.

Consumption of *auto diesel* is based on data from the energy accounts. A certain fraction of the consumption in a number of industries is allocated to motorized equipment, based on surveys or expert judgments.

#### 3.2.4.7.4. Emission factors

Emission factors used are given in Appendix B.

For diesel machinery, emission factors for HC, CO, and  $PM_{10}$  were estimated by Bang (1993), based on a literature survey and data on Norwegian usage profiles. Source for emission factor for  $NO_X$  from diesel machinery is from Bang (1993) for motor gasoline and light fuel oils. For autodiesel emission factors from a Danish report (Winther and Nielsen 2006) is used. NMVOC factors were calculated by subtracting an assumed CH<sub>4</sub> fraction of 0.3 g/kg diesel.

#### 3.2.4.7.5. Uncertainties

The estimates of consumption are considered quite uncertain, particularly for gasoline. However, the total consumption of gasoline and auto diesel is well known.

#### 3.2.4.7.6. Completeness

Major missing emission sources are not likely.

#### 3.2.4.7.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5.1 for the description of the general QA/QC procedure.

#### 3.2.4.8. Automobile tyre and brake wear

IPCC 1A3b NFR 1A3b vi Last update: 01.09.05

#### 3.2.4.8.1. Tyre wear

#### 3.2.4.8.1.1. Description

Tyre wear is a source for emission of particles, heavy metals and persistent organic pollutants. The tyres are worn down by 10 to 20 per cent of its total weight during its lifetime. Most of the rubber is lost during acceleration and braking. All rubber lost is assumed to be particles containing heavy metals and PAH.

#### 3.2.4.8.1.2. Method

**Particles** 

All rubber lost is assumed to be small particles. The emissions of particles are calculated based on emission factors and annual mileage.

#### Heavy metals

Rubber particles contain heavy metals. Emissions of the heavy metals As, Cd, Cu, Cr, Pb and Hg are calculated based on annual mileage and emission factors.

#### PAH

The particles emitted from tyre wear contain PAH. Emissions are calculated based on emission factors and annual mileage.

#### 3.2.4.8.1.3. Activity data

Annual mileage is used for calculating the emissions from tyre wear. Annual mileage is given by the road traffic model, see section 3.2.4.2.

#### 3.2.4.8.1.4. Emission factors

#### **Particles**

The emission factors used for calculating the emission of particles are given by TNO (2002). The emission factors are based on different Dutch and British studies. It is assumed that all fine particles, PM<sub>10</sub>, are emitted to air, while all particles greater than 10 µm are emitted to soil or water. This is based on Dutch expert judgement. Recommended emission factors from TNO (2002) are given in table 3.6.

Table 3.6. Emission factors for particles from tyre wear, kg/mill, km

|                     | • | •                |  |
|---------------------|---|------------------|--|
|                     |   | PM <sub>10</sub> |  |
| Private cars        |   | 3.45             |  |
| Van                 |   | 4.5              |  |
| Heavy duty vehicles |   | 18.563           |  |
| MC                  |   | 1.725            |  |
| Source: TNO (2002)  |   |                  |  |

Source: TNO (2002).

#### Heavy metals

The emission factors used for the heavy metals As, Cd, Cu, Cr and Pb are derived from a particle-heavy metal distribution given by Dutch studies (Brink 1996). The content of heavy metals in the particles, given by this distribution, is multiplied by the  $PM_{10}$  emission factor (table 3.7). This gives the emission factors for the heavy metals As, Cd, Cu, Cr and Pb from tyre wear (table 3.7).

| Table 3.7. | Heavy metals emission factors from tyre wear. g/mill. km     |
|------------|--------------------------------------------------------------|
|            | ficulty metals childsform actors norm tyre wear. grinni. Kin |

|                     |       |       | · · J |       |       |
|---------------------|-------|-------|-------|-------|-------|
|                     | As    | Cd    | Cu    | Cr    | Pb    |
| Private cars        | 0.003 | 0.007 | 1.691 | 0.014 | 0.552 |
| Van                 | 0.005 | 0.009 | 2.205 | 0.018 | 0.720 |
| Heavy duty vehicles | 0.019 | 0.037 | 9.096 | 0.074 | 2.970 |
| MC                  | 0.002 | 0.003 | 0.845 | 0.007 | 0.276 |
|                     |       |       |       |       |       |

The emission factor used for the estimation of the emissions of Hg is 0.38 g/tonn tyre. This emission factor is derived from a study of heavy metal content in tyres (Bækken 1993).

#### PAH

Emission factors for PAH are given in Finstad et al. (2001), but there is no information about how much of the emissions that are emitted to air, and how much that goes to soil and to water. All emissions are therefore supposed to be emitted to air. There is also no PAH profile available, so in lack of other data the same PAH profile as for burning of tyres is used (EPA 1998). PAH emission factors for tyre wear are given in table 3.8.

#### Table 3.8. PAH emission factors from tyre wear. kg PAH/ 1000 mill. km

|                               | PAH  |
|-------------------------------|------|
| Light duty vehicles           | 10.4 |
| Heavy duty vehicles           | 0.1  |
| Source: Einstad et al. (2001) |      |

Source: Finstad et al. (2001).

#### 3.2.4.8.1.5. Uncertainties

The calculation of emissions from tyre wear is uncertain. First, the emission factors for particles used are based on international studies and not on Norwegian conditions. There is also uncertainty concerning how much of the particles that are emitted to air. According to a Dutch judgement, all particles emitted to air are  $PM_{10}$ . This is however only a judgement, and not based on scientific research. PAH emissions have been held constant since 1998.

The heavy metal emission factors are based on the particle emission factors for  $PM_{10}$ , and since this factor is uncertain, the heavy metal emission factors will also be uncertain. The content of heavy metals in the particles emitted from tyre wear is based on a Dutch study and can therefore differ from Norwegian conditions and type of tyres used.

#### 3.2.4.8.1.6. Completeness

Tyre wear also leads to emissions of other heavy metal components, such as zinc, nickel etc., but these components are not included in the Norwegian emission inventory.

Until 2004, different methods for calculating the emissions of heavy metals from tyre wear were used. One method was used for calculating emissions of Pb, Cd and Hg (Finstad et al. 2001) and another for calculating emissions of Cu, Cr and As (Finstad and Rypdal 2003). From 2004 the same method has been used for all the heavy metal components.

#### 3.2.4.8.1.7. Source specific QA/QC

There is no specific QA/QC procedure for this source. See section 1.5 for the description of the general QA/QC procedure.

#### **3.2.4.8.2.** Brake wear

#### **3.2.4.8.2.1.** Description

Brake blocks will wear during braking and this generates dust containing various metals. In the inventory, emissions of particles and heavy metals are included from this source.

#### 3.2.4.8.2.2. Method

#### Particles

Emissions of particles are calculated based on emission factors and annual mileage.

#### Heavy metals

Emissions of lead, copper and chromium are calculated after a method described in SLB (1998). The calculations are based on annual brake wear, driven kilometers and the brake blocks' metal content.

#### Brake wear, private cars and vans

To calculate emissions, brake wear first has to be estimated. It is assumed that private cars change brake blocks every fourth year. The background for this assumption is that private cars, by normal driving, change brake blocks at front after 3 000 - 4 000 thousand kilometers and at the back after 6 000-8 000 thousand kilometers. A private car drive in average 1 500 thousand kilometers each year. Assuming that the brake blocks are changed after 6 000 thousand kilometers, the car will be four years old when blocks first are changed.

The brake blocks at front weigh 0.13-0.15 kg and 0.09-0.11 kg at the back. It is assumed in the calculations that the brake blocks weigh 0.15 kg at the front and 0.11 kg at the back, that the brake blocks are worn 70 per cent before they are changed and that the front and back blocks are changed after 4 000 and 6 000 thousand kilometers, respectively. This gives equations (3.4) and (3.5):

- (3.4) Front brake blocks (private cars): 0.7\*4\*0.15/4000\*driven thousand kilometer
- (3.5) Back brake blocks (private cars): 0.7\*4\*0.11/6000\*driven thousand kilometer

The same method is used for calculating emissions from brake wear for vans and minibuses.

#### Brake wear, heavy duty vehicles

The number of brake blocks at a heavy duty vehicle varies with both brand and model. It is assumed that each front brake block weighs 2.5 kg and 3.5 kg at the back (SLB 1998). This means that a truck with four wheels have 12 kg of brake blocks. It is assumed that the blocks are changed after 10 000 thousand kilometers when the brake blocks are worn 70 per cent.

#### Metal content

The metal content in the brake blocks for new and old cars have been tested (SLB 1998). For calculating the emissions from brake blocks, annual brake wear has been multiplied by the metal content. For private cars and vans the cars are separated into new and old cars. Cars four years old or younger are accounted as new. The metal content in the brake blocks in front of the car differs from the content in the brake blocks at the back (table 3.9). For heavy duty vehicles, the metal content is independent of age or type of brake block.

| Table 3.9. | Metal content in brake blocks. mg/kg |       |               |       |                     |
|------------|--------------------------------------|-------|---------------|-------|---------------------|
|            | New private                          | cars  | Old private o | ars   | Heavy duty vehicles |
|            | Front                                | Back  | Front         | Back  | Front and back      |
| Cr         | 137                                  | 73.4  | 92            | 151   | 165                 |
| Cu         | 117941                               | 92198 | 71990         | 51240 | 9031                |
| Pb         | 9052                                 | 18655 | 13651         | 9110  | 457                 |

How much of the heavy metal emissions that are emitted to air were investigated by Sternbeck et al. (2001). Tunnel experiments showed that approximately 20 per cent of the brake wear emissions were emitted to air. This result is used in the calculations of brake wear emissions.

#### 3.2.4.8.2.3. Activity data

For calculating the emissions of particles, are annual mileage given by the road traffic model, see sector 3.2.4.2.

For calculating the emissions of heavy metals, annually driven kilometers and the ratio between new and old cars are also given by the road traffic model.

#### 3.2.4.8.2.4. Emission factors

**Particles** 

Emission factors recommended by TNO (2002), based on different European studies, are used (table 3.10).

#### Table 3.10. Particle emission factors for brake wear. kg/mill. km

|                        | PM <sub>2.5</sub> | PM <sub>10</sub> | TSP   |
|------------------------|-------------------|------------------|-------|
| Private cars (BM1+DM1) | 6                 | 6                | 6     |
| Van (BN1+DN1)          | 7.5               | 7.5              | 7.5   |
| Heavy duty vehicles    | 32.25             | 32.25            | 32.25 |
| MC                     | 3                 | 3                | 3     |
| Source: TNO (2002).    |                   |                  |       |

#### *Heavy metals*

Emission factors for Cr, Cu and Pb are derived based on the above information and are given in table 3.11.

| Table 3.11. | Heavy metal emission factors for brake wear. g/mill. | km |
|-------------|------------------------------------------------------|----|
|-------------|------------------------------------------------------|----|

|    |                           | _                         |                     |
|----|---------------------------|---------------------------|---------------------|
|    | New private cars and vans | Old private cars and vans | Heavy duty vehicles |
| Cr | 0.36                      | 0.35                      | 14.82               |
| Cu | 342.33                    | 203.79                    | 303.44              |
| Pb | 38.16                     | 38.02                     | 40.95               |
|    |                           |                           |                     |

#### 3.2.4.8.2.5. Uncertainties

3.2.4.8.2.6. There is high uncertainty in different steps in the emission calculations of heavy metals from brake wear, since many assumptions have been done. For example, there is uncertainty connected to the weight and the metal content of the brake blocks, and to the number of driven kilometers before blocks are changed.

#### 3.2.4.8.2.6. Completeness

Brake wear also leads to emissions of other heavy metal components, such as zinc, nickel etc., but these components are not included in the Norwegian emission inventory.

No other major emission components are assumed missing.

#### 3.2.4.8.2.7. Source specific QA/QC

There is no specific QA/QC procedure for this source. See section 1.5 for the description of the general QA/QC procedure.

# **3.2.4.9.** Automobile road abrasion *IPCC 1A3b*

NFR 1A3bvii Last update: 24.01.07

#### 3.2.4.9.1. Description

Asphalt dust is emitted to air while using studded tires. The abrasion layer on asphalt roads can contain approximately 90 per cent stones (rock/minerals) and 5 per cent filler. The rest is bitumen. During studded tyre abrasion, stone materials are worn down to minor particles and will together with detached filler and bitumen whirl up and become airborne. How much dust/particles studded tires generate depends on:

- Weight of the stud
- The road surface resistance against abrasion
- Vehicle velocity
- Share of heavy vehicle
- If the road surface is dry, wet or ice coated

A great share of the dust from studded tyres will bind up to the water film when the road surface is wet. Some of it will however whirl up again when the road surface dries up. This is not included in the calculation.

Bitumen is a mixture of a great number of organic components, including PAH components. The emissions of PAH from road abrasion are calculated and included in the emission inventory. Calculated emissions of Cd are also included.

#### 3.2.4.9.2. Method

Particles

PM<sub>10</sub>

The method is prepared by TI/SINTEF and documented in SFT (1999c). For calculating average emission Q (ton/year) of  $PM_{10}$  formula (3.6) is used:

(3.6) 
$$Q_{PM10} (ton/year) = \sum_{\text{All vehicle categories}} SPS * n * 1 * m * p * w * \alpha/10^6$$

- SPS: The specific wear of studded tyres (SPS). Gives an estimate of how much of the road surface that is worn off on one road kilometer of a vehicle with studded tyres
- n: Number of cars of a vehicle category in the area
- 1: Annual mileage for a vehicle category in the area
- m: Part of the year with studded tyres in the area (between 0 and 1)
- p: Share of the vehicle category using studded tyres
- w: Correction factor for wet and frozen road surface. In the calculation of w, frozen surface is given 0, wet surface 0.5 and dry surface 1. If the mileage with studded tyres on a wet and frozen surface respectively is v and x, w = (0.05\*v)+(1(1-v-x))
- $\alpha$ : Share of the road dust in air that is PM<sub>10</sub>. There is no data for this factor. The share of PM<sub>10</sub> on ground is used as a reference. There is very varied data for the size of this factor (Hedalen 1994). Hedalen gives a PM<sub>10</sub> share of 3-4 per cent. In the calculations 3 per cent is used as a first estimate. Hedalen (1994) states further that the PM<sub>2.5</sub> share of total road dust is 0.5-1 per cent.

The road surface has stronger wear resistance on roads with heavy traffic than on roads with little traffic. The SPS value can therefore vary with the amount of traffic. SPS-values for different ÅDT4-intervals were estimated based on analysis of track depths over the years 1988-1995 (NPRA 1996).

 $<sup>^{4}</sup>$  ÅDT = Average annual daily traffic

SPS is also dependent on the weight of the studs. The studs have in the recent years become lighter. The requirement in 1988 was that the stud on light vehicles should not exceed 2.0 gram, in 1990 this was changed to 1.8 gram, and it changed again in 1992 to 1.1 gram (NPRA 1997). The so-called "light studs" has a weight on 0.7 gram. Studs used on tyres for heavy vehicles could until 1992 weigh 8.0 gram, but this demand was changed to 3.0 gram. There are also other factors influencing the SPS- values, for example the road surface wear resistance and the quality of the stone materials used.

SPS-values used in the calculations are given in table 3.12. The SPS values are divided on classes of ÅDT (Evensen 1997b). In the calculations average values for SPS, weighted after the size of traffic load on roads with different ÅDT, are used. The values are given in g/km and are valid for all vehicles. To estimate how much of the emissions that originate from heavy vehicles, it is provided that heavy vehicles wear 5 times more than light vehicles. The vehicle velocity is not given as an own factor, since it is included in the calculation of SPS.

Annual traffic load (trafikkarbeid) ( $n \cdot l$  in the formula) used in the calculations are based on Rideng (2001).

Use of studded tyres is forbidden in Norway from the first Monday after Easter and until  $31^{st}$  of October. There is an exception from this rule in the three northern counties, Nordland, Troms and Finnmark. In these counties, use of studded tyres is forbidden between  $1^{st}$  of May to  $15^{th}$  of October. It is assumed in the calculations that studded tyres are used the whole period when it is allowed. This means that *m* is 6.5/12 in the northern counties and 5.5/12 for rest of the country.

Shares of traffic load on studded tyres in the five largest towns in Norway are given in table 3.13. There has been a decrease in use of studded tyres in Norway during the latest years. The factor p in the formula will therefore vary from one year to another. Information regarding the share of studded tyres originates from the Norwegian Public Roads Administration. There is also national data on share of the car fleet with studded tyres. The data material is based on interviews of car drivers (NPRA 1995a, 1995b and 1998). The questionnaires were given out at davtime and caused that most of the answers were from local car drivers. Accordingly, the survey included too many car drivers with annual mileage over 20 000 km. The survey from 1997 was however done differently. In the calculation program, the studded type share was decided to be 0.2. This value was adjusted by the different local road administrations, based on interviews or other available knowledge. In 2000, the Norwegian Public Roads Administration made a new investigation over local use of studded tyre (NPRA 2000). In 2006, Gjensidige made a survey over the use of studded tyres in different counties in Norway, winter 05/06 (Gjensidige 2006). For 2001-2004 averages of the two investigations are calculated for the counties. For the five largest cities data from the Norwegian Public Roads Administration was used also for 2001-2005, but for the rest of the country the results from Gjensidige (2006) was used. The data are given in table 3.14. For the period 1973-1990 is it assumed that the studded tyre share was 90 per cent

To calculate the correction factor for humid road surface, traffic load data is used. This is divided into different road conditions after Evensen (1997a) (table 3.15). Share of wet and dry road surface will change some as a consequence of varied share of studded tyres. In the calculations for 1973-1997 a correction factor is used, based on the estimation that 80 per cent of light duty vehicles and 60 per cent of heavy duty vehicles use studded tyres.

| Table 3.12.          | SPS values. g/km |           |           |           |      |
|----------------------|------------------|-----------|-----------|-----------|------|
| ÅDT                  | 1973-1980        | 1981-1987 | 1988-1992 | 1993-1997 | 2002 |
| 0-1500               | 22               | 20        | 20        | 18        | 16   |
| 1500-3000            | 20               | 20        | 18        | 16        | 14   |
| 3000-5000            | 16               | 15        | 14        | 12        | 10   |
| >5000                | 14               | 12        | 11        | 10        | 9    |
| Average <sup>1</sup> | 17.1             | 15.6      | 14.7      | 13.1      | 11.6 |

<sup>1</sup> Weight after traffic load on roads with differerent ÅDT.

Source: Evensen (1997b).

- - -

## Table 3.13. Use of studded tyres in five prioritized communities. Share of traffic load with studded tyres. Light duty vehicles

|           |       | , ,   |       |       |       |       |       |       |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
|           | 1998/ | 1999/ | 2000/ | 2001/ | 2002/ | 2003/ | 2004/ | 2005/ |
|           | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
| Oslo      | 51.9  | 32.4  | 21.2  | 31.3  | 29.2  | 28.4  | 24.0  | 19.9  |
| Drammen   | 49.6  | 48.7  | 52.1  | 41.8  | 42.3  | 40.6  | 31.5  | 27.0  |
| Stavanger | 38.1  | 31.3  | 26.8  | 29.3  | 28.8  | 35.2  | 30.1  | 32.2  |
| Bergen    | 37.0  | 29.4  | 28.3  | 31    | 30.7  | 30.4  | 30.3  | 29.6  |
| Trondheim | 67    | 64.4  | 62.1  | 44.4  | 40.2  | 38.8  | 38.1  | 32.9  |

Source: The Norwegian Public Roads Administration.

## Table 3.14. Averaged studded tyre share in Norway weighted after traffic load in the different counties

| Year |      |
|------|------|
| 1991 | 0.87 |
| 1992 | 0.88 |
| 1993 | 0.88 |
| 1994 | 0.87 |
| 1995 | 0.86 |
| 1996 | 0.83 |
| 1997 | 0.79 |
| 1998 | 0.70 |
| 1999 | 0.63 |
| 2000 | 0.58 |
| 2001 | 0.56 |
| 2002 | 0.55 |
| 2003 | 0.53 |
| 2004 | 0.51 |
| 2005 | 0.49 |

Source: Statistics Norway based on data from the Norwegian Public Roads Administration and Gjensidige.

#### Table 3.15. Grouping of wet, dry and icy road surface

|             | In the Norwegian emission inventory              |  |
|-------------|--------------------------------------------------|--|
| Wet         | Wet                                              |  |
| Dry         | Dry                                              |  |
| Slush       | Wet                                              |  |
| Loose snow  | Wet <sup>1</sup>                                 |  |
| Hard snow   | Hard snow/ice                                    |  |
| Bare tracks | 80 per cent dry and 20 per cent wet <sup>2</sup> |  |

Assumption made of NILU and Statistics Norway.

<sup>2</sup> Assumption made by Evensen (1997a).

#### TSP

Hedalen and Myran (1994) analysed road dust depots from Trondheim and found that 30 weight percentage of the particles were below  $PM_{10}$ . This gives a distribution where  $PM_{10}$  is 0.3\*TSP. This distribution is used in the inventory.

#### Cd

Emissions of Cd are calculated based on emission factors from Bækken (1993) and annually generated road dust of  $PM_{10}$ .

#### PAH

Emissions of PAH are calculated based on emission factors from Larssen (1985) and annually generated road dust of  $PM_{10}$ .

#### 3.2.4.9.3. Activity data

#### Cd and PAH

The activity data used for calculating the emissions of Cd and PAH are annually generated  $PM_{10}$  of road dust, see sector 3.2.4.9.2.

#### 3.2.4.9.4. Emission factors

#### Particles

The emission factors can be derived from the factors given under 3.2.4.9.2. The emission figures are calculated as a product of SPS values for the given year, the number of kilometers driven, part of the cars with studded tyres, part of the year with winter season, correction for icy surface and the  $PM_{10}$  share of the emission ( $\alpha$ ). The emission factors do not reflect the whirl up of road dust. Heavy duty vehicles whirl up much more than light duty vehicles.

#### Cd

The Cd content in the bitumen is uncertain. According to Bækken (1993), the Cd content varies between 1.9 and 43 g Cd per ton road dust. Statistics Norway has chosen an average emission factor of 22.5 g/ton, see table 3.16.

Table 3.16. PAH and Cd emission factors from road dust<sup>1</sup>. g/ton PM<sub>10</sub> of road dust

|                                | Emission factor (g/ton PM <sub>10</sub> from road dust) |
|--------------------------------|---------------------------------------------------------|
| Norwegian standard (PAH-total) | 61.7                                                    |
| PAH-6                          | 24.7                                                    |
| PAH-4                          | 5.5                                                     |
| Cd                             | 22.5                                                    |
| <sup>1</sup> Dry road surface. |                                                         |

Source: Finstad et al. (2001).

#### PAH

The PAH content in the bitumen is uncertain and can vary over time. According to Larssen (1985), the PAH content in airborn dust from wet roads is 330 ppm and 75 ppm from dry roads. Statistics Norway has chosen 85 ppm. In table 3.16, the emission factor of 85 g/ton is converted to correspond to the PAH components included in NS9815. This gives an emission factor of 61.7 g/ton for PAH-total.

#### 3.2.4.9.5. Uncertainties

Particle distribution of road dust has also been investigated by others than Hedalen and Myran, among them the Norwegain Institute for Air Research (NILU). The results from these measurements show another distribution than Hedalen and Myran, with a  $PM_{10}$ -fraction much lower than 30 weight percentage. In the calculation of  $PM_{10}$ , data from Hedalen and Myran (1994) are used, and for consistency reasons the same source is used for estimating TSP, despite the uncertainty and the discrepancy with NILUs estimations.

The value of  $\alpha$  (PM<sub>10</sub> share in road dust) is very uncertain. An average velocity is assumed in the calculations. This is further complicated when road surface on roads with high velocities have another wear resistance than other road surfaces.

The emission factor used for calculating Cd emissions is uncertain since it is based on two measurements.

The estimation of the PAH content in road dust from Larssen (1985) is very uncertain, since it is based on only one measurement in Oslo, but it is the only estimate available, and is used in lack of other data.

#### 3.2.4.9.6. Completeness

Major missing emission sources are not likely.

#### 3.2.4.9.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 3.2.5. Other sectors

*IPCC 1A4, Key category for CO<sub>2</sub> from gas and oil. Key cathegory for N<sub>2</sub>O from oil and for CH<sub>4</sub> from wood /1A5 NFR 1A4/1A5 Last update: 13.05.08* 

#### 3.2.5.1. Description

The source category "Other sectors" includes *all* military combustion, *stationary* combustion in agriculture, forestry, fishing, commercial and institutional sectors and households, motorized equipment and snow scooters in agriculture and forestry, and ships and boats in fishing.

#### 3.2.5.2. Activity data

*Motorized equipment* is described in section 3.2.4.7.

#### Households

Statistics Norway's annual survey on consumer expenditure gives figures on use of wood in households. Figures on use of coal and coal coke are derived from information from the main importer. Formerly, Norway's only coal producing company had figures on coal sold for residential heating in Norway. From about 2000, this sale was replaced by imports from abroad. Figures for LPG are collected from the suppliers. Heavy fuel oil is taken from the sales statistics for petroleum products. As the consumption of each energy carrier shall balance against the total sales in the sales statistics, use of fuel oil, kerosene and heavy distillates in households is given as the residual after consumption in all other sectors has been assessed.

#### Agriculture

Data on energy use in hothouses are collected in surveys performed regularly. Sales figures are used to project the figures for consumption of oil products in the years between, while bio fuels and LPG are kept constant. The Agricultural Budgeting Board has figures on the use of gasoline, auto diesel and fuel oil in agriculture excluding hothouses. A figure on the minor use of coal was previously collected annually from the only consumer. Since 2002, however, there has been no use of coal in the Norwegian agricultural activities.

#### Fishing

Figures on the use of marine gas fuel, heavy distillate and heavy fuel oil are identical with the registered sales to fishing in the sales statistics for petroleum products. The figures used in the emission calculations differ from the energy accounts, as the latter include also an estimated quantity on Norwegian use purchased abroad. In addition to these figures on use in large fishing vessels, a minor figure on estimated use of gasoline in small fishing boats is also included.

#### Commercial and institutional sectors

Figures on energy use in wholesale and retail trade and hotels and restaurants, are based on a survey for 2000, performed by Statistics Norway. For the following years, figures from this survey have been adjusted proportionally to the development in employment in the industries in question. For earlier years, the figures are based on a survey from the mid-1980s. LPG figures for the whole period from 1990 have, however, been estimated separately after consultation with an oil company.

For most other commercial and institutional sectors, the total use of fuel oil appears as a residual after the use in all other sectors has been estimated; the distribution of this residual between sub-sectors is done by using figures on energy use per manlabour year from the energy survey from the mid-1980s. Use of heating kerosene in commercial industries is calculated by projecting a figure on use from the mid-1980s proportionally with the registered sales to buildings in industrial industries outside the manufacturing industries. The estimated total amount is distributed between sub-sectors by using figures on energy use per man-labour year from the mid-1980s survey.

Emissions from combustion of biogas at a sewage treatment plant were previously included, but reported  $CO_2$  figures and calculated figures of other emissions are now registered for all years since 1993. However, as the  $CO_2$  emissions have a non-fossil origin, they should not have been included and will be removed in next year's submission. These  $CO_2$  emissions are not included in the CRF tables reported to UNFCCC on 15 April 2008.

#### Military

Figures on fuel oil are annually collected directly from the military administration, while figures from the sales statistics for petroleum products are used for other energy carriers.

#### 3.2.5.3. Emission factor

Emission factors used are given in Appendix B.

#### 3.2.5.4. Uncertainties

Uncertainty in *fishing* is described together with navigation in section. 3.2.4.5.5.

The method used for finding the use of fuel oil, kerosene and heavy distillates in households implies a great deal of uncertainty regarding the quality of these figures, particularly for fuel oil, which is the most important of these three energy carriers. Since the late 1990s it also has been necessary to adjust figures for other sectors in order to get consumption figures for households that look reasonable. Hopefully, new surveys will improve the quality of these figures in the future.

As the total use of the different oil products is defined as equal to the registered sales, use in some sectors are given as a residual. This applies to use of heating kerosene and heavy distillates in households, and total use of fuel oil in commercial and institutional sectors. Accordingly, these quantities must be regarded as uncertain, as they are not based on direct calculations. This uncertainty, however, applies only to the distribution of use between sectors - the total use is defined as equal to registered sales, regardless of changes in stock.

There have been large variations in annual sales of military aviation kerosene; as stock changes are not taken into account, the actual annual use is uncertain.

#### 3.2.5.5. Completeness

Major missing emission sources are not likely.

#### 3.2.5.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 3.2.6. International bunkers

*IPCC - memo item NFR - memo item Last update: 31.03.06* 

#### 3.2.6.1. Description

Emissions from international bunkers (marine and aviation) have been estimated and reported separately from national estimates, in accordance with the IPCC Guidelines. Differences between the IEA (International Energy Agency) data and the data reported to UNFCCC in sectoral data for marine shipping and aviation are due to the fact that different definitions of domestic use are employed. In the Norwegian inventory, domestic consumption is based on a census in accordance with the IPCC good practice guidance. On the other hand, the IEA makes its own assessment with respect to the split between the domestic and the international market.

#### 3.2.6.2. Shipping

#### 3.2.6.2.1. Method

Emissions are calculated by multiplying activity data with emission factors. The sales statistics for petroleum products, which is based on reports from the oil companies to Statistics Norway, has figures on sales for bunkers of marine gas oil, heavy distillates and heavy fuel oil. The same emission factors as in the Norwegian national calculations are used.

#### 3.2.6.2.2. Activity data

Sales figures for international sea transport from Statistics Norway's sales statistics for petroleum products are used for marine gas oil, heavy distillates and heavy fuel oil.

#### 3.2.6.2.3. Emission factor

Emission factors used for *Shipping* are described under *Navigation* in section 3.2.4.5.

#### 3.2.6.3. Aviation

#### 3.2.6.3.1. Method

The consumption of aviation bunker fuel in Norway is estimated as the difference between total purchases of jet kerosene in Norway for civil aviation and reported domestic consumption. Figures on total aviation fuel consumption are derived from sales data reported to Statistics Norway from the oil companies. These data do not distinguish between national and international uses. Data on domestic fuel purchase and consumption are therefore collected by Statistics Norway from all airline companies operating domestic traffic in Norway. The figures on domestic consumption from airlines are deducted from the total sales of jet kerosene to arrive at the total fuel sales for international aviation. The bottom-up approach of Norway is the detailed Tier2 CORINAIR methodology. The methodology is based on detailed information on types of aircraft and number of LTOs, as well as cruise distances.

#### 3.2.6.3.2. Activity data

Statistics Norway annually collects data on use of fuel from the air traffic companies, including specifications on domestic use and purchases of fuel in Norway and abroad.

#### **3.2.6.3.3.** Emission factor

Emission factors used for Aviation are described under Aviation in section 3.2.4.1.

#### 3.2.7. CO<sub>2</sub> emissions from biomass

#### IPCC - memo item

Emissions are estimated from figures in the energy accounts on use of wood, wood waste and black liquor. According to the guidelines, these  $CO_2$  emissions are not included in the national total in the Norwegian emission inventory.

# **3.3. Energy production (fugitive emissions from fuels)** *IPCC 1B*

NFR 1B

#### 3.3.1. Overview

Emission sources included in the inventory from the sector Fugitive emissions from fuels are fugitive emissions from coal mining and handling, and from oil and natural gas.

Fugitive emissions from oil and natural gas include emissions from loading and refining of oil, gasoline distribution, and fugitive emissions from the gas terminals on shore. There are also fugitive emissions in connection to venting and flaring offshore.

#### 3.3.2. Fugitive emissions from coal mining and handling

IPCC 1B1 a NFR 1B1 Last update: 07.04.06

#### 3.3.2.1. Description

There are today two coal mines at Spitsbergen (the largest island in the Svalbard archipelago) operated by a Norwegian company. They opened the second mine in 2001. As the Norwegian GHG inventory, according to official definitions, shall include emissions from all activities at Svalbard, also emissions from Russian coal production have been estimated. Until 1998, there was production in two Russian coal mines, but since then, production takes place only in the Barentsburg mine. The production there is at present considerably smaller than the Norwegian production. Russian activity data are more uncertain than the Norwegian, which causes a correspondingly higher uncertainty in the emission figures.

At Svalbard there has been a smouldering fire in the Russian mine that was closed down in 1998. At an inspection in 2005, no emissions were registered, which indicates that the fire has burnt out. Due to lack of data, emissions for earlier years from this fire have not been estimated. However, Norwegian authorities assume that these emissions are limited.

#### 3.3.2.2. Method

 $CO_2$ 

Indirect  $CO_2$  emissions from methane oxidized in the atmosphere are calculated by multiplying the calculated  $CH_4$  emission with the factor 2.74 tonne  $CO_2$  per tonne  $CH_4$  (See Chapter 1.9 for more information on indirect  $CO_2$ ).

#### $CH_4$

Emissions of methane from coal mining on Svalbard are calculated by multiplying the amount of coal extracted (raw coal production) with country specific emission factors (Tier 2); the factor for the Barentsburg mine differs from the factor for Norwegian coal production. The calculations are performed by Statistics Norway.

#### 3.3.2.3. Activity data

Figures on Norwegian production (raw coal production) are reported by the plant to Statistics Norway. Russian figures are reported to the Norwegian authorities on Svalbard; these figures are, however, regarded as highly uncertain, consisting of a mixture of figures on production and shipments.

#### 3.3.2.4. Emission factor

 $CH_4$ 

For Norwegian coal production, a country specific emission factor of  $CH_4$  from extraction of coal was determined in 2000 in two separate studies performed by (IMC 2000) and (Bergfald & Co as 2000).

The emissions of methane from coal mining were in the study measured in two steps. First, coal was sampled and the methane content in coal was analysed (IMC 2000). The sampling process started after a long period (a week) of continuous production. Small samples of coal were removed directly from the coalface as soon as possible after a cut was taken. This was to minimise degassing losses in the samples if the face or heading had been standing for a long time. The samples yielded an estimate of seam gas content of  $0.535-1.325 \text{ m}^3$  methane per tonne coal derived from an average content of  $0.79 \text{ m}^3$  per tonne. This factor includes the total possible methane emissions from coal mining, loading and transport on shore and on sea. The factor also includes the possible emission from handling and crushing of coal at the coal power plant.

Secondly, the methane content in ventilation air from the underground coal mines at Spitsbergen was measured (Bergfald & Co as 2000). From the Norwegian mines the methane content in the ventilation air was measured to 0.1-0.4 m<sup>3</sup> methane per tonne coal.

Considering the measurements it was therefore decided to use 0.54 kg methane per tonne coal as emission factor when calculating methane emissions from coal mining in Norway.

According to IPCC's Good Practice Guidance, the Norwegian mines at Spitsbergen have characteristics that should define the mines as underground mines, whereas the emission factor we use is more characteristic for surface mines. The low content of methane is explained with the mine's location 300-400 metres *above* sea level. Furthermore, the rock at Spitsbergen is porous and therefore methane has been aired through many years.

For the Russian mine in Barentsburg, the emission factor for  $CH_4$  has been estimated in the same manner as the Norwegian factor, based on measurements by (Bergfald & Co as 2000). This is an underground mine, which causes considerably higher emissions than from the Norwegian mines; we use the factor 7.16 kg methane per tonne coal for this mine. The Russian mine that was closed down in 1998, however, was situated more like the Norwegian mines; accordingly we use the same emission factor for this as for the Norwegian mines.

#### 3.3.2.5. Uncertainties

#### 3.3.2.5.1. Activity data

The uncertainty in the activity data concerning Norwegian coal production is regarded as being low. The uncertainty in Russian data is considerably higher.

#### 3.3.2.5.2. Emission factor

In the uncertainty analysis for greenhouse gases performed in 2006 (Appendix D) the uncertainty in the emission factor was estimated by expert judgments to as much as -50 to +100 per cent. But this estimate was based on the earlier use of an IPCC default emission factor in the calculations. Today, country specific factors based on measurements are used in the calculations and probably is the uncertainty in the emission factors are lower than -50 to +100 per cent.

The emission factor we use for the Norwegian mines is an average of the measurement of methane in coal sampled in the study (IMC 2000). This average emission factor is two to eight times higher than the methane content measured in ventilation air by (Bergfald & Co as 2000). This should indicate that the chosen emission factor is rather conservative.

#### 3.3.2.6. Completeness

Emissions from Russian coal extraction on Svalbard are now included in the Norwegian emission inventory. No major missing emission sources are known.

#### 3.3.2.7. Source specific QA/QC

Independent methods to estimate the emission factors used in the calculations are described above in this chapter.

Statistics Norway and the Norwegian Pollution Control Authority carry out internal checks of the emission time-series and corrections are made when errors are detected; see Chapter 1.5 for general QA/QC procedures.

# 3.3.3. Fugitive emissions from uncontrolled combustion and burning coal dumps

IPCC 1B1 b NFR 1B1 Last update: 05.02.08

#### 3.3.3.1. Description

In 2005, a fire broke out in one of the Norwegian coal mines at Spitsbergen, causing minor emissions.

#### 3.3.3.2. Method

Emissions have been calculated by multiplication of the quantity of coal combusted by standard emission factors for combustion of coal.

#### 3.3.3.3. Activity data

The company operating the mine has provided an estimate on the quantity of coal combusted in the fire.

#### 3.3.3.4. Emission factors

Emission factors for direct-fired furnaces, as given in Appendix B, have been used in the calculations.

#### 3.3.3.5. Uncertainties

#### 3.3.3.5.1. Activity data

The uncertainty in the activity data, that is the quantity of coal combusted, is unknown. However, as the emissions are small, the uncertainty is insignificant.

#### 3.3.3.5.2. Emission factors

This source was not included in the inventory when the uncertainty estimates in Appendix D were worked out.

#### 3.3.3.6. Completeness

The only fire in a Norwegian coal mine since 1990 is included. Emissions from a smouldering fire in a Russian mine, which is supposed to have lasted for several years, are not included in the emission inventory, due to lack of data. These emissions are, however, probably insignificant.

#### 3.3.3.7. Source specific QA/QC

There is no specific QA/QC procedure for this source.

#### 3.3.4. Oil and natural gas

*IPCC 1B2, 1B2a are key category for CO<sub>2</sub> and 1B2c for CO<sub>2</sub> and CH<sub>4</sub> NFR 1B2 Last update: 13.06.06* 

#### 3.3.4.1. Description

*IB2a* covers emissions from loading and storage of crude oil, refining of oil and distribution of gasoline. Loading, unloading and storage of crude oil on the oil fields off shore and at oil terminals on shore causes direct emissions of  $CH_4$  and NMVOC and indirect emissions of  $CO_2$  from oxidised  $CH_4$  and NMVOC. Non-combustion emissions from Norway's two oil refineries (a third was closed down in 2000) include  $CO_2$ ,  $CH_4$ ,  $NO_x$ , NMVOC,  $SO_2$  and particulates. Gasoline distribution causes emissions of NMVOC, which lead to indirect  $CO_2$  emissions.

*1B2b* covers fugitive emissions of  $CH_4$  and NMVOC and indirect emissions of  $CO_2$  from the two Norwegian gas terminals on shore.

| Table 3.17. | Fugitive emissions from oil and natural gas. Emission sources, compounds, methods, emission factors and |
|-------------|---------------------------------------------------------------------------------------------------------|
|             | activity data included in the Norwegian GHG Inventory                                                   |

| B Fugitive emissions from fuels   |     | $CH_4$ | N <sub>2</sub> O | NMVOC | Method    | Emission<br>factor | Activity<br>data |
|-----------------------------------|-----|--------|------------------|-------|-----------|--------------------|------------------|
| 1.B.2.a Oil                       |     |        |                  |       |           |                    |                  |
| i. Exploration                    | IE  | IE     | NO               | IE    | Tier II   | CS                 | PS               |
| ii. Production                    | IE  | IE     | NO               | IE    | Tier II   | CS                 | PS               |
| iii. Transport                    | E   | R/E    | NO               | R/E   | Tier II   | CS                 | PS               |
| iv. Refining/Storage              | R/E | R      | NO               | R     | Tier I/II | CS                 | PS               |
| v. Distribution of oil products   | E   | NE     | NO               | R/E   | Tier I    | C/CS               | CS/PS            |
| vi. Other                         | NO  | NO     | NO               | NO    |           |                    |                  |
| 1.B.2.b Natural gas               |     |        |                  |       |           |                    |                  |
| i. Exploration                    | IE  | IE     | NO               | IE    | IE        | IE                 | IE               |
| ii. Production/Processing         | IE  | IE     | NO               | IE    | IE        | IE                 | IE               |
| iii. Transmission                 | IE  | IE     | NO               | IE    | IE        | IE                 | IE               |
| iv. Distribution                  | IE  | IE     | NO               | IE    | Tier II   | CS                 | PS               |
| v. Other leakage                  |     |        |                  |       |           |                    |                  |
| industrial plants, power stations | E   | R      | NO               | R     | Tier II   | CS                 | PS               |
| residential/commercial sectors    | NO  | NO     | NO               | NO    |           |                    |                  |
| 1.B.2.c                           |     |        |                  |       |           |                    |                  |
| Venting                           |     |        |                  |       |           |                    |                  |
| i. Oil                            | IE  | IE     | NO               | IE    | Tier II   | CS/PS              | PS               |
| ii. Gas                           | IE  | IE     | NO               | IE    | Tier II   | CS/PS              | PS               |
| iii. Combined                     | R/E | R/E    | NO               | R/E   | Tier II   | CS/PS              | PS               |
| Flaring                           |     |        |                  |       |           |                    |                  |
| i. Oil (well testing)             | R/E | NE     | NE               | R/E   | Tier II   | CS                 | PS               |
| ii. Gas                           |     |        |                  |       |           |                    |                  |
| Gas and oil fields                | R/E | R/E    | E                | R/E   | Tier II   | CS                 | PS               |
| Gas terminals                     | R   | R      | E                | R/E   | Tier I    | CS                 | CS               |
| Refineries                        | R   | R      | R/E              | E     | Tier I    | CS                 | CS               |
| iii. Combined                     | IE  | IE     | IE               | IE    | Tier I    | CS                 | CS               |

R = emission figures in the national emission inventory are based on figures reported by the plants. E = emission figures are estimated by Statistics Norway (Activity data \* emission factor). IE = Included elsewhere, NO = Not occurring, CS = Country specific, PS = Plant specific, Tier = the qualitative level of the methodology used, C=Corinair.

*IB2c* covers fugitive emissions from venting and flaring. Venting emissions include emissions of  $CO_2$ ,  $CH_4$  and NMVOC from exploration and production drilling of gas and oil, and reinjection of  $CO_2$  at one oil field (Sleipner). The major source is cold vent and leakage of  $CH_4$  and NMVOC from production drilling and hence indirect  $CO_2$  emissions.  $CO_2$  emissions vented to the atmosphere when the injection of  $CO_2$  has to stop for maintenance etc. are reported in this sector. See section 3.3.5 "CO<sub>2</sub> capture and storage at the oil and gas production field Sleipner West" for further description of this source.

Most of the emissions in *IB2c* come from flaring of natural gas off shore (during both well testing, extraction and pipeline transport) and at gas terminals and flaring of refinery gas at the refineries. This flaring causes emissions of  $CO_2$ ,  $CH_4$ ,  $N_2O$ ,  $NO_X$ , NMVOC,  $SO_2$ , CO, particulates, PAH and dioxins. There is also some flaring of oil in connection with well testing - amounts flared and emissions are reported to NPD (the Norwegian Petroleum Directorate) and the Norwegian Pollution Control Authority.

The major source in sector 1B2 is flaring of natural gas on the Norwegian continental shelf. Table 3.17 gives an overview over the calculations of the fugitive emissions of  $CO_2$ ,  $CH_4$ ,  $N_2O$  and NMVOC.

#### 3.3.4.2. Method

Loading and storage of crude oil off shore and on shore  $CH_4$  and NMVOC

From 2003, emission of  $CH_4$  and NMVOC from loading and storage of crude oil on shuttle tankers included in the GHG Inventory are based on reported emission figures from the oil companies. Emissions, activity and to some extent emissions factors are reported from each field operator into the database Environmental Web. The database is operated by NPD, SFT and The Norwegian Oil Industry Association (OLF). In addition the field operators each year deliver a report where they describe the activities during the last year.

Before 2003 the reported emissions of CH<sub>4</sub> and NMVOC is calculated by Statistics Norway. The calculation was based on the field specific amounts of crude oil loaded and stored multiplied with field specific emission factors. Field specific activity data and emission factors (the latter only to the Norwegian Pollution Control Authority) used in the calculation were annually reported by the field operators to Statistics Norway and the Norwegian Pollution Control Authority. Since year 2000 an increasing share of the shuttle tankers have had installed vapour recovery units (VRU), and emissions from loading of crude oil on shuttle tankers with and without VRU are calculated separately for each field. In addition emission figures were annually reported to the Norwegian Pollution Control Authority and used in the QC of the calculated emission figures.

Only emissions from loading and storage of the Norwegian part of oil production are included in the inventory. For the two Norwegian oil terminals on shore, the emissions from loading of crude oil are reported annually from the terminals to the Norwegian Pollution Control Authority. At one of the terminals VRU for recovering NMVOC was installed in 1996. The calculation of the emissions of CH<sub>4</sub> and NMVOC at both terminals is based upon the amount of crude oil loaded and oil specific emission factor dependent of the origin of the crude oil loaded.

The reported indirect  $CO_2$  emissions from the oxidation of  $CH_4$  and NMVOC for this source category are calculated by Statistics Norway.

#### Oil refineries

CO<sub>2</sub>, CH<sub>4</sub>, NO<sub>x</sub>, NMVOC, SO<sub>2</sub> and particulates

Emission figures from the oil refineries are reported to the Norwegian Pollution Control Authority and are after QA/QC procedures used in the emission inventory. There is however one exception and that is  $CH_4$  emissions from the largest refinery. The  $CH_4$  emissions from that refinery are estimated by the Norwegian Pollution Control Authority by multiplying the yearly amount of crude oil throughput by a plant specific emission factor.

The  $CO_2$  emissions originate from the coke on the catalyst that is burned off and from the coke calcining kilns. The  $CO_2$  emissions from catalytic cracker and calcining kilns are calculated from the formula (3.7):

(3.7) tonne CO<sub>2</sub> per year = ((Nm<sup>3</sup> RG per year \* volume% CO<sub>2</sub>) / 100 \* (molar weight of CO<sub>2</sub> / 22.4)) / 1000

- the amount of stack gas (RG) is measured continously
- the density of the stack gas is 1.31 kg/Nm<sup>3</sup>
- volume percentage of CO<sub>2</sub> is based on continuously measurements. However, if the refinery can document that the volume percentage of CO<sub>2</sub> is not fluctuating more than 2 per cent from last years report it is not mandatory to have continuous measurements.

Both  $CH_4$  and NMVOC emissions are based on measurement carried out by Spectracyne in 2002 and 2005.

The indirect CO<sub>2</sub> from oxidized CH<sub>4</sub> and NMVOC is calculated by Statistics Norway.

# *Gasoline distribution NMVOC*

Emissions from gasoline distribution are calculated from figures on amounts of gasoline sold and emission factors for, respectively, loading of tanker at gasoline depot, loading of tanks at gasoline stations and loading of cars.

### Gas terminals

CH<sub>4</sub> and NMVOC

Fugitive emissions of CH<sub>4</sub> and NMVOC from gas terminals are annually reported from the terminals to the Norwegian Pollution Control Authority.

The emissions are calculated based on the number of sealed and leaky equipment units that is recorded through the measuring and maintenance program for reducing the leakage. The number of sealed and leaky equipment units is collected two times a year and the average number of the countings is used in the calculation. It is assumed in the calculation that a leakage has lasted the whole year if not the opposite is documented.

Measurement of the total emissions was carried out in 2002 and 2003.

#### Venting

CH<sub>4</sub> and NMVOC

Emissions of  $CH_4$  and NMVOC from cold venting and diffuse emissions for each field are reported annually to the Norwegian Pollution Control Authority from the field operator. The emissions are mostly calculated by multiplying the amount of gas produced with an emission factor for each emission source identified at the field. The indirect  $CO_2$  emissions are calculated by Statistics Norway.

The vented CO<sub>2</sub> at Sleipner West is measured.

#### Flaring

 $CO_2$ ,  $CH_4$ ,  $N_2O$ ,  $NO_X$ , NMVOC,  $SO_2$ , CO, particulates, PAH and dioxins Emissions from flaring of natural gas off shore are calculated by Statistics Norway on the basis of field specific gas consumption data and country specific emission factors. For  $CO_2$ ,  $CH_4$ ,  $NO_X$ , NMVOC and  $SO_2$ , calculated emissions are used in the inventory for the years until 2002. From 2003, emissions of these components from flaring offshore reported by the oil companies to NPD and the Norwegian Pollution Control Authority are used in the inventory. The same metod is used in the calculation of emission from flaring by well testing.

Emissions of  $CO_2$  and  $CH_4$  and  $NO_X$  from flaring from the two gas terminals are reported for all years. For NMVOC reported emission figures are used for one gasterminal and calculated emissions are used for the other. Other emissions from the gas terminals are based on activity data and emission factors.

The refineries report annually  $CO_2$  emissions from flaring to the Norwegian Pollution Control Authority. The emissions are calculated by multiplying the amount of gas flared with plant specific emission factors.

#### 3.3.4.3. Activity data

#### Loading and storage of crude oil off shore and on shore

The amount of oil buoy loaded and oil loaded from storage tankers is reported by the field operators in an annual report to the Norwegian Pollution Control Authority and Norwegian Petroleum Directorate (NPD). The amount of oil loaded on shuttle tankers with or without VRU is separated in the report.

Before 2003, Statistics Norway gathered data on amounts of crude oil loaded at shuttle tankers and stored at storage vessels from the NPD. The data from each field are reported monthly by the field operators to NPD on both a mass and a volume basis. The allocation of the amount of crude oil loaded at shuttle tankers and stored at storage vessels with or without VRU is from the annually report the field operators are committed to deliver to the Norwegian Pollution Control Authority and NPD.

The amount of oil loaded at on shore oil terminals is also reported to the Norwegian Pollution Control Authority and NPD.

#### Oil refineries

The crude oil throughput is annually reported by the plant to the Norwegian Pollution Control Authority.

#### Gasoline distribution

Gasoline sold is annually collected in Statistics Norway's sales statistics for petroleum products.

#### Gas terminals

Activity data that the terminals use in their emission calculations are sampled through the terminals measuring and maintenance program which aim is to reduce leakage.

#### Venting

Amounts of gas produced or handled at the platform are reported from NPD and used in the QC of the reported emissions.

#### Flaring

Amounts of gas flared at offshore oil and gas installations are monthly reported by the operators to the Norwegian Petroleum Directorate (NPD). Amounts flared at the two gas terminals are reported to NPD and the Norwegian Pollution Control Authority. Amounts of refinery gas flared are found by distributing the total amounts between different combustion technologies by using an old distribution key, based on data collected from the refineries in the early 1990s. This distribution is confirmed in 2003.

#### 3.3.4.4. Emission factor

*Loading and storage of crude oil off shore and on shore* For the years before 2003, emission factors used in the calculation of CH<sub>4</sub> and NMVOC emissions offshore are field specific and were reported to the Norwegian Pollution Control Authority and NPD in an annual report. the Norwegian Pollution Control Authority forwarded the emission factors to Statistics Norway. From 2003 the emission figures reported by the field operators are used in the inventory.

The evaporation rate varies from field to field and over time, and the emission factors are dependent on the composition of the crude oil as indicated by density and Reid vapour pressure (RVP). The VOC evaporation emission factors are obtained from measurements, which include emissions from loading and washing of shuttle tankers. For some fields the emission factors are not measured, only estimated. The  $CH_4$  content of the VOC evaporated is also measured so that total emissions of VOC are split between  $CH_4$  and NMVOC.

The emission factors that the field operator use in their calculations is reported to the Norwegian Pollution Control Authority and NPD. They report emissions factor with and without VRU and the split beteen  $CH_4$  and NMVOC.

Loading on shore: The emission factors are considerably lower at one of Norway's two oil terminals than at the other, because the oil is transported by ship and therefore the lightest fractions have already evaporated. At the other terminal the oil is delivered by pipeline. The latter terminal has installed VRU, which may reduce NMVOC emissions from loading of ships at the terminal by about 90 per cent. NMVOC emissions at this terminal are estimated to be more than 50 per cent lower than they would have been without VRU. However, the VRU technology is not designed to reduce methane and ethane emissions.

#### Oil refineries

The emission factor used in the calculation of methane emissions from the largest refinery is based upon measurements performed by Spectracyne in 2002 and 2005. The EF is deduced from the measured methane emissions and the crude oil throughput in 2005.

#### Gasoline distribution

Emission factor for NMVOC from filling gasoline to cars used in the calculations are from (EEA 2001) and is 1.48 kg NMVOC/tonne gasoline.

#### Venting

The emission factors used are listed in table 3.18.

| Table 3.18. | Emission factors for cold vents and leakage at gas fields off shore |
|-------------|---------------------------------------------------------------------|
|-------------|---------------------------------------------------------------------|

|                                        | NMVOC           | CH <sub>4</sub> |                    |
|----------------------------------------|-----------------|-----------------|--------------------|
|                                        | Emission factor | Emission factor | Calculation method |
| Emission source                        | [g/Sm3]         | [g/Sm3]         |                    |
| Glycol regeneration                    | 0.065           | 0.27            |                    |
| Gas dissolved in liquid from K.O. Drum | 0.004           | 0.00            |                    |
| Gas from produced water system         | 0.03            | 0.03            |                    |
| Seal oil systems                       | 0.015           | 0.01            |                    |
| Leaks through dry compressor gaskets   | 0.0014          | 0.00            |                    |
| Start gas for turbines <sup>1</sup>    | 0.4             | 0.36            | Tonne per start up |
| Depressurisation of equipment          | 0.005           | 0.02            |                    |
| Instrument flushing and sampling       | 0.00021         | 0.00            |                    |
| Purge and blanket gas <sup>1</sup>     | 0.032           | 0.02            |                    |
| Extinguished flare                     | 0.014           | 0.02            |                    |
| Leaks in process                       | 0.007           | 0.02            |                    |
| Depressurisation of annulus            | 0.0000005       | 0.00            |                    |
| Drilling                               | 0.55            | 0.25            | Tonne per well     |

<sup>1</sup> The gas source is standard fuel gas.

Source: Aker Engineering (1992).

#### Flaring

From 2003,  $CO_2$  emission figures reported by the oil companies to the the Norwegian Pollution Control Authority and NPD are used in the inventory. For the years 1990-02, average emission factors, based on field specific factors, are used, except for one field, for which a field specific factor is used for all years. In table 3.19, the  $CO_2$  emission factors for flaring off shore and at one gas terminal are shown. The other gas terminal used 2.72 tonne  $CO_2$ /tonne gas.

Emission factors used in the calculations for well testing are shown in table 3.20.

| Table 3.19. | Emission factors for flaring of natural gas at off terminal on shore | shore oil fields and one gas             |
|-------------|----------------------------------------------------------------------|------------------------------------------|
|             | Average emission factor                                              | Average emission factor f                |
|             | for flaring at one gas terminal                                      | or flaring off shore                     |
|             | t CO <sub>2</sub> /t gas                                             | kg CO <sub>2</sub> / Sm <sup>3</sup> gas |
| 1990        | 2.70                                                                 | 2.34                                     |
| 1991        | 2.70                                                                 | 2.34                                     |
| 1992        | 2.70                                                                 | 2.34                                     |
| 1993        | 2.70                                                                 | 2.34                                     |
| 1994        | 2.70                                                                 | 2.34                                     |
| 1995        | 2.70                                                                 | 2.42                                     |
| 1996        | 2.70                                                                 | 2.34                                     |
| 1997        | 2.70                                                                 | 2.34                                     |
| 1998        | 2.70                                                                 | 2.34                                     |
| 1999        | 2.70                                                                 | 2.48                                     |
| 2000        | 2.70                                                                 | 2.52                                     |
| 2001        | 2.70                                                                 | 2.42                                     |
| 2002        | 2.70                                                                 | 2.47                                     |
| 2003        | 2.70                                                                 | -                                        |
| 2004        | 2.70                                                                 | -                                        |
| 2005        | 2,70                                                                 | -                                        |
| 2006        | 2,70                                                                 | -                                        |

Source: The Norwegian Pollution Control Authority/ Norwegian Petroleum Directorate.

| Table 3.20. Emiss         | sion factors for f | laring in connection wi | th well testing              |              |
|---------------------------|--------------------|-------------------------|------------------------------|--------------|
| Compounds (unit)          | unit/tonnes        | Source                  | unit/kSm <sup>3</sup> flared | Source       |
|                           | flared oil         |                         | natural gas                  |              |
| $CO_2$ (tonnes)           | 3.2                | SFT (1990)              | 2.34                         | SFT (1990)   |
| CH <sub>4</sub> (tonnes)  | NE                 |                         | 0.00024                      | IPCC (1997b) |
| N <sub>2</sub> O (tonnes) | NE                 |                         | 0.00002                      | OLF (2004)   |
| $NO_X$ (tonnes)           | 0.0037             | OLF (2004)              | 0.012                        | OLF (2004)   |
| NMVOC (tonnes)            | 0.0033             | OLF (2004)              | 0.00006                      | OLF (2004)   |
| CO (tonnes)               | 0.018              | OLF (2004)              | 0.0015                       | OLF (2004)   |
| TSP (tonnes)              | 0.025              | Measurements            | 2.0E-06                      | EPA (2002)   |
|                           |                    | $(OLF^1)$               |                              |              |
| $PM_{10}$ (tonnes)        | 0.0215             | Use the same            | 2.0E-06                      | EPA (2002)   |
| $PM_{2.5}$ (tonnes)       | 0.014              | distribution as for     | 2.0E-06                      | EPA (2002)   |
|                           |                    | combustion of           |                              |              |
|                           |                    | heavy fuel oil in       |                              |              |
|                           |                    | industry (EPA           |                              |              |
|                           |                    | 2002)                   |                              |              |
| PAH (kg)                  | 0.012              | OLF (1991)              | 0                            |              |
| PAH-OSPAR (kg)            | 0.0024             | Use the same            | 0                            |              |
| PAH-4 (kg)                | 0.00024            | distribution as for     | 0                            |              |
|                           |                    | combustion of           |                              |              |
|                           |                    | heavy fuel oil in       |                              |              |
|                           |                    | industry (EPA           |                              |              |
|                           |                    | 1998)                   |                              |              |
| Dioxin (mg)               | 0.01               | Measurements            | 0                            |              |
|                           |                    | (OLF)                   |                              |              |

<sup>1</sup>The Norwegian Oil Industry Association (OLF).

#### 3.3.4.5. Uncertainties

The uncertainty in the emission factors of methane (Rypdal and Zhang 2000) and NMVOC (Rypdal and Zhang 2001) from *oil loading* is estimated to be  $\pm 40$  per cent and in the activity data  $\pm 3$  per cent.

The uncertainty in the amount of gas flared is in (Rypdal and Zhang 2000) regarded as being low,  $\pm 4$  per cent, due to that there is a tax on gas flared and there is requirement by law that the gas volume flared is measured (NPD 2001). The uncertainty in the CO<sub>2</sub> emission factor for flaring is  $\pm 10$  (Rypdal and Zhang 2000).

The uncertainty in CH<sub>4</sub> and NMVOC emissions from venting and, hence, in the indirect emissions of CO<sub>2</sub>, is much higher than for flaring.

All uncertainty estimates for this source are given in Appendix D.

#### 3.3.4.6. Source-specific OA/OC and verification

Statistics Norway gathers activity data on oil and gas activities from the Norwegian Petroleum Directorate (NPD). This data is reported monthly by the field operators to NPD. The activity data are quality controlled by comparing them with the figures reported in the field operator's annual report to the Norwegian Pollution Control Authority and NPD. The emissions calculated by Statistics Norway for 1990-2002 are compared with the emission data that the field operators report to the Norwegian Pollution Control Authority and NPD. From 2003, Statistics Norway estimate emission based on activity data that the field operators monthly report to NPD, and reported emission factors. When discrepancies are found between the two sets of data these are investigated and corrections are made if appropriate. If errors are found, the Norwegian Pollution Control Authority contacts the plant to discuss the reported data and changes are made if necessary.

The reported emissions from the gas terminals are compared with previous years' emissions.

Statistics Norway collects the activity data used for venting and flaring in the calculation from the NPD. The figures are quality controlled by comparing them with the figures reported in the field operators annual report to the Norwegian Pollution Control Authority and NPD and time series are checked.

The calculated emissions are compared with the emission data the field operators have reported to the Norwegian Pollution Control Authority and NPD, before 2003. From 2003 reported emissions is checked by the Norwegian Pollution Control Authority and Statistics Norway. Statistics Norway calculates emissions from reported emission factors and activity data collected monthly by the office of statistics in NPD. When discrepancies are found between the two sets of data this is investigated and corrections are made if appropriate. If errors are found the Norwegian Pollution Control Authority contacts the plant to discuss the reported data and changes are made if necessary.

Statistics Norway and the Norwegian Pollution Control Authority perform internal checks of the reported data for venting from the field operators. Some errors in the time-series are usually found and the field operators are contacted and changes are made. The same procedure is followed to check the amount of gas reported as flared. The quality of the activity data is considered to be high, due to the fact that there is a tax on gas flared offshore. NPD has a thorough control of the amount of gas reported as flared.

# 3.3.5. CO<sub>2</sub> capture and storage at the oil and gas production field Sleipner West

IPCC 1B2c NFR-Last update: 22.09.08

#### 3.3.5.1. Description

The natural gas in the Sleipner Vest offshore gas-condensate field contains about 9 per cent  $CO_2$ . The  $CO_2$  content has to be reduced to about 3 per cent before transported to the consumers onshore. The  $CO_2$  to be removed amounts about 1 million tonnes per year.

When this North Sea field was planned around 1990 the considerations were influenced by the discussions about strategies to reduce greenhouse gas emissions and a possible national tax on CO<sub>2</sub>-emissons (introduced in 1991 and extended in 1996). It was therefore decided that the removed  $CO_2$  should be injected for permanent storage into a geological reservoir. The selection of an appropriate reservoir is essential for the success of geological storage of  $CO_2$ . In their search for a suitable reservoir the companies were looking for a saline aquifer with reasonable high porosity and a capture rock above to prevent leakage. Furthermore the  $CO_2$  should be stored under high pressure - preferably more than 800 meters below the surface. Under these conditions CO<sub>2</sub> is buoyant and less likely to move upwards than  $CO_2$  in gaseous form. The chosen reservoir is the Utsira formation, which is a sandstone saline aguifer 800 - 1000 metres below sea level. The reservoir was characterised by reservoir information such as seismic surveys and information from core drillings. The field and the injection program have been in operation since 1996. Statoil monitors the injected  $CO_2$  with respect to leakages. Investigations carried out so far show that the injected CO<sub>2</sub> has been kept in place without leaking out. In case unexpected  $CO_2$  movements take place beyond the capture rock in the future it can be registered by the monitoring technics. Table 3.21 gives the amount of CO<sub>2</sub> injected in the Utsira formation since the project started in 1996.

When the injection has to stop for maintenance etc. the  $CO_2$  is vented to the atmosphere. The amount vented to the atmosphere is included in the greenhouse

gas inventory reported under 1B2c - see section 3.3.4. The emission figures are given in table 3.22.

#### 3.3.5.2. Method

The reported data covers emissions to the atmosphere e.g. when the injection system is out of operation. These emissions are measured by continuous metering of the gas stream by VCONE-meter. The reported amounts of  $CO_2$  which are injected in the Utsira formation are based on continuous metering of the gas stream by orifice meter.

The Sleipner  $CO_2$ -injection project is considered as the first industrial-scale, environmentally driven  $CO_2$ -injection project in the world. In order to document what happens with the  $CO_2$  a European research project initially called SACS ("The saline aquifer carbon dioxide storage project") was organized around it. The SACS project ended in 2002 and was succeeded by the ongoing the EU-cofunded  $CO_2$ STORE. The projects have run parallel to the development of Sleipner Vest and have special focus on monitoring and simulation. Research institutes and energy companies from several countries participate in the projects. The core of the projects has been to arrive at a reasoned view of whether carbon dioxide remains in the Utsira sand and whether developments in this formation can be monitored. The spread of carbon dioxide through the aquifer is recorded by seismic surveys. Base line 3D seismic data were acquired in 1994, prior to injection, and the first repeat survey was acquired in 1999, when some 2.28 mill tonnes of  $CO_2$  had been injected into the reservoir. This was followed by seismic surveys in 1999, 2001, 2002, 2004 and 2006.

The stored  $\mathrm{CO}_2$  has been monitored using time lapse seismic to confirm its behaviour and evaluate

- whether any of it has leaked into the overburden seal, the ocean or the atmosphere, or
- whether any of it has migrated towards the Sleipner installations, potentially leading to corrosion problems for well casing.

The results show that neither of these eventualities has occurred. So far there are no signs of  $CO_2$  above the top of the Utsira Formation.

Results from the projects are given in several reports and articles such as: "Final Tecnical Report of the SACS2 project – EU project NNE-1999-00521, issued 30.07. 2002", "Recent time-lapse seismic data show no indication of leakage at the Sleipner CO<sub>2</sub>-injection site" published at 7th Greenhouse Gas Control Technologies Conference (GHGT7), Vancouver 2004 and "4D seismic imaging of an injected CO<sub>2</sub> plume at the Sleipner field, central North Sea" (under publishing in the Geological Society of London Memoir). The project has confirmed that sound waves reflect differently from carbon dioxide and salt water. Comparing seismic data collected before and after injection started has allowed researchers to show how CO<sub>2</sub> deep inside the Utsira formation migrates. It is held under the layer of shale cap rock, 80 metres thick, which covers the whole formation. This extends for several hundred kilometres in length and about 150 kilometres in width.

The time-lapse seismic data clearly image the  $CO_2$  within the reservoir, both as high amplitude reflections and as a pronounced velocity pushdown. The data also resolve a vertical  $CO_2$  chimney, which is regarded the primary feeder of  $CO_2$  in the upper part of the bubble. There are no seismic indications of faults within the upper part of the reservoir, and no indications of leakage into the capture rock.

The time-lapse seismic images clearly show the development of the  $CO_2$  plume, and also have been used to calculate the amount of  $CO_2$  in the reservoir. The volume calculated from the observed reflectivity and velocity pushdown is consistent with the injected volume.

#### 3.3.5.3. Uncertainties

The reported data covers emissions to the atmosphere e.g. when the injection system is out of operation. The accuracy in these measurements made by VCONE-meter is  $^+$ /- 5 per cent. The orifice meter used to meter the amount of CO<sub>2</sub> injected in the Utsira formation have  $^+$ /- 3 per cent accuracy. So far there have not been detected any leakage from the storage. We expect to have more information from the SACS/CO2STORE-projects and the monitoring program as the Sleipner project develops – see QA/QC below.

#### 3.3.5.4. Source specific QA/QC

The results are promising and so far the injected gas remains in place. In Norway storage projects like Sleipner have to apply for a permit after the Pollution control Act. The storage of  $CO_2$  is included in the emission licence for the Sleipner Vest field. According to the license Statoil is obliged to monitor the  $CO_2$ -storage. Furthermore Statoil reports the amount of  $CO_2$  emitted and the amount injected every year to the Norwegian Pollution Control Authority. The monitoring gives a system for QA. So far the monitoring is included in the SACS/CO2STORE projects and when these projects are finalized a decision will be taken about a further monitoring program for the Sleipner injection project. The injected  $CO_2$  is so far proven to be removed from the atmosphere and hence it is not reported as in the emission inventory. When the injection have to stop for maintenance etc. Statoil have to pay a  $CO_2$ -tax for the emissions. These emissions are reported to the Norwegian Petroleum Directorate. In this national emission inventory these fugitive emissions are reported under 1B2c

 Table 3.21.
 CO<sub>2</sub> from the Sleipner field injected in the Utsira-formation, 1000 tonnes

|                           | 1996       | 1997      | 1998      | 1999  | 2000 | 2001  | 2002 | 2003 | 2004 | 2005 | 2006 |
|---------------------------|------------|-----------|-----------|-------|------|-------|------|------|------|------|------|
| CO <sub>2</sub> (ktonnes) | 70         | 665       | 842       | 971   | 933  | 1 009 | 955  | 914  | 750  | 858  | 820  |
| Source: The Norwe         | gian Pollu | ition Con | rol Autho | rity. |      |       |      |      |      |      |      |

## Table 3.22. Emissions of CO<sub>2</sub> from the Sleipner CO<sub>2</sub>-injection plant due to inaccessibility of the injection facilities, tonnes

|                          | 1996       | 1997       | 1998      | 1999   | 2000  | 2001  | 2002  | 2003   | 2004   | 2005  | 2006  |
|--------------------------|------------|------------|-----------|--------|-------|-------|-------|--------|--------|-------|-------|
| CO <sub>2</sub> (tonnes) | 81 000     | 29 000     | 4 195     | 9 105  | 8 318 | 3 050 | 7 567 | 23 910 | 21 377 | 6 191 | 2 471 |
| Source: The Nor          | wegian Pol | lution Cor | trol Auth | ority. |       |       |       |        |        |       |       |

## 4. Industrial processes

IPCC 2 NFR 2

### 4.1. Overview

This chapter provides descriptions of the methodologies employed to calculate emissions of greenhouse gases and long-range transboundary air pollutions from industrial processes. Only non-combustion emissions are included in this chapter. Emissions from fuel combustion in the manufacturing industry are reported in Chapter 3 Energy. Emission figures are either reported by plants to the Norwegian Pollution Control Authority or calculated based on emission factors and activity data by Statistics Norway. The emission factors are collected from different sources, while the activity data used in calculations carried out by Statistics Norway mainly is from official statistics collected by Statistics Norway.

A specific QA/QC has been carried out for the industrial processes sector in 2006. The QA/QC covered the greenhouse gas emissions from the largest industrial plants to be included in the greenhouse gas inventory. The methodology for the performances of the QA/QC is presented in Appendix I.

### 4.2. Mineral products

IPCC 2A NFR 2A

Last update: 26.05.08

The sector category Mineral products in the Norwegian inventory include emissions from thirteen different products (see table 4.1). CO<sub>2</sub>, SO<sub>2</sub>, NH<sub>3</sub>, particles, heavy metals and dioxin are components that are emitted during the production of mineral products and included in the inventory. Table 4.1 shows the various components emitted from the different activities, and for which components the emission figures in the national inventory are based on figures reported by the plants (R) and for which the figures are estimated by Statistics Norway (E).

#### 4.2.1. Cement production

*IPCC 2A1 Key category for CO<sub>2</sub> NFR 2A1 Last update: 03.04.06* 

#### 4.2.1.1. Description

Two plants in Norway produce cement. Production of cement gives rise to both noncombustion and combustion emissions of  $CO_2$ . The emission from combustion is reported in Chapter 3 Energy. The non-combustion emissions originate from the raw material calcium carbonate (CaCO<sub>3</sub>). The resulting calcium oxide (CaO) is heated to form clinker and then crushed to form cement. The emission of  $CO_2$  from noncombustion is reported for The Norwegian Pollution Control Authority.

$$(4.1) CaCO_3 + heat \rightarrow CaO + CO_2$$

 $SO_2$  from cement production is emitted from sulphur in the fuel (reported under Energy) and in the raw materials and especially pyrite in limestone. Only the  $SO_2$ from the raw materials should be counted as non-combustion emissions. Particles as well as heavy metals are emitted during the production process. More than 90 per cent of the emission of mercury is due to mercury in the limestone while the emissions of Pb, Cd, Cu, Cr and As originate both from process and combustion of fuel. Emissions of dioxin are due to the thermal process in the clinker production.

| Table 4.1. Willeral products. Components entitled and included in the Norwegian inventory | Table 4.1. | Mineral products. Components emitted and included in the Norwegian i | inventory <sup>1</sup> |
|-------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|------------------------|
|-------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|------------------------|

| • •                                               |                 |                 | •               | •         |              |        |
|---------------------------------------------------|-----------------|-----------------|-----------------|-----------|--------------|--------|
| Mineral products                                  | CO <sub>2</sub> | SO <sub>2</sub> | NH <sub>3</sub> | Particles | Heavy metals | Dioxin |
| Cement production                                 | R               | R               | NA              | R         | R            | R      |
| Lime production                                   | R               | NA              | NA              | R         | R            | NA     |
| Limestone and dolomite use                        | R               | NA              | NA              | NA        | NA           | NA     |
| Concrete pumice stone                             | NA              | R               | NA              | R         | NA           | NA     |
| Rock wool production                              | NA              | R               | R               | R         | R            | NA     |
| Glass and glass fibre                             | NA              | NA              | R               | R         | R            | NA     |
| Ore mines                                         | NA              | R               | NA              | R         | NA           | R      |
| Mining and extraction of stones and minerals      | NA              | NA              | NA              | R         | NA           | NA     |
| Production of mineral white                       | NA              | NA              | NA              | R         | R            | NA     |
| Construction /repairing of vessels - Sandblasting | NA              | NA              | NA              | R         | NA           | NA     |
| Sandpit and rock-chrushing plants                 | NA              | NA              | NA              | E         | NA           | NA     |
| Construction and building                         | NA              | NA              | NA              | E         | NA           | NA     |
| Leather preparing                                 | NA              | NA              | R               | NA        | NA           | NA     |

<sup>1</sup> R means that emission figures in the national emission inventory are based on figures reported by the plants. E means that the figures are estimated by Statistics Norway (Activity data \* emission factor). NA = Not Applicable.

#### 4.2.1.2. Method

 $CO_2$ 

Emission figures are reported by the two producers to the Norwegian Pollution Control Authority (SFT). Figures are reported for all years since 1990. Emissions are estimated by the plants by multiplying the annually clinker production, included the Cement Kiln Dust (CKD), at the plant with plant specific emission factors (SINTEF 1998a). This is regarded as a Tier 2 method.

#### $SO_2$

The plants annually report emissions of  $SO_2$  to the Norwegian Pollution Control Authority. Figures are based on measurements at the plants.

#### **Particles**

Emissions have been reported to the Norwegian Pollution Control Authority since 1991 for one plant and since 1992 for the other. It is believed that the reported figures also include emissions from combustion. Therefore emissions from combustion of coal, coke and waste oil used in cement production are not calculated, to avoid double counting. The plants have installed particle filter.

Particle size distribution for emitted particles from cement production is found in TNO (2002). In the Norwegian emission inventory  $PM_{10}$  is assumed to be 85 per cent of TSP and  $PM_{2.5}$  is 30 per cent of TSP.

#### Heavy metals and POPs

Emission figures for heavy metals are reported to the Norwegian Pollution Control Authority. It is believed that these figures also include emissions from combustion. Therefore emissions from combustion of coal, coke and waste oil used in cement production are not calculated, to avoid double counting.

Dioxin figures are reported to the Norwegian Pollution Control Authority. It is also here assumed that the reported figures include emissions from fuel combustion, therefore emissions from combustion are not calculated.

#### 4.2.1.3. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

Reported emission figures for particles have varied a great deal as a result of changes the plants have undergone to reduce emissions. There are also uncertain measurements due to the variation from one year to another.

Regarding the heavy metals, it has varied when the two plants started reporting the various components, and therefore estimations have been necessary for the years when reporting have been insufficient. The reported figures also vary from a year

to another due to process technical conditions, variations in the metal content in the limestone used and uncertain measurements.

#### 4.2.1.4. Completeness

Major missing emission components are not likely.

# 4.2.1.5. Source specific QA/QC

Statistics Norway occasionally calculate alternative emission figures for  $CO_2$  and compare with the emission figures reported by the plants to the Norwegian Pollution Control Authority to check if they are reasonable. The calculations are based on the clinker production (reported annually from the plants to the Statistic Norway). The emission factors used are recommended by SINTEF (1998a) and based on the actual composition of the raw materials used. These emission factors are calculated particularly for the two Norwegian factories and are 0.520 and 0.541 tonne  $CO_2$  per tonne clinker respectively. The IPCC default emission factor is 0.5071 tonne  $CO_2$ /tonne clinker.

The calculated emission figures agree quite well with emissions figures reported by the plants.

The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

## 4.2.2. Lime production

*IPCC 2A2 NFR 2A2 Last update: 26.05.08* 

## 4.2.2.1. Description

Two plants that produce lime in Norway reports  $CO_2$  emissions from process to SFT. From one plant  $CO_2$  and particles are emitted from the production process of lime. The other plant has reported emissions of  $CO_2$ .

## 4.2.2.2. Method

 $CO_2$ 

One plant calculates the emissions of  $CO_2$  based on actual production volumes of lime and plant specific emission factors for  $CO_2$  from limestone and dolomite respectively. The emissions are reported to the Norwegian Pollution Control Authority. The other plant has reported emissions of  $CO_2$  for 1990 and 1998-2001. Emissions from 2001-2004 have been estimated by the Norwegian Pollution Control Authority based on activity data and plant specific emission factors. Emissions for the years 1991-1997 are interpolated by the Norwegian Pollution Control Authority.

#### Particles

Emission figures for particles have been reported to the Norwegian Pollution Control Authority since 1990. Emission figures from 1990 to 1995 are based on calculations using emission factors and production volume. Since 1996, the figures are a result of measurements at the plant. The plant has installed particle filter.

In the inventory, a particle size distribution suggested by TNO (2002) is used.  $PM_{10}$  is 0.4\*TSP while  $PM_{2.5}$  is 0.08\*TSP.

#### 4.2.2.3. Uncertainties

Uncertainty estimate for the emission of  $CO_2$  is given in Appendix D.

The particle distribution used is not specified for the plants, and the particles emitted might therefore have another distribution than the one suggested from TNO (2002).

#### 4.2.2.4. Completeness

Major missing emission components are not likely.

#### 4.2.2.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

## 4.2.3. Limestone and Dolomite Use

*IPCC 2A3 NFR 2A3 Last update: 07.04.06* 

#### 4.2.3.1. Description

One plant in Norway neutralizes sulphuric acid waste with limestone and fly ash. During the neutralization prosess  $CO_2$  is produced. The use of fly ash decreases the  $CO_2$  emissions compared with when limestone is used.

# 4.2.3.2. Method

The plant reports emission figures for  $CO_2$  to the Norwegian Pollution Control Authority.

#### 4.2.3.3. Emission factors

An emission factor of 0.45 tonnes  $CO_2$  per tonne sulphuric acid is used by the plant, calculated from the reaction equation.

#### 4.2.3.4. Uncertainties

Uncertainty estimates are given in Appendix D.

#### 4.2.3.5. Completeness

Major missing emission components are not likely.

#### 4.2.3.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

## 4.2.4. Concrete pumice stone

*IPCC 2A7 NFR 2A7iii Last update: 28.02.07* 

#### 4.2.4.1. Description

Three factories produced concrete pumice stone until 2004 when one of them was closed down. Two of them report emissions of  $SO_2$  and particles (one of these was closed down in 2004) while the third one only reports emissions of particle to the Norwegian Pollution Control Authority. Non-combustion emissions of  $SO_2$  originate from the clay used in the production process.

#### 4.2.4.2. Method

 $SO_2$ 

Emission figures for  $SO_2$  are reported to the Norwegian Pollution Control Authority, based on measurements at the two manufacturing plants in Norway. The plants have installed flue gas desulphurisation equipment.

#### Particles

Two of the plants have reported emission of particles to the Norwegian Pollution Control Authority since 1990, while a third one only has reported since 2000. It is assumed that the reported figures include both process- and combustion emissions, so emission calculations from fuel combustion are not done for these two plants. The plants have installed particle filters.

No information concerning particle size is found in national or international literature, but the Norwegian Pollution Control Authority assumes that most of the particles emitted from these plants are smaller than  $PM_{10}$ . Statistics Norway has decided to use the same particle size distribution for production of cement as given in TNO (2002).  $PM_{10}$  is therefore assumed to be 0.85\*TSP and  $PM_{2.5}$  is 0.3\*TSP.

## 4.2.4.3. Uncertainties

The particle size distribution used is not specific for production of concrete pumice stone, but used due to lack of specific size distribution data for this source. The particle size distribution can therefore only be seen as an estimate.

#### 4.2.4.4. Completeness

Particles often contain heavy metals, but type of metals and volumes will depend on the origin of the particles. Metals might therefore be emitted during production of concrete pumice stone. Statistics Norway/ Norwegian Pollution Control Authority have however no data available for calculating emission of heavy metals from this source.

# 4.2.4.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 4.2.5. Rock wool production

IPCC -NFR 2A7iii Last update: 01.09.05

#### 4.2.5.1. Description

Three plants in Norway produced rock wool until 2003 when one of them was closed down. In the inventory, emission figures for  $NH_3$ , particles and heavy metals are included. For earlier years also some non-combustion emissions of  $SO_2$  are included. Particles originate from the cutting of the mineral wool and from fuel used in the production. The emission of heavy metals is partly due to use of coal/coke, but mainly due to the stone used in the production. Emissions of dioxin and PAHs are not reported nor calculated since emissions of these components are minor or not occurring.

# 4.2.5.2. Method

# $SO_2$

Until 1991, all the three plants reported to the Norwegian Pollution Control Authority some non-combustion emissions of SO<sub>2</sub> that are included in the inventory for those years.

#### $NH_3$

Emission figures are reported to the Norwegian Pollution Control Authority. Figures exist from 1992. It is assumed in the inventory that emission figures for 1990 and 1991 are the same as the reported figure in 1992.

#### Particles

Emission figures are reported to the Norwegian Pollution Control Authority. Most of the emissions come from the spin chamber, and the particle size is assumed to be less than 1  $\mu$ m. Particles emitted from the fabric filter are also assumed to be smaller than 1  $\mu$ m. All emissions are therefore set to be smaller than PM<sub>2.5</sub>. All assumptions are made by the Norwegian Pollution Control Authority in accordance with the industry.

It is assumed that the reported figures include both non-combustion and combustion emissions. Combustion emissions of particles are therefore not calculated.

#### Heavy metals and POPs

Emission figures for Pb, Cd, As and Cr have been reported annually from one of the plants to the Norwegian Pollution Control Authority since 1999. The figures are based on measurements. It is assumed that the reported figures include combustion emissions, and emission calculations from fuel combustion are not done for these heavy metals. Statistics Norway has calculated the emission figures for missing years (1990-1998) based on reported figures in 1999 and production rate for previous years. For the two plants not reporting, Statistics Norway calculates emissions based on derived emission factors from the one plant that reports and production volumes at each plant.

## 4.2.5.3. Activity data

Production volumes of rock wool are annually reported from the plants to the Norwegian Pollution Control Authority.

## 4.2.5.4. Emission factors

Heavy metals

A default emission factor is derived for each component (Pb, Cd, As and Cr) based on the annually reported emission figures and production rates from the one plant reporting. The derived emission factors are used to calculate emissions from the two other plants (one of these were closed down in 2003) (table 4.2).

| Table 4.2. | Emission factors for Pb, Cd, As and Cr from production of rock wool. g/tonne |
|------------|------------------------------------------------------------------------------|
|            | produced rock wool                                                           |

| Component     | Emission factors (g/tonne produced rock wool) |  |
|---------------|-----------------------------------------------|--|
| Lead (Pb)     | 0.164                                         |  |
| Cadmium (Cd)  | 0.001                                         |  |
| Arsenic (As)  | 0.031                                         |  |
| Chromium (Cr) | 0.703                                         |  |

Source: The Norwegian Pollution Control Authority and calculations at Statistics Norway.

# 4.2.5.5. Uncertainties

Activity data

The activity data is assumed to be of good quality since this is production rates reported from each plant to the Norwegian Pollution Control Authority.

#### Emission factors

Several conditions influence the emission of heavy metals as production rates and raw materials, and these factors can vary from one plant to another. To derive an emission factor based on one plant's reported emission figures and production volume and use these factors to estimate emissions at other plants are therefore quite uncertain.

#### 4.2.5.6. Completeness

Major missing emission components are not likely.

#### 4.2.5.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.2.6. Glass and glass fibre production

IPCC -NFR 2A7iii Last update: 28.02.07

# 4.2.6.1. Description

Four plants producing glass or glass fibre are included in the emission inventory, based on emission reports to the Norwegian Pollution Control Authority. A fifth plant also reports emissions of particles to the Norwegian Pollution Control Authority but these emissions are very small and are therefore not included in the inventory. PAH and dioxin emissions are neither calculated nor measured, however, glass production might be a dioxin source (see completeness section 4.2.6.4).

# 4.2.6.2. Method

#### $NH_3$

The two glass fibre producing plants annually report emission figures for  $NH_3$  to the Norwegian Pollution Control Authority (SFT). The emission figures are based on measurements.

# Particles

The two plants producing glass fibre have reported emission figures since 1990 to the Norwegian Pollution Control Authority. The one glass-producer with particle emissions has reported since 1995. Emission figures from 1990 to 1994 were therefore assumed to be the same as reported figures in 1995. This plant was however closed down in 1999.

TNO (2002) suggests using a particle size distribution of the emissions where  $PM_{2.5}$  is 80 per cent of TSP and  $PM_{10}$  is 90 per cent of TSP and this size distribution is used in the Norwegian inventory.

## Heavy metals and POPs

Emission of lead has been reported from two glass-producers to the Norwegian Pollution Control Authority. One of them was closed down in 1999. The emission of lead is due to the lead content in the raw material used. Emission of arsenic was reported only in the early nineties when one of the plants used raw material containing arsenic. Arsenic emissions is reported for 2005. Emissions of other heavy metals are not reported, so we assume there are not significant emissions.

# 4.2.6.3. Uncertainties

For the years where reported emission figures for particles do not exist, Statistics Norway has assumed that emissions are in the same order as the first year of reporting. This is uncertain and only an estimate, since it does not consider annual changes in raw materials, production rates, nor possible cleaning devices.

# 4.2.6.4. Completeness

Production of glass can be a source for dioxin emissions, but no reported figures are available. Emission factors are found in literature, but since activity data (production rate) is not available and it is assumed that the emission factor is dependent on type of glass produced, emissions are not calculated.

Emissions of particles are also reported from three other glass-producers in Norway, but annual emissions are so low (less than 1 tonne) so they are not included in the inventory.

# 4.2.6.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.2.7. Ore mines

*IPCC -NFR 2A7i Last update: 01.09.05* 

## 4.2.7.1. Description

Three ore mines are included in the Norwegian Inventory but one of the mines was closed down in 1996. Emission figures of  $SO_2$ , particles and dioxin are included. The treatment of ore generates emissions of  $SO_2$ , and particles are also emitted. Dioxin emissions are due to the thermal process during the pellet production. The ore mine, closed down in 1996, had large dioxin emissions due to the thermal process during the pellet production.

# 4.2.7.2. Method

## $SO_2$

The ore mine, which was closed down in 1996, reported emission figures for  $SO_2$  to the Norwegian Pollution Control Authority. None of the two other ore mines report any non-combustion  $SO_2$  emissions.

## Particles

All the three ore mines report emission figures for particles to the Norwegian Pollution Control Authority. Emissions for the two existing ore mines are reported from respectively 1994 and 1996 and it is assumed by Statistics Norway, in accordance with the Norwegian Pollution Control Authority, that emissions for previous years have been in the same order of size.

The Norwegian Pollution Control Authority assumes that the particles emitted from ore mining are larger than  $PM_{10}$ . The size distribution used in the Norwegian inventory is according to TNO (2002) (table 4.3).

| Table 4.3. | Particle size distribution for particles emitted from ore mining. Ratio X <sup>1</sup> /TSP |
|------------|---------------------------------------------------------------------------------------------|
|------------|---------------------------------------------------------------------------------------------|

| Component                                                             | Particle size distribution (ratio) |
|-----------------------------------------------------------------------|------------------------------------|
| TSP                                                                   | 1                                  |
| PM <sub>10</sub>                                                      | 0.49                               |
| PM <sub>2.5</sub>                                                     | 0.07                               |
| <sup>1</sup> X is either PM <sub>2.5</sub> , PM <sub>10</sub> or TSP. |                                    |
|                                                                       |                                    |

Source: TNO (2002).

#### Dioxin

Emission figures were first reported to the Norwegian Pollution Control Authority in 1994 and emissions for previous year have been assumed by Statistics Norway, in accordance with the Norwegian Pollution Control Authority, to be in the same order as reported figure in 1994.

#### 4.2.7.3. Uncertainties

For years where reported emission figures do not exist for particles and dioxins, Statistics Norway has assumed, in accordance with the Norwegian Pollution Control Authority, that the emissions are in the same order as the first year of reporting. This is uncertain and a result of lack of better data. The size of the particles emitted from ore mining will also depend on the type of ore and production process. The particle size distribution used in the inventory does not consider these differences.

# 4.2.7.4. Completeness

 $SO_2$  emissions are only included in the inventory for the ore mine that was closed down in 1996. The  $SO_2$  emissions from the two other ore mines are not included in the inventory.

# 4.2.7.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.2.8. Mining and extraction of stones and minerals

IPCC -NFR 2A7i Last update: 01.09.05

#### 4.2.8.1. Description

Mining and extraction of stones and minerals are done by several plants. Particles are emitted during these processes.

## 4.2.8.2. Method

#### Particles

Emission figures are reported to the Norwegian Pollution Control Authority (SFT). Reported figures exist from 1992. Emission figures for 1990 and 1991 are assumed by Statistics Norway, in accordance with the Norwegian Pollution Control Authority, to be the same as reported figures in 1992. An exception is one plant, which only reported emissions for 1992. For this plant, Statistics Norway has calculated emissions based on production rates for previous and later years.

It is given for most plants that they use fabric filter or textile fibre to clean their particle emissions. It is assumed by the Norwegian Pollution Control Authority that the particles emitted are larger than  $PM_{10}$ . The Norwegian inventory uses the size distribution recommended by TNO (2002) (table 4.4).

#### 4.2.8.3. Uncertainties

For years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as the first year of reporting. This is uncertain and a result of lack of better data. The size of the particles emitted from mining and extraction will also depend on the type of stone/mineral and production process. The particle size distribution used in the inventory does not consider these differences.

#### 4.2.8.4. Completeness

Emission of particles is often a source of heavy metal emissions since particles often contain heavy metals. Type of metals will however depend on the origin of the particles. Metals might therefore be emitted during mining and extraction of stones and minerals. There are however no data available for calculating emissions of heavy metals.

#### 4.2.8.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.2.9. Production of mineral white (plaster)

IPCC -NFR 2A7iii Last update: 01.09.05

# 4.2.9.1. Description

Two plants producing mineral white in Norway are included in the inventory with their emissions of mercury and particles. The mercury content in the raw materials leads to emission of mercury, and during the production process, particles are emitted.

#### 4.2.9.2. Method

#### Particles

Emission figures are reported to the Norwegian Pollution Control Authority. Reported emission figures exist since 1992 and figures for 1990 and 1991 are assumed by Statistics Norway, in accordance with the Norwegian Pollution Control Authority, to be the same as the figures reported in 1992. The particles are purified through a fabric filter, and it is assumed by the Norwegian Pollution Control Authority that the size of the particles emitted after the filter are smaller than PM<sub>10</sub>.

According to TNO (2002),  $PM_{2.5}$  is 30 per cent of TSP, while  $PM_{10}$  is assumed to be the same as TSP. The Norwegian inventory uses this distribution.

#### Heavy metals

The plants have reported emission figures to the Norwegian Pollution Control Authority since 2000. For one of the plants, historical emissions are based on reported figure in 2000 and production volumes. For the other plant, emission figures for 1990-1999 are assumed to be the same as reported figure in 2000, due to lack of production data for previous years. Annual emission is assumed to be low.

#### 4.2.9.3. Activity data

Production volumes for calculation of historical emissions of mercury for one of the plants are reported to the Norwegian Pollution Control Authority.

#### 4.2.9.4. Emission factors

Emission factors for mercury are derived for historical calculations for one plant based on reported figure first year of reporting and production volumes.

#### 4.2.9.5. Uncertainties

Historical emissions of mercury for both plants are uncertain. For one plant, the emission figures are based on a derived emission factor and production volumes and do not take into account changes in raw materials and possible cleaning devices. For the other plant, it is assumed, due to lack of historical production data, that the historical emissions are the same as reported figure in 2000. This is just an estimate and does not consider annual changes in raw materials, production rates, nor possible cleaning devices.

The particle size distribution used in the inventory is not specific for the plants. The particles emitted might therefore have another distribution than the one suggested by TNO and used in the inventory.

#### 4.2.9.6. Completeness

Major missing emission components are not likely.

#### 4.2.9.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.2.10. Construction and repairing of vessels - Sandblasting

IPCC -NFR 2A7iii Last update: 01.09.05

#### 4.2.10.1. Description

Five plants constructing and repairing vessels are included in the inventory with their particle emissions. One of the plants was closed down in 2000. Emission of particles is due to the different processes during construction and repairing of vessels, but most of the particles are emitted from sandblasting.

# 4.2.10.2. Method

#### Particles

Emission figures are reported to the Norwegian Pollution Control Authority.

For four of the five plants, there are no information regarding cleaning device, but it is assumed by the Norwegian Pollution Control Authority that they have fabric filter and/or wet washer. For the last one, particle emissions are purified in cyclones, and the size of the particles emitted is larger than  $PM_{10}$ .

It is difficult to decide particle size of the particles emitted based on the above information. It is however assumed by the Norwegian Pollution Control Authority that most of the particles are larger than  $PM_{10}$  and therefore all particles are assumed to be TSP.

# 4.2.10.3. Uncertainties

The size of the particles emitted is uncertain and will depend on the cleaning device used at each plant. The different activities during construction and repairing can also result in emission of particles of different sizes.

## 4.2.10.4. Completeness

Emission of particles is often a source of heavy metal emissions since particles often contain heavy metals. Type of metals will however depend on the origin of the particles. Metals might therefore be emitted during sandblasting and repairing/construction of vessels. There are however no data available for calculating emissions of heavy metals.

# 4.2.10.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 4.2.11. Sandpit and rock-crushing plant

*IPCC -NFR 2A7iii Last update: 01.09.05* 

## 4.2.11.1. Method

Particles will be emitted during crushing of rocks and at sandpits. In the inventory, emissions are estimated based on the production of sand- and crushed stone from the production statistics at Statistics Norway, and emissions factors recommended by Fontelle (2002).

# 4.2.11.2. Activity data

The production of sand and crushed stone is annually given by the production statistics (PRODCOM) at Statistics Norway and includes PRODCOM code 14.21.11 and 14.21.12.

# 4.2.11.3. Emission factors

The emission factors used are based on Fontelle (2002) (table 4.4).

#### Table 4.4. Particle emission factors for sandpits and rock-crushing plants. Ratio X<sup>1</sup>/TSP

| Component         | g/tonne produced |  |
|-------------------|------------------|--|
| TSP               | 160              |  |
| PM <sub>10</sub>  | 60               |  |
| PM <sub>2.5</sub> | 0                |  |

<sup>'</sup> X is either PM<sub>2.5</sub>, PM<sub>10</sub> or TSP. Source: Fontelle (2002).

# 4.2.11.4. Uncertainties

This emission source is highly uncertain since the emissions will vary from one place to another depending on the different processes in use, type of raw materials and of course the activity level. Little information is available in the literature. The emission factors used are only based on one source and are uncertain. In addition, there is uncertainty regarding the activity data. The PRODCOM codes used include total production of sand and crushed stone in Norway, but some of it might not be relevant for these calculations.

# 4.2.11.5. Completeness

Emission of particles is often a source of heavy metal emissions since particles often contain heavy metals. Type of metals will however depend on the origin of the particles. Metals might therefore be emitted during crushing at sandpits and rock-crushing plants. There are however no data available for calculating emission of heavy metals.

#### 4.2.11.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.2.12. Construction and building

IPCC -NFR 2A7ii Last update: 01.09.05

#### 4.2.12.1. Description

Construction and building includes a lot of different activities that will generate particle emissions.

#### 4.2.12.2. Method

**Particles** 

Emission factors and activity data are used to estimate the Norwegian emissions.

## 4.2.12.3. Emission factors

The emission factors used are based on an evaluation the French institute CITEPA made of different emission factors from this source and their calculation of average emission factors for TSP, PM<sub>10</sub> and PM<sub>2.5</sub> (table 4.5).

| Table 4.5. | Particle emission factors for building and construction. Tonnel | /hectare/vear |
|------------|-----------------------------------------------------------------|---------------|
| 10010 4.0. | i alticle chilosion lactors for banang and construction. Former | neotare, your |

| Tonne/hectare/year |              |
|--------------------|--------------|
| 9.79               |              |
| 1.52               |              |
| 0.52               |              |
|                    | 9.79<br>1.52 |

Source: Fontelle (2002).

#### 4.2.12.4. Activity data

The activity data used is the annual area of completed buildings from the building statistics at Statistics Norway.

#### 4.2.12.5. Uncertainties

The particle emissions depend on climate conditions as well as building traditions and building materials. Since the emission factors used are based on surveys in other countries than Norway, these factors might not be ideal for Norwegian conditions.

#### 4.2.12.6. Completeness

Building of roads, railways, tunnels and demolition of buildings is also a source of particle emissions, but no emission factors are found in the literature, and therefore not included in the inventory.

Table 4.6. Chemical industry. Components emitted and included in the Norwegian inventory

|                      | CO <sub>2</sub>                            | CO | $N_2O$ | NO <sub>X</sub> | $CH_4$ | NMVOC | SO <sub>2</sub> | $NH_3$ | PM | HM | POP |
|----------------------|--------------------------------------------|----|--------|-----------------|--------|-------|-----------------|--------|----|----|-----|
| Production of:       |                                            |    |        |                 |        |       |                 |        |    |    |     |
| Ammonia              | R                                          | NA | NA     | $IE^1$          | NA     | NA    | NA              | NA     | NA | NA | NA  |
| Nitric acid          | NA                                         | NA | R      | R               | NA     | NA    | NA              | R      | R  | NA | NA  |
| Other fertilizers    | NA                                         | NA | NA     | R               | NA     | NA    | NA              | R      | NA | NA | NA  |
| Silicon carbide      | R+E                                        | Е  | NA     | NA              | R/E    | NA    | R               | NA     | R  | R  | R   |
| Calcium carbide      | R                                          | NA | NA     | R               | NA     | R     | NA              | NA     | R  | R  | NA  |
| Methanol             | Е                                          | NA | NA     | NA              | R      | R     | NA              | NA     | NA | NA | NA  |
| Titanium dioxide     | NA                                         | NA | NA     | NA              | NA     | NA    | R               | NA     | R  | R  | NA  |
| Sulphuric acid       | NA                                         | NA | NA     | NA              | NA     | NA    | R               | NA     | NA | NA | NA  |
| Plastic              | R+E                                        | NA | NA     | NA              | R      | R     | NA              | R      | R  | NA | R   |
| Explosives           | NA                                         | NA | NA     | R               | NA     | NA    | NA              | NA     | NA | NA | NA  |
| Chloralkali          | NA                                         | NA | NA     | NA              | NA     | NA    | NA              | NA     | NA | R  | NA  |
| Pigments             | NA                                         | NA | NA     | NA              | NA     | NA    | NA              | NA     | NA | R  | NA  |
| Soap                 | NA                                         | NA | NA     | NA              | NA     | NA    | NA              | NA     | R  | NA | NA  |
| Paint and varnish    | NA                                         | NA | NA     | NA              | NA     | NA    | NA              | NA     | R  | NA | NA  |
| E = Figures estimate | E = Figures estimated by Statistics Nonvay |    |        |                 |        |       |                 |        |    |    |     |

E = Figures estimated by Statistics Norway.

R = Figures reported by the plant to the Norwegian Pollution Control Authority.

NA = Not Applicable.

IE = Included Elsewhere.

<sup>1</sup> Included in reported figures for nitric acid and other fertilizers.

# 4.2.12.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.2.13. Leather preparing

IPCC -NFR 2A7iii Last update: 01.09.05

# 4.2.13.1. Method

 $NH_3$ 

NH<sub>3</sub> is used to adjust the pH level in the fattening and colouring process. This means that NH<sub>3</sub> is dissolved in an aqueous solution to feed fatty substances to leather. One plant reports emission figures for NH<sub>3</sub> to the Norwegian Pollution Control Authority. Emission figures are available from 1994. Emissions for the years 1990-1993 are assumed by Statistics Norway and the Norwegian Pollution Control Authority to be the same as reported figure in 1994. The emission of NH<sub>3</sub> reported by the plant is equal to the consumption of NH<sub>3</sub>. Uncertainties It is not clear if it is correct to assume that all NH<sub>3</sub> consumed is emitted to air. This assumption has to be revised.

## 4.2.13.2. Completeness

Major missing emission components are not likely.

## 4.2.13.3. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.3. Chemical Industry

IPCC 2B NFR 2B Last update: 26.05.08

In the Norwegian emission inventory, there are 14 different activities included under chemical industry. Nearly all emissions figures from this industry included in the inventory are reported from the plants to the Norwegian Pollution Control Authority. Production of carbides causes emission of many components, but most of the other activities within the sector chemical industry cause only emissions of one or two components (table 4.6).

# 4.3.1. Production of fertilizers

#### 4.3.1.1. Ammonia Production

*IPCC 2B1 NFR -Last update: 26.05.08* 

# 4.3.1.1.1. Description

In Norway, ammonia is produced by catalytic steam reforming of wet fuel gas (containing ethane, propane and some buthane). This is one of the steps during fertilizer production. Hydrogen is needed to produce ammonia, and wet fuel gas is the basis for the production of hydrogen. A substantial amount of  $CO_2$  is recovered from the production process.

# 4.3.1.1.2. Method

 $CO_2$ 

The  $CO_2$  emission figures in the Norwegian emission inventory model are based on annual reports from the plants. The plant calculates the emissions by multiplying the amount of each gas used with gas specific emission factor. The plant has

reported consistent figures back to 1990. A part of the  $CO_2$ , which is generated during the production process, is captured and sold to other objectives (soft drinks etc.), and therefore deducted from the emission figures for this source and reported in IPCC sector 2D2, as described in section 4.5.2.3. Some of the captured  $CO_2$  is exported to other countries, but is nevertheless included in the Norwegian emission inventory.

#### $NO_X$

During the production of ammonia there are some non-combustion emission of  $NO_X$ . These emission figures are included in the reported  $NO_X$  emission from nitric acid production and production of other fertilizers.

#### 4.3.1.1.3. Emission factor

 $CO_2$ 

The plant emission factors used in the calculations of emissions are based on carbon content in the gases consumed.

## 4.3.1.1.4. Uncertainties

The amount of gas is measured by using turbine meters and the meters are controlled by the Norwegian Metrology Service. The uncertainty in the measurement of propane and butanes is calculated to  $\pm 0.2$  and ethane  $\pm 0.13$  per cent. The mix of propane/butanes is as average 60 per cent propane and 60 per cent butanesThere are believed to be limited uncertainties in the figures reported by the plant. Uncertainty estimates are given in Appendix D.

## 4.3.1.1.5. Completeness

Major missing emission components are not likely.

## 4.3.1.1.6. Source specific QA/QC

The plants annually report the total amount of gas consumed to Statistics Norway. The emission figures reported from the plant are compared to calculations done by Statistics Norway based on total amount of gas consumed and an emission factor of 3 tonnes CO<sub>2</sub>/tonne LPG recommended by IPCC (1997b). The calculated emission figures agree quite well with emission figures reported by the plant. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

# **4.3.1.2.** *Production of nitric acid IPCC 2B2 NFR 2B2 Last update: 25.09.08*

#### 4.3.1.2.1. Description

There are two plants in Norway where nitric acid is produced. Nitric acid is used as a raw material in the manufacture of nitrogenous-based fertilizer. The production of nitric acid (HNO<sub>3</sub>) generates nitrous oxide (N<sub>2</sub>O) and NO<sub>x</sub> as by products of high temperature catalytic oxidation of ammonia (NH<sub>3</sub>). The production of nitrogenous-based fertilizer also leads to emissions of particles.

The two plants have together five production lines. One production line was rebuilt in 1991 and in 2006 two lines were equipped with technology to decompose  $N_2O$  by extension of the reactor chamber. Full effect of implementing the latter technology will be reached in 2007.

The  $N_2O$  emissions are based on continuous measurements at two of the production lines that represent about 60 per cent of the production. For two of other lines the emissions are based on monthly measurements, and on weekly measurements at the last production line. The fluctuation in IEFs is assumed to explain how the emissions are measured.

#### 4.3.1.2.2. Method

 $NO_2$  and  $NO_x$ 

The two plants report the emissions of  $N_2O$  and  $NO_X$  to the Norwegian Pollution Control Authority. The  $N_2O$  emissions have been continuously measured since 1991 at one production line, and from 2000 at another. The emissions at the three other production lines are based on monthly and weekly measurements.

#### $NH_3$

Emission figures for NH<sub>3</sub> are annually reported to the Norwegian Pollution Control Authority.

#### **Particles**

Both plants report emission figures to the Norwegian Pollution Control Authority and have done so since 1990 and 1992. One of the plants has also reported emissions from combustion, but since it is only 1 per cent of the non-combustion emissions, these figures are included together with the non-combustion emissions. For this plant, there is no information regarding cleaning devices and size of the particles emitted, but the Norwegian Pollution Control Authority assumes the particles are smaller than  $PM_{10}$ . For the other plant, a fabric filter was installed in the beginning of the 1990s.

In lack of plant specific information regarding particle size distribution of the emitted particles, Statistics Norway uses the distribution given by TNO (2002) for production of nitrogenous-based fertilizers where  $PM_{10}$  is 0.8\*TSP and  $PM_{2.5}$  is 0.6\*TSP.

#### 4.3.1.2.3. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D. The uncertainty in the measurements is estimated by the plant to  $\pm 7$  (Rypdal and Zhang 2000). However, in the 2006 report to SFT one plant reports that the uncertainty in measurements of N<sub>2</sub>O is calculated to  $\pm 1$ -3 per cent

There is uncertainty regarding the size of the particles emitted since there is no plant specific information available. The distribution recommended by TNO is used in lack of other data.

#### 4.3.1.2.4. Completeness

Major missing emission components are not likely.

#### 4.3.1.2.5. Source specific QA/QC

The plants report the production of  $HNO_3$  to the Norwegian Pollution Control Authority. They compare the trends in the production data with the trend in  $N_2O$  emission and use this as a quality check.

There is no other source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### **4.3.1.3.** Other fertilizers IPCC -NFR 2B2 Last update: 01.09.05

#### 4.3.1.3.1. Description

One plant produces calcium nitrate and fertilizers.

#### 4.3.1.3.2. Method

 $NO_X$  and  $NH_3$ 

Emission figures for  $NO_X$  and  $NH_3$  from the plant are reported to the Norwegian Pollution Control Authority.

## 4.3.1.3.3. Uncertainties

No source specific uncertainty is known.

#### 4.3.1.3.4. Completeness

Major missing emission components are not likely.

#### 4.3.1.3.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 4.3.2. Carbide production

*IPCC 2B4 NFR 2B4 Last update: 30.06.08* 

## 4.3.2.1. Description

Silicon carbide was produced at three plants until 2006 when one plant was closed down. Previously, calcium carbide was produced at one plant. This plant was closed down in 2003.

# 4.3.2.2. Silicon carbide

#### 4.3.2.2.1. Description

Silicon carbide (SiC) is produced by reduction of quartz (SiO<sub>2</sub>) with petrol coke as a reducing agent.

(4.2) 
$$SiO_2 + 3C \rightarrow SiC + 2CO$$
  
 $CO \xrightarrow{O_2} CO_2$ 

In the production of silicon carbide,  $CO_2$  and CO are released as by-products from the reaction between quartz and carbon.  $CH_4$  may be emitted from petrol coke during parts of the process, and sulphur originates from the petrol coke. Particles are also emitted during the production process as well as heavy metals and PAH.

#### 4.3.2.2.2. Method

In 2006, Norway changed the method for calculating  $CO_2$  emissions from silicon carbide production from the mass balance method described in the Revised 1996 IPCC Guidelines (using input of reducing agents) to an EF-based method (using crude silicon carbide production as activity data). Both methods are regarded as being Tier 2 methods in IPCC 2006. During the review of the initial report in 2007 the reviewer questioned the change of method, but concluded after consideration that the two methods provide very similar results, except for 1990, and that the use of the present method is justified.

# $CO_2$

Emission figures are reported by the three plants to the Norwegian Pollution Control Authority. All the three plants have estimated the  $CO_2$  emissions by multiplying the amount of crude silicon carbide produced with an emission factor. Indirect emissions of  $CO_2$  are calculated by Statistics Norway based on the emission of  $CH_4$ , see Chapter 1.9.

#### $CH_4$

Emission figures are reported annually by the three plants to the Norwegian Pollution Control Authority. Emissions are calculated by the plants using a country specific emission factor andamount of produced crude silicon carbide.

#### CO

The emissions of CO are calculated by Statistics Norway from the consumption of petrol coke and an emission factor in accordance with the IPCC Guidelines (IPCC 1997b).

#### $SO_2$

Emission figures are reported to the Norwegian Pollution Control Authority by the plants. The emissions are calculated from the consumption of petrol coke in dry weight and the sulphur content in the coke. It is assumed that 3 per cent of the sulphur is left in the product or as wastage.

#### Particles

Emission figures for particles are reported to the Norwegian Pollution Control Authority. Two of the plants have reported since 1990 while the third has reported since 1991. Emission figures for 1990 for this plant are assumed by Statistics Norway and the Norwegian Pollution Control Authority to be the same as reported figure for 1991. For one of the plants, reported figures have not been used in the inventory for 1990-1993, since the plant means these emission figures are not representative, but a result of different measurement- and calculation methods. For this plant, reported emission figures for 1994 have been used for 1990-1993.

There is no detailed information about the particle size distribution for the emissions from silicon carbide production. The Norwegian Pollution Control Authority assumes the emissions are in the same order as emission of particles from production of ferroalloys, where all particles are expected to be smaller than  $PM_{2.5}$ . This is however an uncertain estimate. This leads to a distribution where  $TSP=PM_{10}=PM_{2.5}$ .

#### Heavy metals

Emission figures are reported to the Norwegian Pollution Control Authority since 1999/2000. For Pb, Hg and Cd, historical emissions are based on emission factors derived from reported figures first year of reporting and production rate that year. Using these emission factors for each plant together with production rate for previous years, historical emissions have been calculated. Cd are reported from one plant for the years after 1992. The calculations for Pb and Cd have been corrected for dust regulations, while emissions of mercury are not affected by these regulations.

Historical emissions of Cu, Cr and As are based on dust emissions for each plant. This has been recommended by the Norwegian Pollution Control Authority, since historical production rate data lack for some years and because changes in emissions will be easier to find when installation of dust control systems reduces the emissions of these metals. Emissions of As is reported to the Norwegian Pollution Control Authority from one plant. Reported figures exist since 1992, and emissions in 1990 and 1991 are assumed to be the same as reported figures in 1992.

Emission figures for Cu, Cr and Pb are annually reported for all the three plants. In 1999, the plants also reported Hg and Cd due to a heavy metal investigation under the leadership of the Norwegian Pollution Control Authority. After 1999, the plants have not been irequired to report these metals due to low emissions. However, instead of excluding the emissions of these metals from the plants from the inventory, reported figures for 1999 are used for coming years until better data exist. For one plant the repoted figures of Cd from 1999 have been replaced by reported emissions for alle years since 1992

#### POPs

Emission figures for PAH are reported from the plants to the Norwegian Pollution Control Authority. Two of the plants have reported emissions since 1991, while the third one has only reported the latest years. Historical emissions back to 1990 are then calculated based on production rate and an emission factor derived from the first year of reporting and production rate that year. No PAH profile is available for this source, so lacking of other information, the same profile as that of aluminium production is used (table 4.7). No emissions of dioxin are reported nor calculated.

 Table 4.7.
 Distribution of PAH emission from silicon carbide production. Ratio X<sup>1</sup>/TSP

| Component                | Distribution of PAH emissions (ratio) |
|--------------------------|---------------------------------------|
| PAH (Norwegian standard) | 1                                     |
| PAH-6 (OSPAR)            | 0.3                                   |
| PAH-4 (CLRTAP)           | 0.15                                  |
| 1                        |                                       |

<sup>1</sup> X is either  $PM_{2.5}$ ,  $PM_{10}$  or TSP.

Source: Finstad et al. (2001).

# 4.3.2.2.3. Activity data

The activity data used by the plants for the calculation of  $CO_2$  and  $CH_4$  emissions are the amount of silicon carbide produced. The activity data used by the plants for the calculation of  $SO_2$  emissions is the consumption of petrol coke in dry weight. The activity data used by Statistics Norway for the calculation of CO emissions is the consumption of petrol coke as reported to Statistics Norway. Historical calculations of particle emissions are based on annually production rate and dust emission figures reported to the Norwegian Pollution Control Authority.

# 4.3.2.2.4. Emission factors

 $CO_2$ 

All three plants use the emission factor 2.62 tonne CO<sub>2</sub> per tonne produced crude silicon carbide (IPCC 2006).

# $CH_4$

For calculation of methane emissions, the country specific emission factor 4.2 kg CH<sub>4</sub>/tonne crude SiC is used. The factor used is based on measures in the plants.

# CO

CO emissions are calculated from the consumption of petrol coke, using a factor of 0.4 tonnes CO/tonnes petrol coke, as recommended by Rosland (1987).

# 4.3.2.2.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

# Heavy metals

The historical calculations for heavy metals are based on a derived emission factor for each plant and either production- or dust data for previous years and can only be seen as estimates. The emission figures reported also vary from one year to another, and this is assumed to be, in addition to differences in raw materials, a result of few and uncertain measurements. For the one plant that have not reported emission figures for Hg and Cd since 1999, the same emission figures as those reported in 1999 are used for later years. For the other plant emissions of Cd have been reported for all years since 1992. Emission figures for Hg have not been reported since 1999. The emission figure for 1999 are used for later years. This is also highly uncertain, but the emission figures are very small and have only marginal impact on the total emissions of these metals.

#### Particles

The particle size distribution used is not specific for production of silicon carbide, but used due to lack of specific size distribution data for this source. The particle size distribution can therefore only be seen as an estimate. For the years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as the first year of reporting. This is uncertain and a result of lack of better data.

#### 4.3.2.2.6. Completeness

Major missing emission components are not likely.

# 4.3.2.2.7. Source spesific QA/QC

The quality of the reported figures of CO<sub>2</sub> is from time to time controlled by Statistics Norway and the Norwegian Pollution Control Authority. Statistics Norway calculates the emissions from the consumption of petrol coke reported by the plant to Statistics Norway and the emission factor of 2.51 tonnes CO<sub>2</sub>/tonne petrol coke (SINTEF 1998e). The comparison shows accordance between the reported data and Statistics Norway's estimates. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

# 4.3.2.3. Production of calcium carbide

## 4.3.2.3.1. Description

One plant in Norway was producing calcium carbide until 2003. The production of calcium carbide generates  $CO_2$  emissions when limestone is heated and when petrol coke is used as a reducing agent.

The reaction

(4.3)  $CaCO_3 \rightarrow CaO + CO_2$ which takes place when limestone (calcium carbonate) is heated.

The reactions

 $(4.4) CaO + C (petrol coke) \rightarrow CaC_2 + CO$   $(4.5) CO \xrightarrow{O_2} CO_2$ 

where petrol coke is used as a reducing agent to reduce the CaO to calcium carbide.

Some of the carbon from petrol coke will be sequestered in the product, but not permanently. Thus, this carbon is included in the emission estimate. NMVOC originate from the use of petrol coke in the production process, and  $NO_x$  is mainly produced during the high temperature oxidation of nitrogen in the air. Particles are also emitted during the production process. Emission of heavy metals is a result of the heavy metal content in the raw materials.

# 4.3.2.3.2. Method

#### $CO_2$

The figures in the National emission inventory are based on emission figures reported from the plant to the Norwegian Pollution Control Authority. The emission estimates are based on the amount of calcium carbide produced each year and an emission factor estimated by (SINTEF 1998e) Some of the carbon from petrol coke will be sequestered in the product, but not permanently. Thus, this carbon is included in the emission estimate.

# $NO_x$

Emission figures for  $NO_x$  are annually reported to the Norwegian Pollution Control Authority. The reported values are based on calculations.

#### NMVOC

Reported figures are annually reported to the Norwegian Pollution Control Authority based on calculations.

#### Particles

Emission figures for particles are reported since 1992. Figures for 1990 and 1991 are assumed to be the same as for 1992. It does not exist any detailed information about the particle size distribution of the emissions from calcium carbide production. The Norwegian Pollution Control Authority assumes that the emissions are in the same order as emission of particles from production of ferro-alloys,

where all particles are expected to be smaller than  $PM_{2.5}$ . This is however an uncertain estimate. A particle size distribution where  $PM_{10}$  and  $PM_{2.5}$  is expected to be the same as TSP, is used in the Norwegian Inventory.

## Heavy metals and POPs

Emission figures for heavy metals have been reported to the Norwegian Pollution Control Authority since 1999. Historical emissions are calculated based on production rate for Pb, Cd and Hg, and based on particle emissions for As, Cu and Cr (see section 4.3.2.3.3).

No emission figures for PAH or dioxin are available.

#### 4.3.2.3.3. Activity data

Particle emissions used in the calculations of As, Cu and Cr have been reported to the Norwegian Pollution Control Authority.

#### 4.3.2.3.4. Emission factors

The emission factor used by the plants in the calculation of  $CO_2$  varies from year to year in the range from 1.48-1.59 tonne  $CO_2$ / tonne calcium carbide (SINTEF and Det Norste Veritas 2004). The default IPCC factor is 1.8 tonnes/tonne. (SINTEF 1998e) concludes that the one reason for the difference between the factors is that the IPCC assumes that all calcium carbonate is calcinated. However, in the production process at the plant they first produced CaC that gives  $CO_2$  emissions. Some of the CaC was then refined to DICY in a process that consumed  $CO_2$ . This  $CO_2$  gas was collected from one of the first steps of the CaC production. The net consumption of  $CO_2$  in production of DICY is according to SINTEF about 1.3 tonne  $CO_2$  per tonne DICY produced. This implies that in years with high production of DICY and vice versa the specific  $CO_2$  IEF fluctuates.

# 4.3.2.3.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### Heavy metals

Historical emissions are based on a derived emission factor for the first year of reporting in 1999 and calculated with production/particle emission figures for previous years. This is uncertain and only an estimate in lack of other data.

#### **Particles**

The particle size distribution used is not specific for production of silicon carbide, but used due to lack of specific size distribution data for this source. The particle size distribution can therefore only be seen as an estimate. For the years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as the first year of reporting. This is uncertain and a result of lack of better data.

#### 4.3.2.3.6. Completeness

Major missing emission components are not likely.

#### 4.3.2.3.7. Source specific QA/QC

For CO<sub>2</sub>, the data reported from the companies has been compared to calculations done by Statistics Norway. The amount of calcium carbide produced has been reported by the plant to Statistics Norway, and was multiplied with the emission factor 1.71 tonnes/ tonne (SINTEF 1998e). The default IPCC factor is 1.8 tonnes/tonne. This amount was subtracted 1.3 tonnes of CO<sub>2</sub> per tonnes DICY produced. The netto emissions is then estimated. There is no other source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

# 4.3.3. Manufacture of other inorganic chemicals

*IPCC 2B5 NFR 2B5 Last update: 15.01.08* 

#### 4.3.3.1. Production of methanol

#### 4.3.3.1.1. Description

One plant in Norway produces methanol. Natural gas and oxygen are used in the production of methanol. The conversion from the raw materials to methanol is done in various steps and on different locations at the plant.  $CH_4$  and NMVOC are emitted during the production process. Indirect emission of  $CO_2$  are calculated by Statistics Norway based on the emission of  $CH_4$  and NMVOC, see Chapter 1.9. Emissions from flaring of natural gas by production of methanol are now reported under 2B2, as recommended by IPCC's review team.

## 4.3.3.1.2. Method

The plant reports emission figures for  $CH_4$ , NMVOC and  $NO_x$ , to the Norwegian Pollution Control Authority. The reported emissions are based on measurements. Emissions from flaring of natural gas are estimated by multiplying the amount of gas flared with the emission factors shown in table 4.8.

| Table 4.8.                                                                        | Emission factors for flare                                                                |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Component                                                                         | Flare Natural gas                                                                         |
|                                                                                   | Tonnes/Sm <sup>3</sup>                                                                    |
| SO <sub>2</sub><br>CO <sub>2</sub><br>CO<br>NO <sub>x</sub><br>Particles<br>NMVOC | 0<br>2340/ Reported to SFT since 2000<br>1.5<br>Reported to SFT<br>0.0018<br>0.06<br>0.24 |
| CH <sub>4</sub><br>N <sub>2</sub> O                                               | 0.24<br>0.02<br>mg/tonne                                                                  |
| Pb<br>Cd<br>Hg<br>Cu<br>Cr                                                        | 0.3<br>1.7<br>1<br>16<br>21                                                               |
| As<br>Dioxin<br>PAH<br>PAH-4<br>PAH-Ospar                                         | 3.8<br>0.00005<br>1.44<br>0<br>0.8                                                        |

## 4.3.3.1.3. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### 4.3.3.1.4. Completeness

Major missing emission components are not likely.

#### 4.3.3.1.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### 4.3.3.2. Production of titanium dioxide

#### 4.3.3.2.1. Description

One plant in Norway produces titanium dioxide. The ore is chrushed and pulverized in mills. The chrushed raw material is separated in various steps. Ilmenite and the by-product magnetite are cleaned during acid treatment and flotation. The ilmenite concentrate is drained and the water content are reduced to approximately 3.5 per cent. Emissions of  $SO_2$ , heavy metals and particles from the plant are included in the inventory. The particle emissons are a result of the chrushing of the ore in the mills and from the annealing furnace, while the heavy metal emissions are due to the metal content in the raw material used.

# 4.3.3.2.2. Method

 $SO_2$ 

The emission figures for  $SO_2$  are based on calculations and are reported annually to the Norwegian Pollution Control Authority.

## Particles

Since 1990 emissions of particles have been reported annually to the Norwegian Pollution Control Authority. The particles are assumed to be of size less than  $PM_{2.5}$ .

## Heavy metals

Emissions figures for Pb, Cd and Hg have been reported from 1990 to 1999. After 1999, there has not been any reporting, as a result of very small emission figures. No emissions of persistent organic pollutants are reported nor calculated.

## 4.3.3.2.3. Uncertainties

No source specific uncertainty is known.

## 4.3.3.2.4. Completeness

Major missing emission components are not likely.

# 4.3.3.2.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.3.3.3. Production of sulphuric acid

#### 4.3.3.3.1. Description

Three plants in Norway produced sulphuric acid untill March 2006 when one of them was closed down. The production of sulphuric acid leads to emissions of  $SO_2$ . All the three plants report the emissions from the production to the Norwegian Pollution Control Authority, but only one plant have specified that the emissions come from the production of sulphuric acid. For the two other plants, the emissions have been included in the reported emissions from the plants' main production (production of nickel and zinc respectively).

#### 4.3.3.3.2. Method

The plant reports annually emission figures for  $SO_2$  to the Norwegian Pollution Control Authority. The reported figures are based on measurements.

#### 4.3.3.3.3. Uncertainties

No source specific uncertainty is known.

#### 4.3.3.3.4. Completeness

Major missing emission components are not likely.

#### 4.3.3.3.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.3.3.4. Production of plastic

#### 4.3.3.4.1. Description

Three plants report emissions to the Norwegian Pollution Control Authority under this source category. One of the plants produces ethylene, one propylene and polyethylen and the third plant has vinyl chloride production. Two of the reporting plants were one plant up to 2001.

Various components are emitted during the production of plastic.  $CH_4$  and NMVOC emissions are from leakages in the process. Direct  $CO_2$  emission is from combustion and is reported in Chapter 3 Energy.

During the production process of ethylene and vinyl chloride there is an oxide chloride step for production of ethylene chloride, followed by cracking to vinyl chloride monomer and hydrochloric acid. Various chloride components are produced during these processes, including dioxin. However, most of the dioxin ends up in the EDC-tar, which is combusted in an own chloride recycling installation. Particles (PVC-dust) are also emitted during the production of vinyl chloride.

# 4.3.3.4.2. Method

 $CO_2$ 

Indirect emission of  $CO_2$  are calculated based on the emission of  $CH_4$  and NMVOC, see Chapter 1.9.

# CH<sub>4</sub>, NH<sub>3</sub> and NMVOC

Emission figures are annually reported to the Norwegian Pollution Control Authority. CH<sub>4</sub> and NMVOC emissions reported are based on measurements.

## Particles

Emission figures have been reported to the Norwegian Pollution Control Authority since 1992. Emission figures for 1991 and 1990 are assumed to be the same as reported figures in 1992. The particle emissions have decreased since 1996 as a result of installation of cleaning devices. The emissions are purified in cyclones, but there is no available information regarding particle size. In lack of plant specific information, the distribution TSP=PM10=PM2.5, as in TNO (2002), is used in the calculation.

#### Dioxin

The plant producing vinyl chloride reports dioxin emission figures. Figures are reported since 1990 except for 1992 and 1994. Emission figures for 1992 and 1994 are based on the reported data for 1991 and 1993.

#### 4.3.3.4.3. Uncertainties

Uncertainty estimates for greenhouse gases are given in Appendix D. It is difficult to measure leakages of  $CH_4$  and NMVOC and therefore the uncertainty is regarded as being high.

The particle size distribution used is not specific for the plant, and the particles emitted might therefore have another distribution than the one suggested from TNO.

# 4.3.3.4.4. Completeness

Major missing emission components are not likely.

#### 4.3.3.4.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

## 4.3.3.5. Production of explosives

#### 4.3.3.5.1. Description

There has been one plant in Norway producing explosives, but the plant was closed down in 2001. Nitric acid was used as a raw material in the manufacture of explosives, and during the production of nitric acid,  $NO_x$  was emitted.

#### 4.3.3.5.2. Method

 $NO_x$ 

Emission figures were annually reported to the Norwegian Pollution Control Authority, and the figures were based on calculations.

#### 4.3.3.5.3. Uncertainties

No source specific uncertainty is known.

#### 4.3.3.5.4. Completeness

#### Particles

Reported emission figures to the Norwegian Pollution Control Authority exist only for 1997-1999. Annual emissions have been so low that they have not been included in the Norwegian inventory.

# 4.3.3.5.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.3.3.6. Chloralkali production

#### 4.3.3.6.1. Description

One plant in Norway produces chloralkali. Before 1997, mercury was used in the chloralkali production and emitted during the process. In 1997, the plant changed their production process and stopped using mercury, but still there are some mercury emissions.

# 4.3.3.6.2. Method

Hg

Emission figures are reported to the Norwegian Pollution Control Authority.

#### 4.3.3.6.3. Uncertainties

No source specific uncertainty is known.

#### 4.3.3.6.4. Completeness

Major missing emission components are not likely.

# 4.3.3.6.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.3.3.7. Production of pigments

#### 4.3.3.7.1. Description

Two plants are included in the inventory. One plant produces copper oxide for bottom paint and emits copper to air during the production process. Emissions of Cd and Pb are reported since 2002. Emissions for 1990 to 2001 are set to be the same as the reported figure in 2002. Also minor amounts of arsenic and chromium are emitted. The other plant produces zinc chromate, and chromium is emitted.

#### 4.3.3.7.2. Method

Emission figures are reported to the Norwegian Pollution Control Authority.

# 4.3.3.7.3. Uncertainties

Reported emission figures for 1990 and 1991 for the plant producing zinc chromate are not occurring. In the inventory, the same figure as reported for 1992 is used for 1990 and 1991.

## 4.3.3.7.4. Completeness

Major missing emission components are not likely.

## 4.3.3.7.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 4.3.3.8. Production of soap

## 4.3.3.8.1. Method

Two plants producing soap have reported emission figures for particles to the Norwegian Pollution Control Authority. One of the plants has only reported for 1990 and 1991. The plant has after 1991 had a temporary permission without reporting requirements and is therefore not included after 1991 due to lack of data. The other plant reported figures for 1992-1994. Emissions for 1990 and 1991 are assumed to be the same as reported figure in 1992, while emissions for 1995-1997 are assumed to be the same as reported figure in 1994. Annual emission figures are low.

The particles have been purified through filters and scrubbers and the Norwegian Pollution Control Authority assumes the sizes of the particles are smaller than  $PM_{2.5}$ .

## 4.3.3.8.2. Uncertainties

For the years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as reported in one of the other years. This is uncertain and a result of lack of better data.

#### 4.3.3.8.3. Completeness

Major missing emission components are not likely.

#### 4.3.3.8.4. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.3.3.9. Paint and varnish production

#### 4.3.3.9.1. Method

One plant producing paint has reported emission figures for particles to the Norwegian Pollution Control Authority since 1995, after first getting an emission permit in 1994. Annual emissions are small. It is assumed by the Norwegian Pollution Control Authority that the particles emitted are smaller than  $PM_{2.5}$ .

#### 4.3.3.9.2. Uncertainties

No source specific uncertainty is known.

# 4.3.3.9.3. Completeness

Major missing emission components are not likely.

#### 4.3.3.9.4. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure QA/QC procedure

# 4.4. Metal production

IPCC 2C NFR 2C Last update: 30.06.08

Metal production in Norway includes plants producing iron and steel, ferroalloys, aluminium, nickel and zinc and also magnesium until spring 2006. Production of anodes is also included in this chapter. As shown in table 4.9, most of the figures in the national inventory are from the plant's annually report to the Norwegian Pollution Control Authority.

# 4.4.1. Production of iron and steel

*IPCC 2C1 NFR 2C1 Last update: 14.02.08* 

## 4.4.1.1. Description

Three plants producing iron and steel are included in the Norwegian Inventory, one of these report only emission figures for particles. In Norway, iron is produced from ilmenite, and coal is used as a reducing agent. Various components are emitted during the production process. Non-combustion emissions of  $CO_2$  from an iron/steel production are primary from coal used as a reducing agent. SO<sub>2</sub> originates from the sulphur in the reducing agent used, while NO<sub>x</sub> is produced primarily by the high temperature oxidation of nitrogen in the air. Heavy metal emissions are due to the metallurgical melting process and the content of heavy metals in the raw materials used. Particles are also emitted during the process.

# 4.4.1.2. Method

#### $CO_2$

In the Norwegian emission inventory, emission figures for CO<sub>2</sub>, annually reported to the Norwegian Pollution Control Authority, are used.

The emissions are calculated from the consumption of coal in dry weight and the content of carbon in the coal. The content of carbon in coal consumed is based on analyses of the carbon in each load of coal delivered to the plant. Four per cent of the carbon in the coal is assumed to be bound in the iron.

#### $SO_2$

SO<sub>2</sub> emissions are based on measurements and reported to the Norwegian Pollution Control Authority.

#### $NO_x$

NO<sub>x</sub> emissions are estimated and reported to the Norwegian Pollution Control Authority.

#### Particles

Two of the plants have reported figures since 1990 while the third one has only reported since 1998. For this plant, historical emissions in the period 1990-1997 have been assumed to be the same as reported figure in 1998, since production rate data for previous years are not available.

The Norwegian Pollution Control Authority assumes that the particles emitted in the production of iron and steel are smaller than PM<sub>2.5</sub>. We can however not disregard that some of the particles emitted are larger than PM<sub>2.5</sub>.

#### Heavy metals and POPs

Two plants report emission figures to the Norwegian Control Authority. Reported figures for heavy metals (Pb, Cd, Cr, Cu, As and Hg) exist from 1990, 1992 or later, depending on type of heavy metal. For dioxins and PAH, reported figures have only been available from 1997 and 1999. Diffuse emissions have been

included from one plant. In lack of production rate data for previous years, it has been assumed that yearly emissions are the same as in the first year of reporting.

#### 4.4.1.3. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### Heavy metals and POPs

Reported emission figures vary from one year to another, due to different raw materials, but mainly as a result of uncertain measurements. The reported figures are based on a limited number of measurements, and the emissions will vary from minute to minute, since the production of iron and steel is a non-continuous process. For the years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as the first year of reporting. This is uncertain and a result of lack of better data.

# Particles

The particle size distribution used is only an assumption, and we can not preclude that the distribution is different from the one used in the inventory. For the years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as the first year of reporting. This is uncertain and only an estimate and a result of lack of better data.

 Table 4.9.
 Metal production. Components emitted and included in the Norwegian inventory

|                    | ······································ |        |        |      |        |        |                 |     |       |    |    |    |     |
|--------------------|----------------------------------------|--------|--------|------|--------|--------|-----------------|-----|-------|----|----|----|-----|
|                    | $CO_2$                                 | $CH_4$ | $N_2O$ | PFCs | $SF_6$ | $SO_2$ | NO <sub>X</sub> | NH₃ | NMVOC | CO | ΡM | ΗM | POP |
| Production of:     |                                        |        |        |      |        |        |                 |     |       |    |    |    |     |
| 2C1 Iron and steel | R                                      | NA     | NA     | NA   | NA     | R      | R               | NA  | NA    | NA | R  | R  | R   |
| 2C2 Ferroalloys    | R                                      | R      | R      | NA   | NA     | R      | R               | NA  | E     | NA | R  | R  | R   |
| 2C3 Primary        |                                        |        |        |      |        |        |                 |     |       |    |    |    |     |
| aluminium          | R                                      | NA     | NA     | R    | R      | R      | Е               | NA  | NA    | NA | R  | R  | R/E |
| 2C4 Secondary      |                                        |        |        |      |        |        |                 |     |       |    |    |    |     |
| aluminium          | NA                                     | NA     | NA     | NA   | R      | NA     | NA              | R   | NA    | NA | R  | R  | R   |
| 2C4 Magnesium      | R                                      | NA     | NA     | NA   | R      | R      | NA              | NA  | NA    | R  | R  | R  | R   |
| 2C5 Nickel         | R                                      | NA     | NA     | NA   | NA     | R      | R               | R   | NA    | NA | R  | R  | NA  |
| 2C5 Zinc           | NA                                     | NA     | NA     | NA   | NA     | R      | NA              | NA  | NA    | NA | R  | R  | NA  |
| 2C5 Anodes         | R                                      | NA     | NA     | NA   | NA     | R      | R               | NA  | NA    | NA | R  | R  | R   |

E = Figures estimated by Statistics Norway (Activity data \* emission factor). R = Figures reported by the plant to the Norwegian Pollution Control Authority. NA = Not Applicable.

# 4.4.1.4. Source specific QA/QC

CO<sub>2</sub> emission figures reported to the Norwegian Pollution Control Authority are compared with calculations at Statistics Norway using the amount of reducing agent and emission factors. This method is recommended by IPCC when data from measurements are not available.

Annually reported emission figures are first controlled by the Norwegian Pollution Control Authority and then by Statistics Norway.

Adjustments and recalculations have been done for years where reported emission figures seem to be unreasonably high or low compared with previous years. This is applicable when the variations in the reported emission figures do not have a natural explanation. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

# 4.4.2. Production of ferroalloys

*IPCC 2C2, Key category for CO<sub>2</sub> NFR 2C2 Last update: 22.09.08* 

# 4.4.2.1. Description

There were 12 plants producing ferroalloys in Norway in 2006. One plant closed down in 2001, two plants were closed down during 2003 and two in 2006. One plant was out of production in 2006, but started up again in 2007. Ferrosilicon, silicon metal,

ferromanganese and siliconmanganese are now produced in Norway. Ferrochromium was produced until summer in 2001. Ferrosilicon with 65 to 96 per cent Si and silicon metal with 98-99 per cent Si is produced. The raw material for silicon is quarts (SiO<sub>2</sub>). SiO<sub>2</sub> is reduced to Si and CO using reducing agents like coal, coke and charcoal.

$$(4.6) SiO_2 \to SiO \to Si + CO$$

The waste gas CO and some SiO burns to form CO<sub>2</sub> and SiO<sub>2</sub> (silica dust).

In ferroalloy production, raw ore, carbon materials and slag forming materials are mixed and heated to high temperatures for reduction and smelting. The carbon materials used are coal, coke and some biocarbon (charcoal and wood). Electric submerged arc furnaces with graphite electrodes or consumable Søderberg electrodes are used. The heat is produced by the electric arcs and by the resistance in the charge materials. The furnaces used in Norway are open, semi-covered or covered.

Several components are emitted from production of ferroalloys. Emission of CO<sub>2</sub> is a result of the oxidation of the reducing agent used in the production of ferroalloys. From the production of ferromanganese (FeMn), siliconmanganese(SiMn) and ferrochromium (FeCr) there is only CO<sub>2</sub> emissions. SO<sub>2</sub> originates from the sulphur in the reducing agent used, while NO<sub>x</sub> is produced primaryly by the high temperature oxidation of nitrogen in the air. NMVOC, N<sub>2</sub>O and CH<sub>4</sub> emissions originate from the use of coal and coke in the production processes by producing ferrosilicon and silicon metal. Heavy metals are emitted from the raw materials (ore) during the metallurgical process, and the particles emitted are mainly silica dust generated during the production process.

#### 4.4.2.2. Method

 $CO_2$ 

Emission data based on calculations is reported from each plant in an annual report to the Norwegian Pollution Control Authority. The method used in the calculation of  $CO_2$  emissions from the production of ferroalloys is in accordance with method recommended by the IPCC (IPCC (1997b), IPCC (2001) and IPCC (2006)).

The plants have used two different methods to calculate the  $CO_2$  emissions. Most of the plants base their calculations on carbon mass balance in the process (methode I). In the carbon mass balance the emissions of  $CO_2$  are calculated by adding the total input of C in raw materials before subtracting the total amount of C in products, wastes and sold gases (Tier 3). The carbon content of each raw materials is from carbon certificates from the suppliers. The carbon in each product, CO gas sold etc., is calculated from the mass of product and carbon content.

The other plants calculate the emissions from the dry weight consumption of the reducing agents and electrodes and country specific emission factors for coal, coke, petrol coke, electrodes, carbonate ore, anthracite, limestone and dolomite (method II) (Tier 2) see table 4.11.

The two methods are regarded as being consistent and each plant have used the same method for the entire time series. Indirect emissions of  $CO_2$  are calculated by Statistics Norway based on the emission of  $CH_4$ , see Chapter 1.9.

## $CH_4$ and $N_2O$

Emission figures are reported annually by each plant to the Norwegian Pollution Control Authority. Measurements performed at Norwegian plants producing ferro alloys indicate emissions of  $N_2O$  in addition to  $CH_4$ . The emissions of  $CH_4$  and  $N_2O$  are influenced by the following parameters:

- The silicon level of the alloy (65, 75, 90 or 98 % Si) and the silicon yield
- The method used for charging the furnace (batch or continuously)

• The amount of air used to burn the gases at the top controlling the temperature in off gases.

The emission factors used in the inventory represent the longer-term average  $N_2O$  and  $CH_4$  concentration measurements outside the peaks in concentration, which occur due to avalanches (sudden fall of large amounts of colder charge into the furnace). These occur from time to time, and are not fully reflected in the emission factors. We regard the emission factors as conservative, particularly for the early 1990s when the avalanches were more frequent than in the latest years.

All companies apply sector specific emission factors in the emission calculation, see Table 4.12. The factors are developed by the Norwegian Ferroalloy Producers Research Organisation (FFF) and standardized in meeting with The Federation of Norwegian Process Industries (PIL) (today named Federation of Norwegian Industries) in February 2007.

#### $SO_2$

Each plant reports annually emission figures to the Norwegian Pollution Control Authority. Some of the sulphur is trapped in the product. For production of ferro manganese and silicon manganese, 98-99 per cent of the sulphur is trapped, while for other ferroalloys it is assumed that about 5 per cent is trapped. The emissions are calculated from the consumption of reducing agents and electrodes and the content of sulphur in the materials.

## $NO_x$

Emissions of  $NO_X$  originate from production of ferro silicon and silicon metal. Emission figures are annually reported to the Norwegian Pollution Control Authority. The reported emissions are calculated from the production of metal and metal specific emission factors, see table 4.13.

#### NMVOC

The emissions are estimated by Statistics Norway from the consumption of reducing agents and an emission factor.

#### Particles

All plants producing ferroalloys report emission figures to the Norwegian Pollution Control Authority. Some have reported since 1990, others since 1992. For plants reported since 1992, emission figures from 1990 and 1991 have been assumed to be the same as reported figures in 1992. According to the ferroalloy industry, particles emitted are smaller than  $PM_{2.5}$  (Eikeland 2002). This is however an assumption, and we can not preclude that some of the particles might be larger than  $PM_{2.5}$ . In the inventory, we have decided to use this distribution for all particles emitted from the production of ferroalloys. This means that  $TSP=PM_{10}=PM_{2.5}$ .

#### Heavy metals

Emission figures for heavy metals are reported from all plants producing ferroalloys after the Norwegian Pollution Control Authority in 1999 imposed larger metallurgical plants to map their emissions of heavy metals. Most plants have therefore reported figures to the Norwegian Pollution Control Authority since 1999, but some reported for the first time in 2000 and 2001. An emission factor has been derived for each plant based on the emission figure and production rate for the first year of reporting. These emission factors have been used together with production rate for each year to calculate the emissions back to 1990 for each plant.

#### Dioxin

All plants producing ferrosilicon report emission figures for dioxins to the Norwegian Pollution Control Authority. It varies however when the plants started reporting, so calculations of historical figures back to 1990 have been necessary. An emission factor was derived for each plant based on reported emission data and production rate, and this factor was used to calculate historical emissions based on production rate for each year.

None of the four plants producing ferromanganese and ferrochromium<sup>5</sup> report emission figures for dioxin to the Norwegian Pollution Control Authority. The reason is probably that the emissions are so small that they are not measured and therefore not reported (SFT 2001b). Instead, the emissions are calculated by Statistics Norway based on the general emission factor for combustion of coke and coal in the industry (table 4.15).

#### PAH

Emissions of PAH from the production of ferroalloys are reported to the Norwegian Pollution Control Authority for plants producing ferrosilicon and silicon metal. All these plants have reported emission figures since 2000. Historical emissions back to 1990 have been calculated based on production rate for each year and an emission factor derived for each plant based on reported figures for 2000, 2001 and 2002. Reported figures and historical calculations are only done for plants producing ferrosilicon and silicon metal. This is based on the assumption that these alloys are produced in open ovens and therefore cause larger emissions of PAH compared to other alloys that are produced in closed ovens and are assumed to cause no or minor emissions of PAH.

The PAH emission figures are reported according to Norwegian Standard, but no PAH profile is available. In lack of other data, the same profile as that for aluminium production is used.

 Table 4.10.
 Distribution of PAH emission from production of ferroalloys

| Component                      | Distribution of PAH emissions (ratio) |
|--------------------------------|---------------------------------------|
| PAH (Norwegian standard)       | 1                                     |
| PAH-6 (Ospar)                  | 0.3                                   |
| PAH-4 (CLRTAP)                 | 0.15                                  |
| Source: Finstad et al. (2001). |                                       |

# **4.4.2.3.** *Activity data CO*<sub>2</sub>

The plants calculations of emissions is based on the consumption of gross reducing agents and electrodes in the production of ferroalloys.

#### $CH_4$ and $N_2O$

The gross production of different ferroalloys is used in the calculation by the plants.

#### NMVOC

The amounts of reducing agents that are used for the calculation of NMVOC emissions are annually reported to Statistics Norway from each plant.

# 4.4.2.4. Emission factors

 $CO_2$ 

Emission factors used in the calculations (method II) by the plants are the factors in table 4.11. The factors are from Norwegian sources, based on the actual composition of the raw materials.

# Table 4.11. Emission factors for production of ferroalloys.Tonnes CO<sub>2</sub>/tonne reducing agent or electrode

|                   | Coal | Coke | Petrol | Elec-  | Carbo     | Dolomite, |
|-------------------|------|------|--------|--------|-----------|-----------|
|                   |      |      | coke   | trodes | nate ore  | limestone |
| Ferro silicon     | 3.08 | 3.36 | -      | 3.36   | -         | -         |
| Silicon metal     | 3.12 | 3.36 | -      | 3.54   | -         | -         |
| Ferro chromium    | -    | 3.22 | -      | 3.51   | -         | -         |
| Silicon manganese | -    | 3.24 | 3.59   | 3.51   | 0.16-0.35 | 0.43-0.47 |
| Ferro manganese   | -    | 3.24 | 3.59   | 3.51   | 0.16-0.35 | 0.43-0.47 |

Source: SINTEF (1998b, 1998c and 1998d).

<sup>5</sup> The ferro chromium plant was closed down in 2003.

|                                          | Si-met             |                                    |                                                     |                    | FeSi-75%                           |                                                     |                    | FeSi-65%                           |                                                     |  |
|------------------------------------------|--------------------|------------------------------------|-----------------------------------------------------|--------------------|------------------------------------|-----------------------------------------------------|--------------------|------------------------------------|-----------------------------------------------------|--|
| Alloy, charging routines and temperature | Batch-<br>charging | Sprinkle-<br>charging <sup>1</sup> | Sprinkle-<br>charging<br>and<br>>750°C <sup>2</sup> | Batch-<br>charging | Sprinkle-<br>charging <sup>1</sup> | Sprinkle-<br>charging<br>and<br>>750°C <sup>2</sup> | Batch-<br>charging | Sprinkle-<br>charging <sup>1</sup> | Sprinkle-<br>charging<br>and<br>>750°C <sup>2</sup> |  |
|                                          |                    |                                    |                                                     |                    |                                    |                                                     |                    |                                    |                                                     |  |
| kg CH₄ per tonne metal                   | 0.1187             | 0.0881                             | 0.1000                                              | 0.0890             | 0.0661                             | 0.0750                                              | 0.0772             | 0.0573                             | 0.0650                                              |  |
|                                          | М                  | М                                  | E                                                   | E                  | E                                  | E                                                   | E                  | E                                  | E                                                   |  |
| kg N₂O per tonne metal                   | 0.0433             | 0.0214                             | 0.0252                                              | 0.0297             | 0.0136                             | 0.0161                                              | 0.0117             | 0.0078                             | 0.0097                                              |  |
| 1 Sprinkle charging is charging          | E                  | E                                  | E                                                   | E                  | E                                  | E                                                   | E                  | E                                  | E                                                   |  |

# Table 4.12. Emission factors for CH<sub>4</sub> and N<sub>2</sub>O from production of ferroalloys. Emission factors in kg per tonne produced ferroallov

1 Sprinkle-charging is charging intermittently every minute.

2 Temperature in off-gas channel measured where the thermocouple cannot 'see' the combustion in the furnace hood.

M=measurements and E= estimates based un measurements

#### Table 4.13. Emission factors for production of ferro silicon and silicon metal. Kg NO<sub>X</sub> /tonne metal produced

|                           | Normal<br>operations | Dryss -<br>chargering | Dryss- chargering<br>> 750 °C | Source                                                 |
|---------------------------|----------------------|-----------------------|-------------------------------|--------------------------------------------------------|
| Silicon metal             | 11                   | 6                     | 6                             | Measured in 1995 at the Fiskaa plant                   |
| Ferro silicon 90 per cent | 12                   | 6                     | 6                             | Estimations <sup>1</sup>                               |
| Ferro silicon 75 per cent | 15                   | 7.5                   | 7.5                           | Measured in 1995 at Rana Metal and the Thamshavn plant |
| Ferro silicon 65 per cent | 12                   | 6                     | 6                             | Estimations                                            |
| Si96                      | 11                   | 5.5                   | 5.5                           | Estimations                                            |

<sup>1</sup> Estimations means that this emission factor is not measured but estimated by the plants based on general process experiences.

#### Table 4.14. Emission factors for production of ferroalloys. µg dioxin /tonne metal produced

|                           | Normal operations | Dryss -<br>chargering | Dryss- chargering<br>> 750 °C | Source                               |
|---------------------------|-------------------|-----------------------|-------------------------------|--------------------------------------|
| Silicon metal             | 3                 | 1.2                   | 0.2                           | Measured in 1995 at the Fiskaa plant |
| Ferro silicon 90 per cent | 4                 | 1.2                   | 0.2                           | Estimations <sup>1</sup>             |
| Ferro silicon 75 per cent | 5                 | 1.2                   | 0.2                           | Measured in 1995 at Rana Metall      |
| Ferro silicon 65 per cent | 5                 | 1.2                   | 0.2                           | Estimations                          |
| Si96                      | 3                 | 1.2                   | 0.2                           | Estimations                          |

<sup>1</sup> Estimations means that this emission factor is not measured but estimated by the plants based on general process experiences.

#### $CH_4$ and $N_2O$

The plants apply sector specific emission factors in the emission calculations, see table 4.12. The factors are developed by the Norwegian Ferroalloy Producers Research Organisation (FFF) and standardized in meeting with The Federation of Norwegian Process Industries (PIL) (today named Federation of Norwegian Industries) in February 2007.

#### $NO_X$

The emission factors used by the plants in the calculations are based on measurements carried out at three plants.

#### NMVOC

Statistics Norway uses an emission factor of 1.7 kg NMVOC/tonne coal or coke (EPA 1986) in the calculations.

#### Dioxin

The emission factors used by the plants in the calculations are given in table 4.14.

Emission calculations of dioxin for those plants not reporting figures to the Norwegian Pollution Control Authority uses an emission factor of combustion of coke and coal in the industry (table 4.15).

#### Emission factor used by Statistics Norway to calculate dioxin emission from Table 4.15. production of ferro manganese/chromium

|                          | Emission factor                  |  |
|--------------------------|----------------------------------|--|
| Coal and coke            | 1.6 µg/tonne                     |  |
| Source: Bremmer et al (" | 1994) and Finstad et al. (2002a) |  |

Sc e: Bremmer et al. (1994) and Finstad et al. (2002a).

#### PAH

The emission factors used by the plants in the calculations are given in table 4.16.

| Table 4.16. | Emission factors for production of ferroalloys. g PAH /tonne metal produced |
|-------------|-----------------------------------------------------------------------------|
|-------------|-----------------------------------------------------------------------------|

|                           | Normal operations | Dryss -<br>chargering | Dryss-<br>chargering<br>> 750 °C | Source                                                    |
|---------------------------|-------------------|-----------------------|----------------------------------|-----------------------------------------------------------|
| Silicon metal             | 3                 | 2.6                   | 1.6                              | Measured in 1995 at the Fiskaa plant                      |
| Ferro silicon 90 per cent | 2                 | 2                     | 1                                | Estimations <sup>1</sup>                                  |
| Ferro silicon 75 per cent | 1.5               | 1.3                   | 0.8                              | Measured in 1995 at Rana Metal<br>and the Thamshavn plant |
| Ferro silicon 65 per cent | 1                 | 1.3                   | 0.8                              | Estimations                                               |
| Si96                      | 3                 | 2.6                   | 1.6                              | Estimations                                               |

<sup>1</sup> Estimations means that this emission factor is not measured but estimated by the plants based on general process experiences.

# 4.4.2.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### **Particles**

The inventory uses a particle size distribution, which is an assumption from the ferroalloy industry and not based on measurements. We can therefore not preclude that some of the particles might be larger than  $PM_{2.5}$ .

#### Heavy metals and POPs

Historical emissions are based on a derived emission factor for the first year of reporting and calculated using production figures for previous years. This is uncertain since the calculation method does not consider quality changes of the raw materials or changes in the production profile at each plant that can have big impact on yearly emissions.

# 4.4.2.6. Source specific QA/QC

#### $CO_2$ , $CH_4$ and $N_2O$

The Norwegian Pollution Control Authority compared the reported emissions from the plants with emissions data given in "the white book" (SINTEF and Det Norske Veritas 2004) and other relevant data available. In some cases, the emission data were verified by making control calculation based on emission factors and activity data. In all cases, the construction of charts and figures of emissions and activity data helped identifying missing data and possible errors.

All the main producers of ferroalloys in Norway were contacted and asked to supply missing emissions data and activity, and to explain any possible errors identified. The feedback from the companies made it possible to make corrections and filling of gaps in the series of data.

A complete time series from 1990 to 2004 could be established for all three relevant greenhouse gas parameters for most companies. Data from "the white book" and the reported company data corresponded well.

There are still a few data gaps, especially for the year 1991. Not all companies could provide data from 1991. In cases where neither information concering the consumption or raw materials nor the amount of production were present, emissions were not possible to calculate. In those cases were activity data from 1991 were present, the emissions were calculated or estimated.

The CO<sub>2</sub> emissions are in addition calculated by Statistics Norway based on the IPCCs recommended Tier 1 method, using the reported amount of reducing agents (raw material) used. Emission factors used are the factors in table 4.11. The calculated emissions are used as a quality check of the reported data.

The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### NO<sub>X</sub>, NMVOC and CO

The reported emission figures for  $NO_X$ , NMVOC and CO are compared with calculations at Statistics Norway.

For the quality check on the reported  $NO_x$  emission figures, an emission factor estimated from two ferroalloy plants are used together with production data. The applied emission factor of 11.7 kg  $NO_x$ / tonne ferroalloy is rather uncertain since it is estimated from measurements from only two of the Norwegian ferroalloy plants.

Emission figures for NMVOC are controlled by multiplying the amount of reducing agents with an emission factor recommended by EPA (1986).

## PAH

In 2004, there was a quality improvement of the historical calculation of PAH. PAH was first included in the Norwegian Inventory in 2000, and at that time, only two plants producing ferro silicon and silicon metal reported emission figures to the Norwegian Pollution Control Authority for the year 1999. The ferroalloy industry and the Norwegian Pollution Control Authority therefore derived emission factors to estimate PAH emissions from the production of ferro silicon and silicon metal (Benestad 2000). It was then decided to use these factors in the Norwegian inventory to calculate PAH emissions. From 2000, all plants producing ferro silicon and silicon metal however started reporting emission figures to the Norwegian Pollution Control Authority, and these figures have been used instead of the calculated emissions based on emission factors and activity data. In 2004, the historical emissions were recalculated. Based on the plants' reported emission figures for 2000, 2001 and 2002 and production volumes, a specific emission factor for each plant was derived. These factors were then used to recalculate the plants' historical emissions of PAH. A specific emission factor for each plant was considered better to use for historical emissions, instead of using a default emission factor for all plants. The specific emission factors derived for each plant with the new method were lower than those suggested by Benestad (2000), and this caused approximately 2-12 per cent lower yearly PAH emissions from 1990 to 1999 from this source.

# 4.4.3. Production of primary aluminium

*IPCC 2C3, Key category for PFC, (SF<sub>6</sub>: 2C4, Key category for SF<sub>6</sub>) NFR 2C3 Last update: 30.06.08* 

# 4.4.3.1. Description

There are seven plants in Norway producing aluminium. Both prebaked anode and the Soederberg production methods are used.

In the Soederberg technology, the anodes are baked in the electrolysis oven, while in the prebaked technology, the anodes are baked in a separate plant. In general the emissions are larger from the Soederberg technology than from the prebaked technology. There has been a shift from Soederberg to prebaked technology. In 1990, 57 per cent of the aluminium production in Norway was produced with prebaked technology and the share of aluminium production from prebaked was increased to 81 per cent in 2006. Two new plants with prebaked technology were established in 2002 and two plants using Soederberg technology were closed down in 2001 and 2003. Production of aluminium leads to emission of various components as  $CO_2$ ,  $SO_2$ ,  $NO_x$ , perfluorocarbons (PFCs), heavy metals and persistent organic pollutants. The emission of  $CO_2$  is due to the electrolysis process during the production of aluminium, while the  $SO_2$  emissions are from the sulphur in the reducing agents used.  $NO_X$  is primarily produced by the high temperature oxidation of nitrogen in the air. All plants also report emissions of particles, heavy metals and PAH. Emissions of heavy metals are due to the metal content in the raw materials used and the reducing agents.

# 4.4.3.2. Method

#### $CO_2$

The inventory uses the emission figures reported to the Norwegian Pollution Control Authority, calculated by each plant on the basis of consumption of reducing agents. This includes carbon electrodes, electrode mass and petroleum coke. The emission factors are primarily calculated from the carbon content of the reducing agents.

Previously, Statistics Norway estimated the  $CO_2$ -emissions from consumption data provided by the plants, but now figures reported by the plants are used. Reported figures are available since 1992. For 1990 and 1991 there were no data, hence recalculation was made using production data and reported emission data for 1992. The aluminium industry calculates the  $CO_2$  emissions separate for each technology. The following methods are used:

 $CO_2$  from Prebake Cells (4.7) Q = A\*C\*3.67

Where

Q is the total yearly emissions of  $CO_2$ A is the yearly net consumption of anodes C is per cent carbon in the anodes 3.67 is the mol-factor  $CO_2/C$ 

 $\begin{array}{l} CO_2 \ from \ Soederberg \ Cells \\ (4.8) \qquad Q = S^* 3.67^* (K^* Cl + P^* C2) \end{array}$ 

# Where

Q is the total yearly emissions of CO<sub>2</sub> S is the yearly consumption of Soederberg paste K is the share of coke in the Soederberg paste P is the share of pitch in the Soederberg paste K+P=1 C1 is the fraction of carbon in the coke. Fraction is per cent Carbon/100 C2 is the fraction of carbon in the pitch. Fraction is per cent Carbon/100

#### $SO_2$

The plants report emission figures of  $SO_2$  to the Norwegian Pollution Control Authority. The figures are estimated by each plant based on the amounts of reducing agents used and their sulphur content. All plants have istalled flue gas treatment like for example sea water scrubber.

#### $NO_x$

 $NO_x$  emissions are estimated by Statistics Norway from the level of production and emission factor derived from measurements at two Norwegian plants. The figure is rather uncertain.

#### Perflourocarbons (PFCs)

The emissions of PFC are reported annually by the plants to the Norwegian Pollution Control Authority.

Perfluorinated hydrocarbons (PFCs), e.g. tetrafluoromethane (CF<sub>4</sub>) and hexafluoroethane (C<sub>2</sub>F<sub>6</sub>), are produced during anode effects (AE) in the Prebake and Søderberg cells, when the voltage of the cells increases from the normal 4-5V to 25-40V. During normal operating condition, PFCs are not produced. The fluorine in the PFCs produced during anode effects originates from cryolite. Molten cryolite is necessary as a solvent for alumina in the production process.

Emissions of PFCs from a pot line (or from smelters) are dependent on the number of anode effects and their intensity and duration. Anode effect characteristics will be different from plant to plant and also depend on the technology used (Prebake or Søderberg).

During electrolysis two perfluorocarbon gases (PFCs), tetrafluormethane (CF<sub>4</sub>) and heksafluorethane (C<sub>2</sub>F<sub>6</sub>), may be produced in the following reactions: Reaction 1: (4.9)  $4Na_3AlE_6 + 3C \rightarrow 4Al + 12NaE + 3CE_4$ 

| (1.))       | 11432 1116 + 50 / 1211 + 12141 + 5014                       |
|-------------|-------------------------------------------------------------|
| Reaction 2: |                                                             |
| (4.10)      | $4Na_{3}AlF_{6} + 4C \rightarrow 4Al + 12NaF + 2C_{2}F_{6}$ |

The national data are based on calculated plant specific figures from each of the seven Norwegian plants. The plants have used the Tier 2 method in their calculations, which are based on a technology specific relationship between anode effect performance and PFCs emissions. The PFCs emissions are then calculated by the so-called slope method, where a constant slope coefficient (see Table 4.17), given as kg CF<sub>4</sub>/tonne Al/anode effect minutes per cellday, is multiplied by the product of anode effect frequency and anode effect duration (in other words, by the number of anode effect minutes per cell day), and this product is finally multiplied by the annual aluminium production figure (tonnes of Al/year). The basis for the plants calculations of PFCs is the amount of primary aluminium produced in the potlines and sent to the cast house. Thus, any remelted metal is not included here. The formula for calculating the PFCs is:

$$kg \ CF_4 \ per \ year = S_{CF4} \bullet AEM \bullet MP$$
and

(4.12) F<sub>C2F6/CF4</sub>

 $kg C_2F_6 per year = kg CF_4 per year \bullet$ 

Where :

 $S_{CF4}$  = "Slope coefficient" for CF<sub>4</sub>, (kg <sub>PFC</sub>/t<sub>Al</sub>/anode effect minutes/cellday AEM = anode effect minutes per cellday MP = aluminium production, tonnes Al per year

 $F_{C2F6/CF4}$  = weight fraction of  $C_2F_6/CF_4$ 

| Table 4.17. | Technology specific slope and overvoltage coefficients for the calculation of |
|-------------|-------------------------------------------------------------------------------|
|             | PFCs emissions from aluminium production                                      |

| Technology <sup>a</sup> | "Slope coeff<br>(kg <sub>PFC</sub> /t <sub>Al</sub> )/ (anode |    | Weight fra<br>C <sub>2</sub> F <sub>6</sub> /C |                            |
|-------------------------|---------------------------------------------------------------|----|------------------------------------------------|----------------------------|
|                         | $S_{CF4}$ Uncertainty<br>(±per cent)                          |    | F <sub>C2F6/CF4</sub>                          | Uncertainty<br>(±per cent) |
| CWPB                    | 0.143                                                         | 6  | 0.121                                          | 11                         |
| SWPB                    | 0.272                                                         | 15 | 0.252                                          | 23                         |
| VSS                     | 0.092                                                         | 17 | 0.053                                          | 15                         |
| HSS                     | 0.099                                                         | 44 | 0.085                                          | 48                         |

a. Centre Worked Prebake (CWPB), Side Worked Prebake (SWPB), Vertical Stud Søderberg (VSS), Horizontal Stud Søderberg (HSS).

b. Source: Measurements reported to IAI, US EPA sponsored measurements and multiple site measurements. c. Embedded in each slope coefficient is an assumed emission collection efficiency as follows: CWPB 98 per cent, SWPB 90 per cent, VSS 85 per cent, HSS 90 per cent. These collection efficiencies have been assumed based on measured PFC collection fractions, measured fluoride collection efficiencies and expert opinion. "Slope coefficient" is the number of kg CF<sub>4</sub> per tonne aluminium produced divided by the number of anode effects per cellday. The parameter cellday is the average number of cells producing on a yearly basis multiplied with the number of days in a year that the cells have been producing. Measurements of PFCs at several aluminium plants have established a connection between anode parameters and emissions of CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>. The mechanisms for producing emissions of PFC are the same as for producing CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>. The two PFC gases are therefore considered together when PFC emissions are calculated. The C<sub>2</sub>F<sub>6</sub> emissions are calculated as a fraction of the CF<sub>4</sub> emissions.

The Tier 2 coefficients for Centre Worked Prebake cells (CWPB) are average values from about 70 international measurement campaigns made during the last decade, while there are fewer data (less than 20) for Vertical Stud Soderberg cells (VSS). The main reason for the choice of the Tier 2 method is that the uncertainties in the facility specific slope coefficients is lower than the facility specific based slope coefficients in Tier 3. This means that there is nothing to gain in accuracy of the data by doing measurements with higher uncertainties.

#### Sulphur hexafluoride (SF<sub>6</sub>)

 $SF_6$  used as cover gas in the aluminium industry is assumed to be inert, and  $SF_6$  emissions are therefore assumed to be equal to consumption. At one plant,  $SF_6$  was used as cover gas in the production of a specific quality of aluminium from 1992 to 1996. The aluminium plant no longer produces this quality, which means that  $SF_6$  emissions have stopped.

#### Particles

Emission figures have been reported to the Norwegian Pollution Control Authority since 1990. The Norwegian Pollution Control Authority assumes the particles emitted are smaller than  $PM_{10}$ . According to TNO (2002),  $PM_{10}$  is 97 per cent of TSP, and  $PM_{2.5}$  is 43 per cent of TSP. The Norwegian Inventory uses the particle size distribution suggested by TNO (2002).

#### Heavy metals

The plants report emission figures to the Norwegian Pollution Control Authority. The first requirement for reporting came in 1999, so emission figures before that are insufficient. The concentrations of heavy metals in the air emissions are very low and therefore impossible to measure. Emissions are therefore calculated at each plant based on the mass flow.

#### Dioxin

Since the process use coal and coke as reducing agents, it is assumed that production of primary aluminium give dioxin emissions. Reported figures for dioxin are not available. The emissions are believed to be so small that reporting are not necessary. Emissions are therefore calculated based on the combustion factor of coal in the industry.

#### PAH

The reported emission data are assumed to be according to Norwegian standard (NS9815). It is further assumed, by the Norwegian Pollution Control Authority, that the emissions are due to emissions from the use of the Soederberg method. Historical emission figures have been calculated based on changes in production of aluminium after the Soederberg method.

The PAH- profile has been measured at three plants. These profiles show little variation. Based on these profiles it is belived that PAH-4 accounts for 15 per cent and PAH-OSPAR 30 per cent of total PAH emissions for production of aluminium after the Soederberg method (table 4.18).

| Table 4.18.  | Distribution of DAH amiggions from production of prime | ny aluminium Batia |
|--------------|--------------------------------------------------------|--------------------|
| 1 able 4.10. | Distribution of PAH emissions from production of prima | ry aluminium. Rauo |

|                          | · · · · · · · · · · · · · · · · · · · |
|--------------------------|---------------------------------------|
| Component                | Distribution of PAH emissions (ratio) |
| PAH (Norwegian standard) | 1                                     |
| PAH-6 (Ospar)            | 0.3                                   |
| PAH-4 (CLRTAP)           | 0.15                                  |

# 4.4.3.3. Activity data

 $NO_X$ 

The activity data for the NO<sub>x</sub>-calculation are production figures, which are reported annually from the plants to the Norwegian Pollution Control Authority.

#### Dioxins

The calculation of emissions of dioxins is based on consumption of raw materials. The figures are reported annually from the plants to Statistics Norway.

# 4.4.3.4. Emission factors

#### $NO_X$

Statistics Norway uses the emission factor 0,00071 tonnes NO<sub>X</sub>/ tonne produced aluminium in their calculations. This emission factor is assumed by the Norwegian Pollution Control Authority and is based on measurements.

#### Dioxins

Emissions of dioxin are calculated based on the consumption of coal and an emission factor from Bremmer et al. (1994).

| Table 4.19.   | Emission factor used to calculate dioxin emissions from aluminium production |                       |
|---------------|------------------------------------------------------------------------------|-----------------------|
|               | Emission factor                                                              | Source                |
| Coal and coke | 1.6 µg/tonne                                                                 | Bremmer et al. (1994) |

#### 4.4.3.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### Perflourocarbons (PFCs)

The uncertainties in the so-called tier 2 slope coefficients from IAI (International Aluminium Institute) is lower (6 per cent and 17 per cent for CWPB and VSS cells, respectively), compared to the measured facility specific based slope coefficients, where the uncertainties are around 20 per cent, even when the most modern measuring equipment is used (the continuous extractive-type Fourier Transform Infrared (FTIR) spectroscopic system). Control measurements in two Hydro Aluminium plants (Karmøy and Sunndal) done in November 2004, showed that the measured values for CWPB and VSS cells were well within the uncertainty range of the tier 2 slope coefficients.

#### Particles

The particle size distribution used is not specific for the plants, and might therefore be different from the one suggested by TNO (2002).

#### 4.4.3.6. Completeness

Major missing emission components are not likely.

#### 4.4.3.7. Source specific QA/QC

The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### $CO_2$

The emission figures reported by the plants are controlled by the Norwegian Pollution Control Authority and Statistics Norway. Statistics Norway makes own estimates based on the consumption of reducing agents and production data collected in an annual survey and average emission factors. If errors are found, the plants are contacted and changes in the emissions are made when necessary.

#### Perflourocarbons (PFCs)

The emission figures from the aluminium plants are reported to the Norwegian Pollution Control Authority annually. As a quality control, it is checked that the reports are complete. Each figure is compared with similar reports from previous years and also analysed taking technical changes and utilisation of production capacity during the year into account. If errors are found, the Norwegian Pollution Control Authority contacts the plant to discuss the reported data, and changes are made if necessary.

The Norwegian Pollution Control Authority has regular meetings with the aluminium industry where all plants are represented. This forum is used for discussion of uncertainties and improvement possibilities.

The Norwegian Pollution Control Authority's auditing department are regularly auditing the aluminium plants. As part of the audits, their system for monitoring, calculation and reporting of emissions are controlled.

#### PAH

The Norwegian Pollution Control Authority had recently audits at all aluminium plants to check their system for monitoring of emissions of PAH. It will be considered whether similar audits should have climate gases as the main target.

#### Heavy metals

First requirement for reporting of heavy metals was given in 1999, and the reported figures were this year based on concentration measurements. The concentration of heavy metals in the air emissions are very low and therefore of high uncertainty. The reported emission figures showed big differences from plant to plant, also in the cases where the raw materials came from the same supplier. The Norwegian Pollution Control Authority has had a long discussion with the aluminium industry to find a better method to estimate heavy metals from aluminium production. In 2001 it was decided that reported figures should be based on calculations. New calculations have shown that earlier calculations gave too high emissions of heavy metals. It was therefore recommended by the Norwegian Pollution Control Authority to recalculate historical reported data based on the new calculation method. Recalculation of historical data are normally based on production rate data, but due to very low emissions and relative stable production rate, historical data are set to be the same as the first year of reporting.

## 4.4.4. Production of secondary aluminium

*IPCC -, (SF<sub>6</sub>: 2C4, Key category for SF<sub>6</sub>) NFR 2C3 Last update: 01.09.05* 

# 4.4.4.1. Description

One open mill in Norway is handling secondary aluminium production. Heavy metals and persistent organic pollutants (dioxin and PAH) are emitted in the production of secondary aluminium due to the remelting process. Particles are also emitted during the production process. For earlier years there have also been some emissions of  $NH_3$  and  $SF_6$ .

#### 4.4.4.2. Method

 $NH_3$ 

For the years 1993-2001, emissions of  $NH_3$  were reported from one plant. This plant closed down in 2001.

#### Sulphur hexafluoride (SF<sub>6</sub>)

For the years 1998, 1999 and 2000, emissions of  $SF_6$  have been reported to the Norwegian Pollution Control Authority.

#### Particles

The plant has reported emission figures from 1993 until its closure in 2001 to the Norwegian Pollution Control Authority. Emission figures for 1990 to 1992 are in the inventory assumed to be the same as reported figure in 1993. Following particle size distribution is assumed and used in the Norwegian inventory;  $PM_{10}$  is 0.8\*TSP and  $PM_{2.5}$  is 0.32\*TSP (TNO 2002).

#### Heavy metals and POPs

Figures are reported annually to the Norwegian Pollution Control Authority. Emission figures exist since 1993, and emissions before 1993 have been supposed to be the same as reported figures in 1993.

The emission figures for heavy metals are based on metal analyses of dust samples. Figures of Pb, Cd and Cr have been reported since 1997. Annual figures can vary a lot from one year to another, and therefore we have used mean values for years when the changes can not be explained by the industry. We have assumed that the emission figures for 1990-1996 are the same as reported figures in 1997, since there are no reported figures of heavy metals and PAH before 1997.

#### 4.4.4.3. Uncertainties

#### Heavy metals and POPs

The reported figures for heavy metals are estimated based on heavy metal content in the dust samples. The metal content were only analysed for a few dust samples yearly and the reported figures are therefore only a presumption of yearly emission figures. Calculation of emission figures before 1997 are assumed to be the same as reported figures in 1997, and this gives highly uncertain figures since raw materials and production variations may have changed in this period.

The reported emission figures for dioxins and particles vary from one year to another, and it is assumed this is due to uncertain measurements and process readjustments.

#### 4.4.4.4. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.4.5. Production of magnesium

*IPCC 2C5, (SF<sub>6</sub>: 2C4, Key category for SF<sub>6</sub>) NFR 2C5 Last update: 30.06.08* 

#### 4.4.5.1. Description

There has been one magnesium producing plant in Norway. The plant closed down the production of primary magnesium in 2002. The production of cast magnesium continued, but this production has no  $CO_2$  emissions from processes. During 2006 also the production of remelting Mg stopped. From the mid-1970s, both the magnesium chloride brine process and the chlorination process were used for magnesium production. Since 1991, only the chlorination process was in use.

Production of magnesium leads to non-combustion  $CO_2$  and CO emissions. During the calcinations of Dolomite (MgCa(CO<sub>3</sub>)<sub>2</sub>) to magnesium oxide, CO<sub>2</sub> is emitted. During the next step, magnesium oxide is chlorinated to magnesium chloride, and coke is added to bind the oxygen as CO and CO<sub>2</sub>. SO<sub>2</sub> is emitted due to the sulphur in the reducing agent used.

In the foundry, producing cast magnesium,  $SF_6$  is used as a cover gas to prevent oxidation of magnesium. The Norwegian producers of cast magnesium has assessed whether  $SF_6$  used as cover gas reacts with other components in the furnace. The results indicate that it is relatively inert, and it is therefore assumed that all  $SF_6$  used as cover gas is emitted to air.

#### 4.4.5.2. Method

#### $CO_2$

The invetory uses emission figures reported to the Norwegian Pollution Control Authority. Previously, Statistics Norway calculated the CO<sub>2</sub> emissions by using annual production volumes and the emission factor recommended by SINTEF (SINTEF 1998f).

#### $SF_6$

Studies performed by the Norwegian producer have assessed that  $SF_6$  used as cover gas is inert. Therefore the consumption figures for the cover gas ( $SF_6$ ) are used as the emission estimates in accordance with the IPCC Guidelines (IPCC 1997a, 1997b). The  $SF_6$  emissions are reported annually to the Norwegian Pollution Control Authority.

#### CO

Emission figures of CO are reported annually to the Norwegian Pollution Control Authority. These emissions dissapeard when the plant closded down the production of primary magnesium in 2002.

#### $SO_2$

The  $SO_2$  emissions are estimated from the amounts of reducing agent used (coke) and their sulphur content and reported from the plants to the Norwegian Pollution Control Authority.

#### Particles

The plant reported emission figures for particles for the first time for the year 1992. Emissions of particles for 1990 and 1991 are assumed to be larger than the reported figure in 1992, since a cleaning device was installed in 1992. Statistics Norway has no information that can be used to estimate emissions in 1990 and 1991, so the inventory uses the reported emission figure for 1992 also for 1990 and 1991. The Norwegian Pollution Control Authority assumes that reported figures also include emissions from combustion.

No information is found regarding the particle size distribution for particles emitted during magnesium production. In lack of other data, we use the same distribution as for aluminium production ( $PM_{10}$  is 97 per cent of TSP, and  $PM_{2.5}$  is 43 per cent of TSP).

#### Heavy metals and POPs

Emission of heavy metals is due to the metal content in the reducing agent used. Emission data of Hg, As, Cr and dioxin are reported to the Norwegian Control Authority. When the plant closed down the production of primary magnesium in 2002 the emissions of As disappeared. Reported figures of heavy metals have only been available since 2000. Emission figures are calculated back to 1990 based on the production rate for each year.

During the chlorination process and the use of coke as a reducing agent, dioxin is emitted. Emission figures of dioxin have been reported to the Norwegian Pollution Control Authority since 1990.

#### 4.4.5.3. Activity data

The Norwegian emission inventory uses production volumes as activity data in the calculation of  $CO_2$ . This method is recommended by SINTEF (1998f). The consumption figures used as emission figures for SF<sub>6</sub> are reported to the Norwegian Pollution Control Authority.

#### 4.4.5.4. Emission factor

An emission factor of 4.07 tonnes  $CO_2$ /tonnes produced magnesium is used by Statistics Norway to calculate the annual emissions of  $CO_2$  (SINTEF 1998f).

#### 4.4.5.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### Particles

For years where reported emission figures do not exist, Statistics Norway has assumed that emissions are in the same order as that of the first year of reporting. This is uncertain and a result of lack of better data. The particle size distribution used is not specific for production of magnesium, but used due to lack of specific size distribution data for this source. The particle size distribution can therefore only be seen as an estimate.

#### Heavy metals

Historical emissions are based on a derived emission factor for the first year of reporting and calculated with production figures for previous years. This is uncertain and only an estimate since it does not consider annually changes in raw materials nor possible cleaning devices.

#### 4.4.5.6. Completeness

Major missing emission components are not likely.

#### 4.4.5.7. Source specific QA/QC

The last years reported emission data from the plant is compared with previous reported data and the emissions are compared with the production.

#### 4.4.6. Other metals

*IPCC 2C5 NFR 2C5 Last update: 05.04.06* 

In addition to the metals in the chapters above, nickel and zinc are also produced in Norway.

## 4.4.6.1. Production of nickel

#### 4.4.6.1.1. Description

One plant in Norway produces nickel. During the production of nickel,  $CO_2$ ,  $SO_2$ ,  $NO_x$ ,  $NH_3$ , particles and heavy metals are emitted.  $CO_2$  is emitted in the production of nickel due to the soda from the production of nickel carbonate and use of coke as a reducing agent, while  $SO_2$  is a result of the sulphur content in the coke used.  $NO_x$  is produced primarily by the high temperature oxidation of nitrogen in the air. Emission of heavy metals is due to the metal content in reducing agent used. Particles are also emitted during the production process. PAHs and dioxin are not reported or calculated.

#### 4.4.6.1.2. Methods

 $CO_2$ 

Emission figures are annually reported from the plant to the Norwegian Pollution Control Authority based on calculation of material balance.

#### $SO_2$

Emission figures of  $SO_2$  are reported from the plant to the Norwegian Pollution Control Authority based on continuous measurements. Flue gas treatment is installed at the plant.

#### $NO_x$

Emission figures of  $NO_x$  are annually reported from the plant to the Norwegian Pollution Control Authority. The emission figures are based on calculations.

#### $NH_3$

Emission figures based on calculations are annually reported from the plant to the Norwegian Pollution Control Authority.

#### Particles

Emission figures of particles have been reported to the Norwegian Pollution Control Authority since 1992. Emissions in 1990 and 1991 are assumed to be the same as reported figure in 1992. The emission permit sets requirements to emissions from the melting furnace, transport, crushing and packing of the raw materials and products. The Norwegian Pollution Control Authority assumes that the particles emitted are smaller than  $PM_{2.5}$ . This means that TSP=PM10=PM2.5 in used in the inventory.

#### Heavy metals and POPs

Emission figures for Cu have been reported to the Norwegian Pollution Control Authority since 1990. Reported figures for Cd, Hg and Pb were available from 1990-1994, but because of low emissions the plant stopped reporting these metals.

## 4.4.6.1.3. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### **Particles**

The particle size distribution used is only an assumption and we can not preclude that the distribution might be different than the one suggested. The particle size distribution can therefore only be seen as an estimate.

#### 4.4.6.1.4. Completeness

Major missing emission components are not likely.

#### 4.4.6.1.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### 4.4.6.2. Production of zinc

#### 4.4.6.2.1. Description

One plant in Norway produces zinc.  $SO_2$ , particles and heavy metals are emitted during the process. Emission of  $SO_2$  originates from the sulphur in the reducing agent used.

#### 4.4.6.2.2. Method

#### $SO_2$

The plant reports emission figures to the Norwegian Pollution Control Authority. The  $SO_2$  emissions are estimated from infrequent measurements combined with calculations.

#### **Particles**

Emission figures for particles have been reported since 1991. Emissions for 1990 are assumed to be the same as reported figure for 1991. It is assumed that of the

particles emitted, 90 per cent is  $PM_{10}$  and 80 per cent is  $PM_{2.5}$  (TNO 2002) and this particle size distribution is used in the Norwegian inventory.

#### Heavy metals and POPs

The plant reports emission figures for Cd, Pb, Hg, Cu, Cr and As. Reported figures exist since 1992, and emissions in 1990 and 1991 are assumed to be the same as reported figures in 1992.

Figures are not reported for PAHs and dioxin.

#### 4.4.6.2.3. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.4.7. Manufacture of anodes

*IPCC 2C5 NFR 2C5 Last update: 01.09.05* 

#### 4.4.7.1. Description

Two plants in Norway produce anodes. One plant produces prebaked anodes and the other one produces anodes for ferroalloy production. Prebaked anodes and coal electrodes are alternatives to the use of coal and coke as reducing agents in the production process for aluminium and ferroalloys. The anodes and coal electrodes are produced from coal and coke. The production of anodes and coal electrodes leads to emissions of  $CO_2$ ,  $NO_x$ ,  $SO_2$ , PAH and heavy metals.

#### 4.4.7.2. Method

 $CO_2$ 

 $CO_2$  emissions from production of anodes are reported by the plants to the Norwegian Pollution Control Authority. The reported  $CO_2$  emissions are based on two different methods; by calculating the total amount of anode produced with an emission factor, or based on measurements to decide the emissions per hour of production.

#### $SO_2$ and $NO_x$

Emission figures of  $SO_2$  are based on measurements while  $NO_X$  emissions are calculated by the plants and reported to the Norwegian Pollution Control Authority.

#### Particles

Production of anodes leads to emission of particles. One of the plants has reported since 1990, while the other one has reported since 1992. Emission figures for 1990 and 1991 are assumed to be the same as reported figure in 1992 for this plant. The Norwegian Pollution Control Authority assumes the particles emitted are smaller than PM<sub>10</sub>, but also expects some to be smaller than PM<sub>2.5</sub>. No information has been found regarding the particle size distribution, so in lack of other data we use the same distribution profile as used for production of aluminium where PM10 is 97 per cent of TSP and PM2,5 is 43 per cent of TSP.

#### PAH

Emission figures for PAH are based on measurements and reported from both plants to the Norwegian Pollution Control Authority. One plant has developed a new and better method for measuring PAH. This metod is used for the peiode 1992 to 2003. The reported figures of PAH are assumed to be according to the Norwegian standard (NS9815). Measurements from production of Soederberg paste (at three Norwegians plants) and a PAH-profile of baked anodes from EPA are used to derive a PAH-profile to find the emission of PAH-OSPAR and PAH-4. Based on these profiles it is assumed that PAH-OSPAR and PAH-4 account for respectively 25 per cent and 5 per cent of the total PAH emissions (table 4.20).

| Table 4.20. | Distribution of PAH emissions from | production of anodes. Ratio |
|-------------|------------------------------------|-----------------------------|
|             |                                    |                             |

| Component Distribution of PAH emissions (ratio) |      |  |
|-------------------------------------------------|------|--|
| PAH (Norwegian standard)                        | 1    |  |
| PAH-6 (Ospar)                                   | 0.25 |  |
| PAH-4 (CLRTAP)                                  | 0.05 |  |
| Source: SFT (1999e).                            |      |  |

#### *Heavy metals*

Production of anodes leads to emission of heavy metals due to the metal content in the reducing agents (coke and coal). Emission figures are based on measurements and are reported for arsenic and mercury from one plant since 2001. Emission figures have not been measured nor reported before 2001 and are therefore not available for previous years. Historical emission figures back to 1990 are assumed to be the same as reported figures in 2001.

#### 4.4.7.3. Uncertainties

Historical calculations of heavy metals from 2001 to 1990 are very uncertain since they are assumed to be the same as reported figures for the first year of reporting (2001). Annually changes in production volumes, coke quality and the amount of heavy metals in the reducing agents are not taken into account, and the historical emissions can only be seen as an estimate in lack of better data.

#### 4.4.7.4. Completeness

Major missing emission components are not likely.

#### 4.4.7.5. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

## 4.5. Other production

IPCC 2D NFR 2D

#### 4.5.1. Pulp and paper

*IPCC 2D1 NFR 2D1 Last update: 07.06.06* 

#### 4.5.1.1. Description

Pulp and paper production has three major processing steps; pulping, bleaching and paper production. Kraft (sulphate) pulping is the most widely used pulping process and is generally used to produce strong paper products: The Kraft pulping process includes bleaching, chemical recovery and by-products recovery. The sulphite pulping is another chemical pulping process. It produces a weaker paper than some other types of pulping, but the pulp is less coloured, making it more suitable for printing, often with little bleaching. In Norway, SO<sub>2</sub> and particles are reported emitted from production of pulp and paper. In the Kraft pulping process, sodium sulphide and sodium hydroxide are used to chemically dissolve the lignin that binds the cellulose fibres, and in the acid sulphite pulping process, sulphurous acid solution is used. SO<sub>2</sub> is emitted in these processes. There is also reported non-combustion  $CO_2$  emissions from one plant in this sector. The emissions originate from limestone.

#### 4.5.1.2. Method

#### $CO_2$

The  $CO_2$  emissions are calculated by multiplying the amount of limestone by an emission factor. For the years 1990-97 the emissions are calculated by the Norwegian Pollution Control Authority based upon activity data reported to the Norwegian Pollution Control Authority by the plant and emission factor. The

emissions in the period 1998-2004 are reported in the plant's application for CO<sub>2</sub>-permits within the Norwegian scheme of greenhouse gases.

#### $SO_2$

Emission figures are reported from producers of chemical pulp to the Norwegian Pollution Control Authority. SO<sub>2</sub> is measured continuously and emission estimates are made from these measurements.

#### Particles

Four plants producing pulp and paper report non-combustion emissions of particles to the Norwegian Pollution Control Authority. Two of these plants have not reported emission figures from combustion and it is assumed that the reported noncombustion emission figures include emissions from combustion. It varies when the plants started reporting emission figures for particles, and due to lack of data, emission for those years is assumed to be the same as in the first year of reporting.

Two of the plants state that they clean the emissions by electric filter and wet scrubbers, and it is assumed by the Norwegian Pollution Control Authority that the particles emitted are smaller than  $PM_{2.5}$ . The other two clean their emissions using only wet scrubbers, and it is assumed the particles are smaller than  $PM_{10}$ . According to TNO (2002),  $PM_{2.5}$  is 20 per cent of  $PM_{10}$  and  $PM_{10}$  is the same as TSP.

## 4.5.1.3. Activity data

 $CO_2$ 

Activity data is reported by the plant to the Norwegian Pollution Control Authority. The amount of limestone is calculated from purchased amount.

## 4.5.1.4. Emission factor

 $CO_2$ 

The emission factor used in the calculation is 0.44 tonne  $CO_2$  per tonne limestone.

#### 4.5.1.5. Uncertainties

The particle size distribution used is not plant specific and might therefore be different from the one suggested by TNO.

#### 4.5.1.6. Completeness

Major missing emission components are not likely.

#### 4.5.1.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### 4.5.2. Food and Drink

*IPCC 2D2 NFR 2D2 Last update: 23.03.06* 

#### 4.5.2.1. Description

This source category includes NMVOC emissions from production of bread and beer,  $CO_2$  from carbonic acid mainly used in breweries, export of captured  $CO_2$  and  $CO_2$  from production of bio protein.

#### 4.5.2.2. Production of bread and beer

#### 4.5.2.2.1. Method

NMVOC

Production of bread and beer (and other similar yeast products) involves fermentation processes that lead to emission of NMVOC (ethanol). Emissions are calculated based on production volumes and emission factors.

#### 4.5.2.2.2. Activity data

Production volumes of bread and beverages are annually reported to Statistics Norway.

#### 4.5.2.2.3. Emission factors

The emission factors are taken from EEA (1996).

#### Table 4.21. NMVOC emission factors from production of bread and beverage

|                        | Emission factor | Unit                   |
|------------------------|-----------------|------------------------|
| Production of bread    | 0.003           | tonnes/tonnes produced |
| Production of beverage | 0.2             | kg/1000 litres         |
|                        |                 |                        |

Source: EEA (1996).

#### 4.5.2.2.4. Uncertainties

The emission factors used are recommended by EEA (1996) and are not specific for Norwegian conditions.

#### 4.5.2.2.5. Completeness

Major missing emission components are not likely.

#### 4.5.2.2.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure. The specific QA/QC carried out in 2006 for greenhouse gases from industrial processes is described in Appendix I.

#### 4.5.2.3. Carbonic acid to breweries

As mentioned under section 4.3.1.1, some  $CO_2$  from ammonia production is used as carbonic acid in carbonated beverages. During the ammonia production,  $CO_2$  is generated and then captured and sold to other companies in Norway or exported. Most of it is sold for lemonade production. All of the emissions are reported under this source, although the largest part of the emissions takes place after the bottles are opened, and not in the breweries. Also exported  $CO_2$  is included in the Norwegian emission inventory.

The figures are based on the sales statistics from the ammonia producing plant.

#### 4.5.2.4. Production of bio protein

 $CO_2$  emissions from production of bio protein from natural gas are included from the year 2001 when this production started. The bio protein is being used as animal fodder. Emission data reported from the plant to the Norwegian Pollution Control Authority are used.

## 4.6. Consumption of halocarbons and SF<sub>6</sub>

IPCC 2F, Key category for HFC NFR -Last update: 30.06.08

#### 4.6.1. HFCs and PFCs from products and processes

#### 4.6.1.1. Description

HFCs and PFCs can be used as substitutes for ozone depleting substances (CFCs and HCFCs) that are being phased out according to the Montreal Protocol. They are used in varied applications, including refrigeration and air conditioning equipment, as well as in foam blowing, fire extinguishers, aerosol propellants and for analysing purposes. There is no production of HFCs and PFCs in Norway (however, PFCs are emitted as a by-product during the production of aluminium, see Chapter 4.4.3). HFCs and PFCs registered for use in Norway are HFC-23, HFC-32, HFK-125, HFC-134, HFC-134a, HFC-143, HFC-143a, HFC-152a, HFC-227ea and PFC-218. The most significant gases, measured in GWP-tonnes are HFC-134a, HFC-143a and HFC-125. Measured in metric tonnes emissions of the low-GWP HFC-152a are also significant. Due to, i.e., high taxation, the use of PFCs in product-applications is very low.

In January 2003 a tax on import and production of HFC and PFC was introduced. In July 2004 this tax was supplemented with a refund for the destruction of used gas. In 2006 the tax and refund were both 194 NOK (approximately 24 Euro) per tonnes of  $CO_2$ -equivalents. Based on these new realities a project was established to review the emission calculations of HFC and PFC. This work was completed in March 2007 (Hansen 2007) and is reflected in this report.

## 4.6.1.2. Method

Actual emissions of HFCs and PFCs are calculated using the Tier 2 methodology. This methodology takes into account the time lag in emissions from long lived sources, such as refrigerators and air-conditioning equipment. The chemicals slowly leak out from seams and ruptures during the lifetime of the equipment. The leakage rate, or emission factor, varies considerably depending on type of equipment.

Potential emissions are calculated employing the Tier 1b methodology, which only considers the import, export and destruction of chemicals in bulk and in products without time lag. It was found that the ratio between potential (Tier 1b) and actual emissions (Tier 2) was about 2:1 in 2005.

#### 4.6.1.3. Activity data

There is no production of HFC or PFC in Norway. Hence all emissions of these chemicals are originating from imported chemicals. The methodology requires that annual imported amounts of each chemical are obtained by source category. Imported and exported amounts of chemicals in bulk are collected annually by the Norwegian Pollution Control Authorithy. Imported and exported amounts of chemicals in products for the years 1995-1997 were collected through a survey in 1999 (SFT 1999a), and this information was used to estimate imports and exports the years previous to and after the survey. For the source category refrigeration, data on imports from customs statistics were used to update the estimated amounts for years after 1997.

#### 4.6.1.4. Emission factors

Leakage rates and product lifetimes used in the calculations are shown in table 4.22.

| Application category                                                                                                                                                                                                                                                                                                                                                               | Annual<br>emissions<br>during lifetime<br>(per cent of<br>initial charge) | Lifetime of<br>products<br>(years)     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|
| <b>Refrigeration and air conditioning</b><br>Household refrigerators and freezers<br>Commercial and industrial applications, imported<br>Refrigerated transport, imported<br>Air conditioning aggregates and heat pumps, imported<br>Water/liquid refrigerating aggregates, water-based heat pumps, imported<br>Stationary equipment produced in Norway<br>Mobile air conditioners | 1<br>3.5<br>20<br>4<br>5<br>10                                            | 15<br>15<br>15<br>15<br>15<br>15<br>15 |
| <b>Foam</b><br>Polyurethane with diffusion barrier<br>Polyurethane without diffusion barrier<br>Extruded polystyrene                                                                                                                                                                                                                                                               | 1<br>5<br>3                                                               | 40<br>20<br>30                         |
| Fire extinguishers                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                         | 15                                     |
| Solvents                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                        | 2                                      |
| Aerosol propellants                                                                                                                                                                                                                                                                                                                                                                | 50                                                                        | 2                                      |
| Aerosol propellants Source: Hansen (2007).                                                                                                                                                                                                                                                                                                                                         | 50                                                                        | 2                                      |

#### Table 4.22. Emission factors for HFCs from products and lifetime of products

#### 4.6.1.5. Uncertainties

The uncertainties of the different components of the national greenhouse gas inventory were evaluated in detail in 2006 by Statistics Norway (See Appendix D). Both the leakage rate (emission factor) and the stored amount of chemicals (activity data) are considered quite uncertain. The total uncertainties for the emission estimates by the consumption of halocarbons are estimated to be  $\pm 50$  per cent for both HFC and PFC.

#### 4.6.1.6. Completeness

Major missing emission sources are not likely

#### 4.6.1.7. Source specific QA/QC

There is no specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 4.6.2. Emissions of SF<sub>6</sub> from products and processes

#### 4.6.2.1. Description

In Mars 2002, a voluntary agreement was signed between the Ministry of Environment and the most important users and producers of GIS (gas-insulated switchgear). According to this agreement emission from this sector should be reduced by 13 per cent in 2005 and 30 per cent in 2010 with 2000 as base year. For the following up of this agreement, the users (electricity plants and -distributors) and producers (one factory) report yearly to the government.

#### 4.6.2.2. Method

The general methodology for estimating  $SF_6$  emissions was revised in 1999 (SFT 1999c), while the sector-specific methodology for GIS has been revised in this years reporting based on new information from the agreement. The current method for GIS is largely in accordance with the Tier 3a methodology in the IPPC Good Practice Guidance (IPCC 2001).

The method for other sources is largely in accordance with the Tier 2 methodology in the IPPC guidelines for emission inventories (IPCC 1997a,b). The calculations take into account imports, exports, recycling, accumulation in bank,, technical lifetimes of products, and different rates of leakage from processes, products and production processes. From 2003 and onwards emission estimates reported directly from users and producers, according to the voluntary agreement, are important input.

Emissions from production of GIS (one factory) were included for the first time in 2003. The company has, as part of the voluntary agreement with the Ministry of the Environment, made detailed emission estimates back to 1985. These emissions constitute a significant part of national emissions of SF<sub>6</sub>. In recent years emissions rates have been considerably reduced due to new investments and better routines. The company now performs detailed emission calculations based on accounting of the SF<sub>6</sub> use throughout the whole production chain.

#### 4.6.2.3. Activity data

Data is collected from direct consultations with importers and exporters of bulk chemicals and products containing  $SF_6$ , and from companies that use  $SF_6$  in various processes.

#### 4.6.2.4. Emission factors

Leakage rates and product lifetimes used in the calculations are shown in tables 4.23 and 4.24.

| Table 4.23. Yearly rate of leakage of | f SF <sub>6</sub> from different processes |
|---------------------------------------|--------------------------------------------|
|---------------------------------------|--------------------------------------------|

|                                        | •                                                    |
|----------------------------------------|------------------------------------------------------|
| Emission source                        | Leakage rate (per cent of input of SF <sub>6</sub> ) |
| Secondary magnesium foundries          | 100                                                  |
| Tracer gas in the offshore sector      | 0                                                    |
| Tracer gas in scientific experiments   | 100                                                  |
| Production of semiconductors           | 50                                                   |
| Medical use (retinal surgery)          | 100                                                  |
| Production of sound-insulating windows | 2                                                    |
| Other minor sources                    | 100                                                  |
| Source: SFT (1999c).                   |                                                      |

#### Table 4.24. Product lifetimes and leakage rates from products containing SF<sub>6</sub>

| Product emission source                  | Yearly rate of leakage (per<br>cent of remaining content) | Product lifetime (years) |
|------------------------------------------|-----------------------------------------------------------|--------------------------|
| Gas-insulated switchgear (GIS)           | 1                                                         | 30                       |
| Sealed medium voltage switchgear         | 0.1                                                       | 30                       |
| Electrical transformers for measurements | 1                                                         | 30                       |
| Sound-insulating windows                 | 1                                                         | 30                       |
| Footwear (trainers)                      | 25                                                        | 9                        |
| Other minor sources                      |                                                           |                          |

Source: SFT (1999c).

#### 4.6.2.5. Completeness

Major missing emission components are not likely.

#### 4.6.2.6. Source specific QA/QC

During the work on the new methodology for 2004 emissions, historical data were recalculated, emission factors from different sources were established and the bank of  $SF_6$  in existing installations was estimated. For GIS, information from the industry, attained through the voluntary agreement with the Ministry of Environment, was important input in this recalculation.

## 4.7. Other: Lubricants and waxes

IPCC 2G NFR-Last update:08.01.08

#### 4.7.1. Paraffin wax use

#### 4.7.1.1. Description

Paraffin waxes are produced from crude oil and used in a number of different applications, including candles, tapers and the like. Combustion of such products results in emissions of fossil CO<sub>2</sub>.

#### 4.7.1.2. Method

Emissions of  $CO_2$  from the burning of candles, tapers and the like are calculated using a modified version of equation 5.4 for Waxes – Tier 1 Method of the 2006 IPCC Guidelines:

 $(4.13) \qquad Emissions = PC \cdot PF \cdot CC_{Wax} \cdot 44/12$ 

Where:

 $CO_2$  Emissions =  $CO_2$  emissions from waxes, tonne  $CO_2$ PC = total candle consumption, TJ PF = fraction of candles made of paraffin waxes  $CC_{Wax}$  = carbon content of paraffin wax (default), tonne C/TJ (Lower Heating Value basis) 44/12 = mass ratio of  $CO_2/C$ 

Consumption figures on paraffin waxes are multiplied by the default net calorific values (NCV) given in the 2006 IPCC Guidelines. Net consumption in calorific

value is then converted to carbon amount, using the value for carbon content (Lower Heating Value basis) and finally to  $CO_2$  emissions, using the mass ratio of  $CO_2/C$ .

## 4.7.1.3. Activity data

Statistics Norway collects data on import, export and sold amounts of "Candles, tapers and the like (including night lights fitted with a float)". Using these data, net consumption of paraffin waxes and other candle waxes (including stearin) can be calculated.

## 4.7.1.4. Emission factors

Parameter values used in the emissions calculations are given in table 4.25.

| ······································                         |        | J                     |
|----------------------------------------------------------------|--------|-----------------------|
| Parameters                                                     | Factor | Unit                  |
| Net calorific value (NCV)                                      | 40.20  | TJ/Gg                 |
| Carbon content (CC <sub>wax</sub> , Lower Heating Value basis) | 20.00  | tonnes C/TJ = kg C/GJ |
| Mass ratio of CO <sub>2</sub> /C                               | 3.67   | -                     |
| Fraction of paraffin wax (PF)                                  | 0.66   | -                     |

The assumption of 0.66 as the fraction of all candles being made of paraffin waxes is based on estimates obtained in 2007 from one major candle and wax importer (estimating approx. 0.5) and one Norwegian candle manufacturer (estimating approx. 0.8). The importer estimated the fraction to be about 5 per cent higher in 1990. However, since this possible change is considerably smaller than the difference between the two fraction estimates, we have chosen to set this factor constant for the whole time series. The fraction of paraffin waxes has probably varied during the period 1990-2006, as it, according to the importer, strongly depends on the price relation between paraffin wax and other, non-fossil waxes. However, at present we do not have any basis for incorporating such factor changes.

Furthermore, we assume that practically all of the candle wax is burned during use, so that emissions due to incineration of candle waste are negligible.

#### 4.7.1.5. Uncertainties

According to the 2006 IPCC Guidelines, the default emission factors are highly uncertain. However, the default factor with the highest uncertainty is made redundant in our calculations, due to the level of detail in our activity data.

#### 4.7.1.6. Completeness

Emissions from the incineration of products containing paraffin wax, such as wax coated boxes, are covered by emission estimates from waste incineration.

## 4.7.1.7. Source specific QA/QC

There is no specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 5. Solvent and other product use

IPCC 3 NFR 3

## 5.1. Overview

This chapter describes emissions from solvents and other products. Use of solvents and products containing solvents result in emissions of non-methane volatile organic compounds (NMVOC), which is regarded as an indirect greenhouse gas. The NMVOC emissions will over a period of time in the atmosphere oxidise to CO<sub>2</sub>.

In addition to solvents emitting NMVOC, there are other products that emit other volatile components. Creosote treated materials and tarry jointing paste cause emissions of PAH (poly-aromatic hydrocarbons). PAH and dioxin are also emitted during production of asphalt. Emissions of  $N_2O$  from anaesthesia procedures and spray cans as well as mercury from mercury-containing products are also included in the Norwegian inventory.

## 5.2. Solvent losses (NMVOC)

*IPCC 3A, 3B and 3C NFR 3A, 3B and 3C Last update: 01.09.05* 

## 5.2.1. Method

The methodology used to estimate emissions from use of solvents and products containing solvents has been based on a solvent balance approach (Rypdal 1995a). This method was used for 1990-1998 but has since then not been updated annually. The methodology described here is therefore the one used from 1990-1998. 1998 figures are used for the following years.

Solvents are both imported to and produced in Norway. Most of the solvents used will sooner or later evaporate to air. Solvents not emitted within the country are either exported, used as raw materials, incinerated or broken down in water. The solvent balance follows the flow of solvents from production, import and export, via transformation, to incineration or consumption. This methodology gives independent emission estimates for each year of inventory and in principle covers all fugitive sources.

The equation applied for the solvent balance is:

(5.1) Emissions = [(Production + Import - Export - Destruction - Raw material use) \*Solvent content \*Fraction emitted] + Emissions from certain industrial processes

The solvent balance is based on the commodities in the foreign trade and production statistics that are either pure solvents or contain solvents. The equation is applied to each commodity and total emissions are given by the sum of emissions from all commodities.

In the following, data of major importance for the solvent balance are described.

- *Imports and exports* of the various commodities are determined by Statistics Norway in collaboration with the customs authorities.
- *Production* of the commodities in Norway is based on the manufacturing statistics from Statistics Norway, which cover all main manufacturers annually.

- *Destruction* of solvent waste and paint is given by official statistics on waste delivered and incinerated (Norsas). In addition, the Norwegian Pollution Control Authority (SFT) has information about incineration in licensed plants.
- *Raw materials* used in industrial processes: data are gathered by Statistics Norway (Manufacturing Statistics). However, these data are not collected annually, but at roughly five-year intervals. Due to the infrequent collection these data make a large contribution to the uncertainty in the related emission figures.
- The *solvent content* is determined using several sources, the most important of which is the Norwegian Product Register. The average solvent content is determined from the average chemical composition of the product category. The solvent contents of the remaining commodities are, with few exceptions, taken from investigations in other countries.
- *Fraction emitted* to air: An amount is estimated for each commodity. Generally, the fraction is higher for products that are not water soluble than for those that are.
- In certain *industrial processes* where solvents are used as raw materials, fractions of the solvents may evaporate to air. Emissions from these plants have been added to the solvent balance where data are available. The emission estimates or emission factors are provided by the Norwegian Pollution Control Authority. However, figures have not been delivered every year and are not available for the most recent years for several plants.

## NMVOC and $CO_2$

The use of solvents leads to emissions of non-methane volatile organic compounds (NMVOC) which is regarded as an indirect greenhouse gas. The NMVOC emissions will over a period of time in the atmosphere oxidise to  $CO_2$ , which is included in the total greenhouse gas emissions reported to UNFCCC (see chapter 1.9).

## 5.2.2. Activity data

Activity data used in the solvent balance is collected by Statistics Norway in cooperation with authorities like the Norwegian Pollution Control Authority and the Norwegian Product Register.

## 5.2.3. Uncertainties

An uncertainty analysis was performed for long-range transboundary air pollutants by Statistics Norway (Rypdal and Zhang 2001). The analyses conclude that the source category Solvents are one of the highest ranked NMVOC sources with regard to uncertainty.

Of the data used in the solvent balance, listed above, the amount of *raw materials* used in industrial processes and the *fraction emitted* to air will probably be the most uncertain figures and contribute most to the uncertainty in the figures for total emissions of solvents.

As mentioned earlier in this chapter, the calculations have not been updated since 1998, so the figures reported for instance for 2002, are actually the 1998 figures. The methodology needs to be reviewed and improved before calculating new data.

#### 5.2.4. Completeness

No major missing emission sources are likely.

#### 5.2.5. Source specific QA/QC

Internal checks of the time-series of calculated emissions data and input activity data have been conducted by Statistics Norway and corrections are made when errors are found.

## 5.3. Use of solvents

IPCC -NFR 3C Last update: 01.09.05

## 5.3.1. Creosote-treated materials

#### 5.3.1.1. Description

Creosote is mainly used in quay materials and conduction poles, but also in fence poles and roof boards. In Norway there is a requirement that all creosote in use should contain less than 50 mg/kg benzo(a)pyren (NTI 2000). PAH-components will evaporate from the creosote-treated materials in hot weather. In addition, PAH-components will evaporate during impregnation. The smallest PAH-components, like naphthalene, are most volatile, but several components used in wood treatment will not evaporate. It is assumed that 5-10 per cent will evaporate during the first 3-4 years (Evans 2000), depending on the creosote oil used.

#### 5.3.1.2. Method

Emission of PAH is calculated based on the import of creosote oil and emission factors. For simplicity, it is assumed that all PAH is emitted the same year as the materials are produced.

#### 5.3.1.3. Activity data

Imported data of creosote oil (product 27.07.9100) is given by statistics of foreign trade at Statistics Norway.

#### 5.3.1.4. Emission factors

The emission factors used, are those recommended used in the Norwegian Pollution Control Authority's guidelines for reporting to the North Sea agreement and based on foreign studies (table 5.1).

| Name                    | Wood treated in "old days"               | Recently treated wood       |
|-------------------------|------------------------------------------|-----------------------------|
|                         | 10 <sup>-6</sup> kg/m <sup>2</sup> /year | 10 <sup>-6</sup> kg/m²/year |
| Benzo(a)pyrene          | 0.74                                     | 0.74                        |
| Benzo(b)fluoranthene    |                                          |                             |
| Benzo(k)fluoranthene    | 0.15                                     | 0.15                        |
| Indeno(1,2,3-cd)pyrene  | 0.016                                    | 0.016                       |
| Fluoranthene            | 370                                      | 520                         |
| Benzo(ghi)perylene      |                                          |                             |
| Fenanthrene             | 1400                                     | 4800                        |
| Anthracene              | 52                                       | 260                         |
| Pyrene                  |                                          |                             |
| Benzo(a)fluorene        |                                          |                             |
| Benzo(b)fluorene        |                                          |                             |
| Benzo(a)anthracene      | 11                                       | 70                          |
| Crysene/triphenylene    | 13                                       | 13                          |
| Benzo(e)pyrene          |                                          |                             |
| Dibenzo(ah)anthracene   |                                          |                             |
| Dibenzo(ae)pyrene       |                                          |                             |
| Dibenzo(ah)pyrene       |                                          |                             |
| Dibenzo(ai)pyrene       |                                          |                             |
| Acenaphthene            |                                          |                             |
| Fluorene                |                                          |                             |
| Norwegian standard 9815 | 1 847 (100.0)                            | 5 664 (100.0)               |
| Borneff (PAH-6)         | 371 (20.1)                               | 521 (9.2)                   |
| LRTAP (PAH-4)           | 1 (0.1)                                  | 1 (0.0)                     |

Source: SFT (2001a).

#### 5.3.1.5. Uncertainties

In the inventory it is assumed that all PAH is emitted the same year as the materials are used. This is however not the case since PAH will be emitted as long as the creosote-treated materials are in use. However, most of it is likely to be emitted during the first years.

See also chapter 5.2.3.

#### 5.3.1.6. Completeness

No major missing emission components or sources are likely.

#### 5.3.1.7. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 5.3.2. Tarry jointing paste

#### 5.3.2.1. Method

Tarry jointing paste contains PAH-components and can evaporate to air. NILU/NIVA (1995) have estimated an annual emission of 125 kg/year. This estimation is based on imported tarry paste and a tar content of 16 per cent. This kind of jointing paste is mainly used at airports. There is no available PAH-profile for this emission, and due to the lack of data, the same PAH-profile as that of asphalt production is used (table 5.2). The emission is assumed to be rather constant each year.

Table 5.2. Emission of PAH from use of tarry jointing paste<sup>1</sup>. kg PAH/year

|                                                   |            | <br>• • | • | - |  |
|---------------------------------------------------|------------|---------|---|---|--|
| Norwegian standard 9815                           | 125        |         |   |   |  |
| Borneff (PAH-6)                                   | 3          |         |   |   |  |
| LRTAP (PAH-4)                                     | 0.0        |         |   |   |  |
| <sup>1</sup> Emission factors are from production | of asphalt |         |   |   |  |

Emission factors are from production of asphalt.

#### 5.3.2.2. Uncertainties

There is uncertainty regarding the PAH-profile since in lack of a specific profile, the same PAH-profile as for asphalt production is used.

#### 5.3.2.3. Completeness

There are a couple of very minor sources of PAH that are not included in the Norwegian inventory. PAH-containing products are used in tar paper and fishing net. According to NILU/NIVA (1995), the annual emissions are low. In Rypdal and Mykkelbost (1997), emission factors of 0.3 g/tonnes and 28 g/tonnes are given for tar paper and fishing net respectively, but emissions from these sources are not included in the inventory.

Also anticorrosive paint used for treatment of ships and platforms is a potential source for PAH emissions. In Rypdal and Mykkelbost (1997), emission factors of 7.5 mg/ship/year at shipyard, 1.9 mg/ship/year at harbour and 96 mg/ship/year in service are given. This presupposes treatment each third year. The emissions are low compared to other sources and not included in the inventory.

#### 5.3.2.4. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 5.4. Production of asphalt

IPCC -NFR 3C Last update: 01.09.05

#### 5.4.1. Method

#### PAH

Most of the asphalt produced in Norway uses the batch-method (Haakonsen et al. 1998). Emissions are calculated by multiplying the amount of asphalt produced with an emission factor.

#### Dioxin

Asphalt preparations and asphalt recycling are supposed to be a possible dioxin source, especially in countries using extensive recycling, and that use salt on the roads during winter. A lot of salt is used on Norwegian roads during winter, and when this asphalt is heated during recycling, it is assumed to give emissions of dioxins (Hansen 2000).

## 5.4.2. Activity data

The activity data used is production of asphalt in Norway. In NILU/NIVA (1995), there is a figure of production of asphalt from 1991. The same figure is used for all years due to the lack of better data.

## 5.4.3. Emission factors

#### PAH

NILU/NIVA (1995) estimated the emission of PAH to be 15 mg/tonne asphalt. This includes however naphthalene and other components not to be included in PAH after Norwegian standard (NS3815). However, if this emission factor is combined with speciation data from Jebsens miljøteknikk (1991), an emission factor of 2.8 mg/ton is found. This agrees well with the emission factor 2.0 mg/ton suggested by EPA (U.S. Environmental protection agency).

#### Dioxin

Two emission factors are found in the literature. OSPAR (The Oslo and Paris Convention) (SFT 2001a) suggest an emission factor of 0.047  $\mu$ g/ton asphalt. This emission factor is however assumed to be very high since it is based on data from a plant only re-circulating old asphalt. Fyns Amt (2000) operates with a much lower emission factor, which probably reflects dioxin emissions from preparation of new asphalt. Since Norway both makes new asphalt and recycles old asphalt it is assumed that an emission factor in between those suggested from OSPAR and Fyns Amt would be most correct for Norwegian conditions (table 5.3).

| Table 5.3 | Dioxin emission factor for asphalt production. µg I-TEQ/tonne produced asphalt |
|-----------|--------------------------------------------------------------------------------|
|-----------|--------------------------------------------------------------------------------|

| Source                 | Emission factor |
|------------------------|-----------------|
| OSPAR (SFT 2001a)      | 0.047           |
| Fyns Amt (2000)        | 0.0022          |
| Emission factor chosen | 0.025           |
|                        |                 |

#### 5.4.4. Uncertainties

The activity data used are from 1991, and due to the lack of better information, the same figure has been used for all years. The emission factors used, both for estimating PAH and dioxin, are also uncertain. The annual emissions are low however, and will not have any impact on the total level of these types of emissions.

#### 5.4.5. Completeness

No major missing emission components are likely.

#### 5.4.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 5.5. Other product use

IPCC 3D NFR 3D Last update: 01.09.05

## 5.5.1. Use of $N_2O$ in anaesthesia

#### 5.5.1.1. Method

 $N_2O$  is used in anaesthesia procedures and will lead to emissions of  $N_2O$ . The figures are based on  $N_2O$  data from the two major producers and importers in 2000. In the inventory, sale is set to be equal to consumption in each year.

#### 5.5.1.2. Activity data

For this source, actual sale of  $N_2O$  is used for the year 2000.

#### 5.5.1.3. Emission factors

As mentioned, no emission factors are used since the figures are based on sales of  $N_2O$ .

#### 5.5.1.4. Uncertainties

The figures are uncertain. There may be small importers not included in Statistics Norway's telephone survey with 2000 data, but the emissions are small, so it is believed that the uncertainty is at an acceptable level.

#### 5.5.1.5. Completeness

A minor consumption from small importers may be missing, but these will probably account for an insignificant fraction of the total N<sub>2</sub>O emissions.

#### 5.5.1.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 5.5.2. Use of N<sub>2</sub>O as propellant

 $N_2O$  is used as a propellant in spray boxes and this use will lead to emissions of  $N_2O$ . It is also used in research work, for instance in the food industry and at universities. Small amounts are used at engineering workshops, among others for drag-racing. There is no production of  $N_2O$  for these purposes in Norway.

#### 5.5.2.1. Method

Information on sale volumes is given from the plants to Statistics Norway. Statistics Norway assumes that all propellant is released to air.

#### 5.5.2.2. Uncertainties

The figures for 2000 are used for all years. It is believed that all figures from all major importers are included in the inventory.

#### 5.5.2.3. Completeness

No major missing emission components are likely.

#### 5.5.3. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 5.5.4. Mercury-containing products

#### 5.5.4.1. Method

Breakage of mercury-containing thermometers, fluorescent tubes and various measuring- and analytical instruments lead to emissions of mercury. The emission estimates are based on an annual report from the Norwegian Pollution Control Authority ("Miljøgifter i produkter"). The sale of mercury-containing thermometers and fluorescent tubes has decreased strongly since the mid-1990s, and the mercury content in these products has been reduced. A prohibition against the production, import and export of mercury-containing products began in 1998, except for some thermometers for professional use, which were then prohibited in 2001. Since these products have long operating life times, there will be emissions from these

products for many years. In the calculations, however, it is assumed that the emissions occur the same year as the product is sold.

For thermometers, it is assumed that all mercury is emitted in hospitals, despite some breakage of mercury-containing thermometers that occur in households. For fluorescent tubes, all emissions are placed in households, although emissions exist in all sectors. For measuring and analytical instruments, all emissions are placed under research and development work.

#### 5.5.4.2. Uncertainties

The emissions are assumed to be emitted the same year as the products are sold. This is not accurate, since most of these products have long operating life times. It is however impossible to predict the annual breakage and the mercury content in each of them.

#### 5.5.4.3. Completeness

No major missing emission components are likely.

## 5.5.4.4. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

## 6. Agriculture

```
IPCC 4
NFR 4
```

## 6.1. Overview

Agriculture contributes particularly to  $CH_4$ ,  $N_2O$  and  $NH_3$  emissions. Domestic animals are the major source of  $CH_4$  emissions from agriculture. Both enteric fermentation and manure management contribute to non-combustion emissions of  $CH_4$ . Manure management also generates emissions of  $N_2O$ .

Microbiological processes in soil lead to emissions of  $N_2O$ . Three sources of  $N_2O$  are distinguished in the IPCC methodology and are included in the Norwegian inventory:

- 1. direct emissions from agricultural soils (from use of synthetic fertilisers, animal excreta nitrogen used as fertiliser, biological nitrogen fixation, crop residues, industrial and urban wastes and cultivation of soils with a high organic content)
- 2. direct soil emissions from animal production (emissions from droppings on pastures)
- 3. N<sub>2</sub>O emissions indirectly induced by agricultural activities (N losses by volatilisation, leaching and runoff).

Animal manure and the use of fertiliser also generate emissions of  $NH_3$ . Another source of  $NH_3$  is treatment of straw using  $NH_3$  as a chemical. Non-combustion emissions of particles in the agricultural sector are also calculated.

There are also some emissions arising from the burning of agricultural residues described in chapter 6.5.

# 6.2. Emissions from enteric fermentation in domestic livestock

*IPCC 4A, Key category for CH*<sub>4</sub> *NFR* -*Last update: 31.03.08* 

## 6.2.1. Description

An important end product from the ruminal fermentation is methane (CH<sub>4</sub>). The amount of CH<sub>4</sub> produced from enteric fermentation is dependent on several factors, like animal species, production level, quantity and quality of feed ingested and environmental conditions. According to IPCC (IPCC 2001) the method for estimating CH<sub>4</sub> emission from enteric fermentation requires three basic items:

- No. 1 The livestock population must be divided into animal subgroups, which describe animal type and production level.
- No 2. Estimate the emission factors for each subgroup in terms of kilograms of CH<sub>4</sub> per animal per year.
- No 3. Multiply the subgroup emission factors by the subgroup populations to estimate subgroup emission, and sum across the subgroups to estimate total emission.

## 6.2.2. Method

The methodology for calculating  $CH_4$  from enteric fermentation for the main emission sources cattle and sheep have been updated to the Tier 2 approach for all years in 2006. The Tier 2 methodology used is described in more detail in Appendix H. The methodology for calculating  $CH_4$  from enteric fermentation for the other animal categories is in accordance with IPCC's Good Practice Guidance Tier 1 method (IPCC 1997a, 1997b). The numbers of animals of each kind and average emission factors of tonnes  $CH_4$ / animal/ year for each kind of animal are used to calculate the emissions.

#### 6.2.3. Activity data

The Tier 2 method of calculation requires subdividing the cattle and sheep populations by animal type, physiological status (dry, lactating or pregnant) live weight and age. Table 6.1 describes the animal categories used for cattle and sheep in the calculations.

For dairy cows additional information from the Cow Recording System, concerning annual milk production and proportion of concentrate in the diet has been used. The Cow Recording System also supplies information about slaughter age, slaughter weight and average daily weight gain (ADG) for growing cattle, which are utilized in the calculations for growing cattle.

 
 Table 6.1.
 Categories of cattle and sheep used in the Norwegian calculations of methane emission from enteric fermentation

| Categories of cattle and sheep        |
|---------------------------------------|
| Dairy cows                            |
| Beef cows                             |
| Replacement heifers, < one year       |
| Replacement heifers, > one year       |
| Finisher heifers, < one year          |
| Finisher heifers, > one year          |
| Finisher bulls, < one year            |
| Finisher bulls, > one year            |
| Breeding sheep, > one year            |
| Breeding sheep, < one year            |
| Slaughter lamb, < one year. Jan- May  |
| Slaughter lamb, < one year. Jun- Sept |

The main source of the livestock statistics is the register of production subsidies. The register covers 90-100 per cent of the animal populations, except for horses and reindeer. The register is used in order to get consistent time series of data. Animals are counted twice a year and the register is updated with these counts. The average number of the two counts is used. In addition to the animals included in the register of production subsidies, an estimate of the number of horses that are not used in farming is obtained from the Norwegian Agricultural Economics Research Institute (NILF). The number of reindeer is obtained from the Norwegian Reindeer Husbandry Administration.

For some categories of animals not living a whole year, for instance lambs, lifetime is taken into account to get a yearly average for the number of animals. An expert judgment suggests an average lifetime of 143 days for lambs (UMB 2001). The formula for calculating the average figure for lambs will then be:

(6.1) Lambs \* 
$$\frac{143}{365}$$

There exist some differences between these numbers and the FAO statistics. The explanation is that the figures to the FAO are supplied by the Norwegian Agricultural Economics Research Institute NILF. NILF elaborates an overall calculation for the agricultural sector, which is the basis for the annual negotiations for the economic compensation to the sector. The overall calculation includes a grouping of all agricultural activities, comprising area, number of animals and production data. This method is a little different from the one used by Statistics Norway. Differences include

- Different emphasis on the dates for counting, 31.07 and 31.12
- NILF does not register pigs under 8 weeks, whilst Statistics Norway does.

#### 6.2.4. Emission factors

For cattle and sheep the following basic equation are used to calculate the CH<sub>4</sub> emission factor for the subgroups (Tier 2):

(6.2) 
$$EF = (GE \cdot Ym \cdot 365 \, days/yr) / 55.65 \, MJ/kg \, CH_4$$

Where:

EF = emission factor, kg CH<sub>4</sub>/head/yr GE = gross energy intake, MJ/head/day Ym = CH<sub>4</sub> conversion rate, which is the fraction of gross energy in feed converted to CH<sub>4</sub>.

This equation assumes an emission factor for an entire year (365 days). In some circumstances the animal category may be alive for a shorter period or a period longer than one year and in this case the emission factor will be estimated for the specific period (e.g. lambs living for only 143 days and for beef cattle which are slaughtered after 540 days). Further description of the determination of the variables GE and Ym is given in Appendix H.

For the animal categories other than cattle and sheep the Tier 1 default emission factors for each kind of animal (IPPC 1997a, 1997b) is used. The emissions from domestic reindeer, deer, ostrich and fur-bearing animals are included in the Norwegian calculations. Emission factors for these animals are developed by scaling emission factors for other animals that are assumed most similar with regard to digestive system and feeding. The scaling is done by comparing average weights for the actual animal groups. The emission factor used for reindeer is 11 kg/animal/yr, and has been estimated by scaling the emission factors for goats and sheep according to carcass weight. The emission factor for deer of 52.64 kg/animal/yr has been estimated by scaling the emission factor for dairy cattle, and the emission factor 4.97 kg/animal/yr for ostrich by scaling the emission factor for horses. The emission factor for fur-bearing animals is set to 0.10 kg/animal/yr, and has been estimated by scaling the emission factor for swine.

| Table 6.2. | Emission factors for CH <sub>4</sub> from enteric fermentation and different animal types, |
|------------|--------------------------------------------------------------------------------------------|
|            | estimated with the Tier 1 method                                                           |

| Animal              | Emission factor (Tonnes/animal/year) |
|---------------------|--------------------------------------|
| Horses              | 0.018                                |
| Goats               | 0.005                                |
| Pigs                | 0.0015                               |
| Hens                | 0.00002                              |
| Turkeys             | 0.00002                              |
| Reindeer            | 0.011                                |
| Deer                | 0.053                                |
| Ostrich             | 0.0050                               |
| Fur-bearing animals | 0.0001                               |

Source: IPCC (1997a, 1997b) and Agricultural Statistics from Statistics Norway.

## 6.2.5. Uncertainties

#### Activity data

The data are considered to be known within  $\pm 5$  per cent. There is also an uncertainty connected to the fact that some animals are only alive part of the year.

#### Emission factors

Although the emissions depend on several factors and therefore vary between different individuals of one kind of animal, average emission factors for each kind are used in the tier 1 methodology for all animal categories except cattle and sheep, where a tier 2 methodolgy is used . The standard deviation of the emission factors is considered to be  $\pm 25$  per cent, which is the estimate from IPCC (IPCC 1997b). This uncertainty estimate is also used for the emission factors for cattle and sheep in the tier 2 methodology. Even if the calculations, due to considerations of a number of nutrition related factors have become more accurate, the standard deviation can still be the same, according to expert judgement (UMB 2006).

#### 6.2.6. Completeness

Major missing emission sources are not likely.

## 6.2.7. Source specific QA/QC

In 2001, a project was initiated to determine the exact number of animal populations. This was completed in 2002. The revised data on animal populations form the basis for the emission calculations for all years. In 2005-2006, Statistics Norway and the Norwegian Pollution Control Authority carried out a project in cooperation with the Norwegian University of Life Sciences, which resulted in an update of the emission estimations for cattle and sheep using a tier 2 method.

## 6.3. Emissions from manure management

*IPCC 4B Key category for* N<sub>2</sub>O and CH<sub>4</sub> *NFR 4B Last update:* 11.04.08

## 6.3.1. Description

The relevant pollutants emitted from this source category are  $CH_4$  (IPCC 4B(a)),  $N_2O$  (IPCC 4B(b)) and  $NH_3$  (NFR 4B).

Organic material in manure is transformed to  $CH_4$  in an anaerobic environment by microbiological processes. Emissions from cattle are most important in Norway for all three components. The emissions from manure depend on several factors; type of animal, feeding, manure management system and weather conditions (temperature and humidity).

During storage and handling of manure (i.e. before the manure is added to soils), some nitrogen is converted to  $N_2O$ . The amount released depends on the system and duration of manure management. Solid storage and dry lot of manure is the most important source.

Emissions of NH<sub>3</sub> from manure depend on several factors, e.g. type of animal, nitrogen content in fodder, manure management, climate, time of spreading of manure, cultivation practices and characteristics of the soil. In the IPCC default method a NH<sub>3</sub> volatilisation fraction of 20 per cent is used for the total N excretion by animals in the country. But in the Norwegian emission inventory, yearly updated NH<sub>3</sub> volatilisation values from Statistics Norway's NH<sub>3</sub> model are used, which are expected to give more correct values for Norway. The estimated national volatilisation fractions have differed between 17-20 per cent since 1990, and are now close to the IPCC default value of 20 per cent.

## 6.3.2. Method

 $CH_4$ 

Emissions of methane from manure are estimated using the following equation, in accordance with the IPCC Tier 2 method (IPCC 1997a, 1997b):

(6.3) 
$$E_i = \frac{N_i \cdot M_i \cdot VS_i \cdot B_{0_i} \cdot MCF_i}{1000}$$

- E: Emissions of methane
- N: Population of animals
- M: Production of manure (kg/animal/year)
- VS: Volatile solids (per cent)6
- $B_0$ : Maximum methane-producing capacity (m<sup>3</sup>/kg-VS)
- MCF: Methane conversion factor
- i: Species

<sup>&</sup>lt;sup>6</sup>Volatile solids (VS) are the degradable organic material in livestock manure (IPCC 1997a,b).

|                                | Manure (kg/ | VS         | B <sub>0</sub> | MCF        |
|--------------------------------|-------------|------------|----------------|------------|
|                                | animal/day) | (per cent) | (m³/kg-VS)     | (per cent) |
| Dairy cattle                   | 45          | 9.2        | 0.18           | 8          |
| Bulls > 1 year                 | 35          | 9.2        | 0.21           | 8          |
| Heifers > 1 year               | 30          | 9.2        | 0.21           | 8          |
| Non-dairy cattle < 1 year      | 15          | 9.2        | 0.21           | 8          |
| Horses                         | 25.5        | 16.4       | 0.21           | 8          |
| Sheep > 1 year                 | 2           | 19.5       | 0.19           | 5          |
| Sheep < 1 year                 | 1           | 19.5       | 0.19           | 5          |
| Diary goats                    | 1.8         | 23         | 0.19           | 5          |
| Other goats                    | 1           | 23         | 0.19           | 5          |
| Pigs for breeding              | 9           | 9.5        | 0.21           | 8          |
| Pigs for slaughter             | 4.5         | 9.5        | 0.21           | 8          |
| Hens                           | 0.16        | 15.6       | 0.25           | 8          |
| Chicks bred for laying hens    | 0.085       | 19.4       | 0.25           | 8          |
| Chicks for slaughter           | 0.085       | 19.4       | 0.25           | 8          |
| Ducks for breeding             | 0.17        | 16         | 0.25           | 8          |
| Ducks for slaughter            | 0.057       | 16         | 0.25           | 8          |
| Turkey and goose for breeding  | 0.7         | 16         | 0.25           | 8          |
| Turkey and goose for slaughter | 0.29        | 16         | 0.25           | 8          |
| Mink, males                    | 0.35        | 16         | 0.25           | 8          |
| Mink, females                  | 0.7         | 16         | 0.25           | 8          |
| Fox, males                     | 0.56        | 16         | 0.25           | 8          |
| Fox, females                   | 1.12        | 16         | 0.25           | 8          |
| Reindeer                       | 2           | 19.5       | 0.19           | 2          |
| Deer                           | 23.7        | 9.2        | 0.18           | 8          |
| Ostrich                        | 7.05        | 16.4       | 0.21           | 8          |

#### Table 6.3. Norwegian factors used to estimate CH₄ from manure management in the IPCC Tier 2 method

Source: Agricultural Statistics from Statistics Norway and Norwegian University of Life Sciences.

The factors M, VS,  $B_0$  and MCF are average factors meant to represent the whole country. The factor  $B_0$  represents the maximum potential production of methane under optimum conditions. MCF is a correction of  $B_0$  according to how the manure is handled reflecting Norwegian manure handling practices for each type of animal waste. The factors are estimated jointly by Statistics Norway and the Norwegian University of Life Sciences (Institute of Chemistry and Biotechnology, Section for Microbiology).

#### $N_2O$

In Norway, all animal excreta that are not deposited during grazing are managed as manure.  $N_2O$  from manure are estimated in accordance with the IPCC default method (IPCC 1997b), but with Norwegian values for N in excreta from different animals according to table 6.4. Norwegian values are also used for the fraction of total excretion per species for each management system (MS) and for pasture. The fractions are updated every year and are given in table 6.5. The distributions between different storage systems and pasture are consistent with the distributions used for calculating NH<sub>3</sub> emissions.

| Table 6.4. N in | excreta from | different animals |
|-----------------|--------------|-------------------|
|-----------------|--------------|-------------------|

|                                                     | kg/animal/year <sup>1</sup> |  |
|-----------------------------------------------------|-----------------------------|--|
| Dairy cattle                                        | 82                          |  |
| Heifer < 1 year                                     | 29                          |  |
| Bull < 1 year                                       | 24                          |  |
| Heifer > 1 year                                     | 35                          |  |
| Bull > 1 year                                       | 35                          |  |
| Horses                                              | 50                          |  |
| Sheep < 1 year                                      | 7.7                         |  |
| Sheep > 1 year                                      | 11.6                        |  |
| Goats                                               | 15.5                        |  |
| Pigs for breeding                                   | 18.3                        |  |
| Pigs for slaughtering <sup>2</sup>                  | 4.4                         |  |
| Hens                                                | 0.7                         |  |
| Chicks bred for laying hens <sup>2</sup>            | 0.147                       |  |
| Chicks for slaughtering <sup>2</sup>                | 0.053                       |  |
| Ducks, turkeys/ goose for breeding <sup>2</sup>     | 2                           |  |
| Ducks, turkeys/ goose for slaughtering <sup>2</sup> | 0.34                        |  |
| Mink                                                | 4.27                        |  |
| Foxes                                               | 9                           |  |
| Reindeer                                            | 6                           |  |
| Deer                                                | 12                          |  |
| Ostrich                                             | 12                          |  |

<sup>1</sup> Includes pasture.

<sup>2</sup> Per stalled animal. Stall we define as the room for one animal. An animal that lives one year needs one stall the whole year. But for example in a stall (or pen) for slaughter swine you breed more than one slaughter swine per year. This means that the N in excreta for dairy cattle is from one cattle per year, but for slaughter swine is "per stalled animal" equal to 2.5 slaughter swine per stall (or pen) per year.

Source: Sundstøl and Mroz (1988) and estimations by Statistics Norway.

#### Table 6.5. Fraction of total excretion per specie for each management system and for pasture 2006

|                  | Anaerobic<br>Lagoon | Liquid system | Solid storage<br>and drylot | Pasture range and paddock | Other manure<br>management<br>systems |
|------------------|---------------------|---------------|-----------------------------|---------------------------|---------------------------------------|
| Dairy cattle     | 0                   | 0.69          | 0.05                        | 0.26                      | 0                                     |
| Non-dairy cattle | 0                   | 0.64          | 0.05                        | 0.31                      | 0                                     |
| Poultry          | 0                   | 0.27          | 0.73                        | 0                         | 0                                     |
| Sheep            | 0                   | 0.26          | 0.30                        | 0.45                      | 0                                     |
| Swine            | 0                   | 0.88          | 0.12                        | 0                         | 0                                     |
| Other animals    | 0                   | 0.26          | 0.29                        | 0.45                      | 0                                     |

Source: Data for storage systems fromStatistics Norway (2004) and Gundersen and Rognstad (2001) (poultry) and data for pasture times from Tine BA (2003) (Dairy cattle, goat), Statistics Norway's Sample Survey 2001 (Statistics Norway 2002) (non-dairy cattle, sheep) and expert judgements.

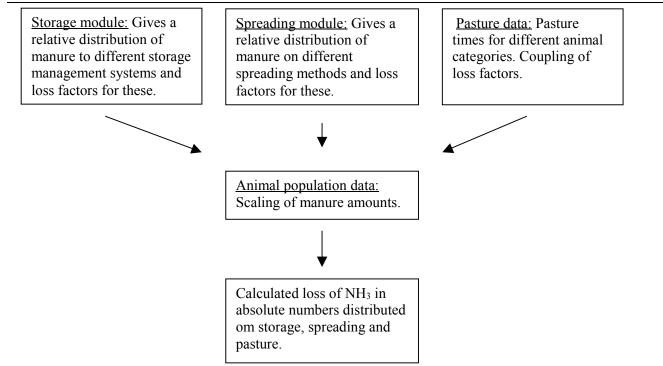
The emissions of nitrous oxide from manure are estimated using the following equation, in accordance with the IPCC Tier 2 method (IPCC 1997a, 1997b):

(6.4) 
$$E = \sum_{s} \left\{ \sum_{i} \left( N_{i} \cdot Nex_{i} \cdot MS_{i,s} \right) \right\} \cdot EF_{s} \right\}$$

E: Emissions of N<sub>2</sub>O-N (kg N<sub>2</sub>O-N/year, N<sub>2</sub>O-N is the nitrate amount in the nitrous oxide compound)

N: Population of animals

- Nex: Annual average N excretion (kg N/animal/year)
- MS: Fraction of total excretion per specie for each management system
- EF:  $N_2O$  emission factor (kg  $N_2O$ -N/kg N)
- s: Manure management system
- i: Species


For liquid system and solid storage and dry lot a correction is made for the NH<sub>3</sub> volatilisation by manure storage.

#### $NH_3$

Statistics Norway's NH<sub>3</sub> model is used for calculating the emissions of NH<sub>3</sub> from manure management. The principle of the model is illustrated in figure 6.1.

The storage module in the  $NH_3$  model gives the relative distribution of manure to the different storage management systems. Total emissions from storage are estimated by multiplying the different emission factors for the storage systems by the amount of manure for each storage system, and summarizing the results. The amount of manure is estimated by the number of animals and manure production factors for each type of animal (see table 6.4).

#### Figure 6.1. The principle of the NH<sub>3</sub> model



## 6.3.3. Activity data

 $CH_4$  and  $N_2O$ 

Emissions are estimated from the animal population. How the animal population is estimated is described in section 6.2.3.

#### $NH_3$

Activity data on storage systems are rare, and the only source practically available is the Sample survey of agriculture and forestry 2003 (Statistics Norway 2004) and the Statistics Norway survey of different storage systems in 2000 (Gundersen and Rognstad 2001). Data for storage systems are unavailable for other years. Analyses and estimations of the effects on emissions of the assumed changes in storage systems since 1990, show that the assumed change is of little significance to the emissions. In addition, data on animal populations are used to estimate the amounts of manure. How the animal population is estimated is described in section 6.2.3.

The manure is distributed to the following storage systems categories:

- Manure cellar for slurry
- Manure pit for slurry
- Indoor built up/deep litter
- Outdoor built up/enclosure
- Storage for solid dung and urine

Each of these categories are given for all combinations of the following productions and regions:

- Regions:
- South-Eastern Norway
- Hedmark and Oppland
- Rogaland
- Western Norway
- Trøndelag
- Northern Norway

Production:

- Cattle
- Pork
- Sheep and goat
- Poultry
- Horse, farm raised fur-bearing animals and rabbit

## 6.3.4. Emission factors

#### $CH_4$

The calculated average emission factors for different animal types are shown in table 6.6. They are country specific factors, which may deviate from the IPCC default values.

| lier 2                         |                                 |
|--------------------------------|---------------------------------|
|                                | Emission factor (kg/animal/day) |
| Dairy cattle                   | 14.41                           |
| Bulls > 1 year                 | 13.07                           |
| Heifers > 1 year               | 11.20                           |
| Non-dairy cattle < 1 year      | 5.60                            |
| Horses                         | 16.98                           |
| Sheep > 1 year                 | 0.90                            |
| Sheep < 1 year                 | 0.45                            |
| Dairy goats                    | 0.95                            |
| Other goats                    | 0.53                            |
| Pigs for breeding              | 3.47                            |
| Pigs for slaughter             | 1.74                            |
| Hens                           | 0.12                            |
| Chicks bred for laying hens    | 0.08                            |
| Chicks for slaughter           | 0.08                            |
| Ducks for breeding             | 0.13                            |
| Ducks for slaughter            | 0.04                            |
| Turkey and goose for breeding  | 0.54                            |
| Turkey and goose for slaughter | 0.23                            |
| Mink, males                    | 0.27                            |
| Mink, females                  | 0.54                            |
| Fox, males                     | 0.43                            |
| Fox, females                   | 0.87                            |
| Reindeer                       | 0.36                            |
| Deer                           | 7.58                            |
| Ostrich                        | 4.69                            |

Table 6.6. Average CH<sub>4</sub> emission factors for manure management in the Norwegian method.

Source: Agricultural Statistics from Statistics Norway.

## $N_2O$

The IPCC default values for  $N_2O$  emission factors from manure management are used in the calculations. These are consistent with the good practice guidance (IPCC 2001).

Table 6.7.  $N_2O$  emission factors for manure management per manure management system

| Manure management system  | Emission factor, kg N <sub>2</sub> O-N/kg N |  |  |  |
|---------------------------|---------------------------------------------|--|--|--|
| Anaerobic lagoon          | 0.001                                       |  |  |  |
| Liquid system             | 0.001                                       |  |  |  |
| Daily spread              | 0                                           |  |  |  |
| Solid storage and dry lot | 0.02                                        |  |  |  |
| Pasture range and paddock | 0.02                                        |  |  |  |
| Other system              | 0.005                                       |  |  |  |

Source: IPCC (1997b).

#### $NH_3$

Emission factors vary with production and storage system; in the model there is no variation between regions. The factors used are shown in table 6.8:

• The factors in table 6.8 are based on data from Denmark, Germany and Netherlands, since measurements of NH<sub>3</sub>-losses in storage rooms have so far not been carried out in Norway.

15

30

15

30

|                                               |                             | Storage system                |                                |                      |                                |                            |                                  |
|-----------------------------------------------|-----------------------------|-------------------------------|--------------------------------|----------------------|--------------------------------|----------------------------|----------------------------------|
|                                               | Manure cellar<br>for slurry | Open manure<br>pit for slurry | Manure pit for slurry with lid | Open flag-<br>stones | Indoor built<br>up/deep litter | Outdoor built up/enclosure | Storage for solid dung and urine |
|                                               | Gutter                      | Gutter                        |                                | D                    | rainage to gutter              | -                          |                                  |
| Cattle, milking cow:<br>Loss from animal room | 5                           | 5                             | 5                              | 5                    | 8                              | 8                          |                                  |
| Loss from storage room<br>Total loss          | 2<br>7                      | 9<br>14                       | 2<br>7                         | 2<br>7               | 15<br>23                       | 15<br>23                   |                                  |
| Pigs:                                         |                             |                               |                                |                      |                                |                            |                                  |
| Loss from animal room                         | 15                          | 15                            | 15                             | 15                   | 15                             | 15                         | 20                               |
| Loss from storage room                        | 4                           | 6                             | 2                              | 2                    | 25                             | 25                         | 30                               |
| Total loss                                    | 19                          | 21                            | 17                             | 17                   | 40                             | 40                         | 50                               |
| Sheep and goats:                              |                             |                               |                                |                      |                                |                            |                                  |
| Loss from animal room                         | 15                          | 15                            | 15                             | 15                   | 15                             | 15                         | 15                               |
| Loss from storage room                        | 2                           | 6                             | 2                              | 2                    | 10                             | 10                         | 10                               |
| Total loss                                    | 17                          | 21                            | 17                             | 17                   | 25                             | 25                         | 25                               |
| Poultry:                                      |                             |                               |                                |                      |                                |                            |                                  |
| Loss from animal room                         | 12                          | 10                            | 12                             | 12                   | 25                             | 25                         | 25                               |
| Loss from storage room                        | 15                          | 15                            | 15                             | 15                   | 25                             | 25                         | 25                               |
| Total loss                                    | 27                          | 25                            | 27                             | 27                   | 50                             | 50                         | 50                               |
| Other animals:                                |                             |                               |                                |                      |                                |                            |                                  |
| Loss from animal room                         | 5                           | 0                             | 0                              | 0                    | 15                             | 15                         | 15                               |

0

0

#### Table 6.8. Emissions factors for various storage systems and productions. Per cent losses of N of total N

Source: Morken (2003a).

Total loss

Loss from storage room

The factors are combined with the activity data in the survey (Gundersen and Rognstad 2001) and the Sample survey of agriculture and forestry 2003, and emission factors for  $NH_3$  emissions from storage of manure and stalled animals are calculated for production and region (table 6.9). To estimate losses, these emission factors are in turn multiplied with the amount of manure (based on number of animals and N-factors per animal). The number of animals is the only activity data that differs from year

0

0

15

30

# Table 6.9. Average emission factors for the manure storage systems used, distributed on type of animal production and region. Per cent of total N

|                 | South-Eastern<br>Norway | Hedmark/<br>Oppland | Rogaland | Western<br>Norway | Trøndelag | Northern<br>Norway |
|-----------------|-------------------------|---------------------|----------|-------------------|-----------|--------------------|
| Cattle          | 10.1                    | 8.4                 | 8.0      | 8.0               | 7.7       | 7.9                |
| Pigs            | 26.2                    | 22.1                | 19.8     | 20.3              | 21.0      | 21.2               |
| Sheep and goats | 22.5                    | 21.8                | 18.6     | 20.9              | 21.4      | 21.1               |
| Poultry         | 47.0                    | 46.4                | 38.7     | 37.3              | 41.7      | 44.5               |
| Other animals   | 25.7                    | 24.7                | 17.1     | 19.1              | 23.5      | 21.6               |

Source: Statistics Norway, NH<sub>3</sub>-model estimations.

0

0

#### 6.3.5. Uncertainties

10

15

Uncertainty estimates are given in Appendix D.

#### 6.3.5.1. Activity data

#### $CH_4$

The data for the number of animals are considered to be known within  $\pm 5$  per cent. Other activity data are the different kinds of treatment of manure (which will determine the emission factor), which have been assessed by expert judgements. This will contribute to the uncertainty.

#### $N_2O$

Emissions are estimated from the animal population. The data for the number of animals are considered to be known within  $\pm 5$  per cent.

For the emissions of  $N_2O$  from manure management, Norwegian data for N in excreta are used. The nitrogen excretion factors are uncertain, but the range is considered to be within  $\pm 15$  per cent (SFT 1999a). The uncertainty is connected to differences in excretion between farms in different parts of the country, that the survey farms may not have been representative, general measurement uncertainty and the fact that fodder and fodder practices have changed since the factors were determined.

There is also an uncertainty connected to the division between different storage systems for manure, which is considered to be within  $\pm 10$  per cent, and the division between storage and pasture, which is considered to be within  $\pm 15$  per cent.

## 6.3.5.2. Emission factors

#### $CH_4$

Norway is using the IPCC default factors (Tier 2 methodology) for the emission of  $CH_4$ , but with some national data. The emission factors are considered to have the uncertainty range  $\pm 25$  per cent (Rypdal and Zhang 2000).

#### $N_2O$

For the emission of  $N_2O$  from different storage systems, IPCC default emission factors are used. They have an uncertainty range of -50 to +100 per cent (IPCC 2001) except for the storage category "daily spread" where it is not applicable.

## NH3

Ammonia emissions from agriculture are estimated based on national conditions. There is not made any uncertainty analysis for the revised  $NH_3$  model, which has been in use since 2003. The revision of the model has reduced the uncertainty, but there are still uncertainties in several parameters (fraction of manure left on pastures, amount of manure, conditions of storage, conditions of spreading and climate conditions).

## 6.3.6. Completeness

Major missing emission sources are not likely.

## 6.3.7. Source specific QA/QC

In a Nordic project in 2002, the results for emissions of both  $CH_4$  and  $N_2O$  from manure management in the national emission inventories have been compared with the results using the IPCC default methodology and the IPCC default factors (Petersen and Olesen 2002). This study contributed to discover differences and gaps in each of the Nordic national methodologies.

Statistics Norway has, in cooperation with the Norwegian University of Life Sciences (UMB), made improvements in the calculation model for NH<sub>3</sub> emissions from the agricultural sector. Data sources used for the recalculations in the revised NH<sub>3</sub> model are coefficients from the Norwegian University of Life Sciences, and two surveys from Statistics Norway; a manure survey (Gundersen and Rognstad 2001) and the sample survey of agriculture and forestry (2001).

Statistics Norway's detailed manure survey gives more extended activity data which are better related to emission source categories, for manure management and spreading. New loss factors for different manure management categories are also used in the revised NH<sub>3</sub>-model. These factors are closer connected to specific activities.

## 6.4. Direct and indirect emissions from agricultural soils

*IPCC 4D, Key category for N<sub>2</sub>O NFR 4D Last update: 25.03.08* 

## 6.4.1. Description

Three sources of N<sub>2</sub>O from agricultural soils are distinguished in the IPCC methodology, namely:

- Direct emissions from agricultural soils (from use of synthetic fertilisers, animal excreta nitrogen used as fertiliser, biological nitrogen fixation, crop residues, industrial and urban wastes and cultivation of soils with a high organic content);
- Direct soil emissions from animal production (emissions from droppings on pastures);
- N<sub>2</sub>O emissions indirectly induced by agricultural activities (N losses by volatilisation, leaching and runoff).

The use of synthetic fertilisers, animal excreta nitrogen used as fertiliser, and droppings on pastures also results in emissions of  $NH_3$ . For the first two sources, the calculated amount of nitrogen that is emitted directly as  $N_2O$  has been corrected for the nitrogen emitted as  $NH_3$ .

## 6.4.2. Method

## 6.4.2.1. Synthetic fertiliser

#### $N_2O$

The direct emissions of  $N_2O$  from use of synthetic fertiliser are calculated from data on total annual amount of fertiliser sold in Norway and its nitrogen content corrected for the amount of synthetic fertilizer applied in forest. The resulting amount that is applied on agricultural fields is multiplied with the IPCC default emission factor. The emissions are corrected for NH<sub>3</sub> that volatilises during spreading.

#### $NH_3$

Statistics Norway's  $NH_3$  model (described in section 6.3.2) is used for calculating the emissions of  $NH_3$  from the use of synthetic fertiliser. The calculations of  $NH_3$  emissions from the use of synthetic fertiliser are based on the amounts of nitrogen supplied and emission factors for the percentage of nitrogen emitted as  $NH_3$  during spreading.

# **6.4.2.2.** Manure applied to soils N<sub>2</sub>O

In Norway, all animal excreta that are not deposited during grazing are used as manure and applied to soils. Further, it is assumed that animals do not emit  $N_2O$  themselves, but emissions of  $N_2O$  and  $NH_3$  from manure management before manure application on fields are taken into account (see section 6.3.2).

The emission of  $N_2O$  from manure used as fertiliser is calculated by multiplying the total amount of N in manure used as fertiliser with the IPCC default emission factor. The  $N_2O$  emissions are corrected for NH<sub>3</sub> that volatilises during spreading.

#### $NH_3$

Statistics Norway's NH<sub>3</sub> model is used for calculating emissions of NH<sub>3</sub> from spreading of manure on cultivated fields and meadow. The principle for the model is given in figure 6.1in chapter 6.3.2. A spreading module in the NH<sub>3</sub> model gives the relative distribution of manure spread as fertiliser, distributed on different spreading methods. Total emissions from spreading are estimated by emission factors for the different spreading methods multiplied by the amount of manure. The amount of manure is estimated by the number of animals and manure production factors for each type of animal.

## 6.4.2.3. $N_2O$ from biological nitrogen fixation

Another source of  $N_2O$  emissions is biological nitrogen fixation. The most important N-fixing crop in Norway is clover. The amount of nitrogen fixed by a

crop is very uncertain, and it is difficult to assign a conversion factor for  $N_2O$  emissions derived from nitrogen fixation (IPCC 1997a, 1997b). The amount of nitrogen fixed is multiplied with the IPCC default emission factor.

#### 6.4.2.4. $N_2O$ from crop residues

Concerning re-utilisation of nitrogen from crop residues, there is only limited information.  $N_2O$  emissions associated with crop residue decomposition are calculated by using the Tier 1b method, as described in the IPCC (2001). Due to lack of national or default factors, factors from the Swedish National Inventory (Swedish Environmental Protection Agency (2005) have been used for the Residue/Crop ratio for grass and green fodder, for  $Frac_{DM}$  for rapeseed, potato, roots for feed and green fodder, and for  $Frac_N$  for grass, rapeseed and green fodder. Factors from the Austrian National Inventory Report (Umweltbundesamt 2005) have been used for vegetables.

$$(6.5) F_{CR} = \sum_{i} \begin{bmatrix} Crop_{i} * (Re \ s \ / \ Crop)_{i} * Frac_{DMi} * \\ Frac_{Ni} * (1 - Frac_{BURNi} - Frac_{REMOVEDi}) \end{bmatrix}$$

 $F_{CR} = N$  in crop residue returned to soils (tonnes)  $Crop_i = Annual crop production of crop i (tonnes)$  Res/Crop = The residue to crop product mass ratio (Table 6.10)  $Frac_{DM} = Dry$  matter content (Table 6.10)  $Frac_{N} = Nitrogen content (Table 6.10)$  $Frac_{BURN} = Fraction of crop residue burned on field$ 

 $Frac_{REMOVED}$  = Fraction of crop residue removed used as fodder and straw in animal rooms

 Table 6.10.
 Factors used for the calculation of the nitrogen content in crop residues returned to soils

|                | Residue/Crop | Frac <sub>DM</sub> | Frac <sub>N</sub> |
|----------------|--------------|--------------------|-------------------|
| Grass          | 0.25         | 0.85               | 0.014             |
| Wheat          | 1.3          | 0.85               | 0.0028            |
| Rye            | 1.6          | 0.85               | 0.0048            |
| Ryewheat       | 1.45         | 0.85               | 0.0038            |
| Barley         | 1.2          | 0.85               | 0.0043            |
| Oats           | 1.3          | 0.85               | 0.007             |
| Rapeseed       | 1.8          | 0.91               | 0.0107            |
| Potatoes       | 0.4          | 0.2                | 0.011             |
| Roots for feed | 0.3          | 0.2                | 0.0228            |
| Green fodder   | 0.25         | 0.835              | 0.013             |
| Vegetables     | 0.8          | 0.2                | 0.005             |
| Peas           | 1.5          | 0.87               | 0.0142            |
| Beans          | 2.1          | 0.855              | 0.0142            |

<sup>1</sup> Including perennial grasses and grass-clover mixtures

Source: IPCC (2001), Swedish Environmental Protection Agency (2005), Austrian Umweltbundesamt (2005), Statistics Norway.

#### 6.4.2.5. $N_2O$ from industrial and urban wastes

No data are available for the amount of N in industrial waste applied as fertiliser, but this source is assumed to be very limited in Norway. Data for the  $N_2O$  emission arising from sewage sludge applied on fields has been calculated by multiplying the amount of nitrate in the sewage sludge applied with the IPCC default emission factor. Statistics Norway (waste water statistics) annually gives values for the amount of sewage sludge, and the fraction of the sewage sludge that are applied on fields. The N-content in the sludge is given in Statistics Norway (2001), and the same value of 2.82 per cent is used for all years.

#### 6.4.2.6. $N_2O$ from cultivation of soils with a high organic content

Large  $N_2O$  emissions occur as a result of cultivation of organic soils (histosols) due to enhanced mineralization of old, N-rich organic matter (IPCC 1997a, 1997b). The emissions are calculated using the IPCC default emission factor of 8 kg  $N_2O$ -N/ha per year, and an approximation of the area of cultivated organic soil in Norway. The same activity data are used for all years, due to lack of annual data. Jordforsk (the Norwegian Centre for Soil and Environmental Research, Bioforsk from 2006) has estimated that there is 64 438 ha organic agriculture soils based on more than 500 000 soil samples. However, they expect organic soils to be underrepresented in their sampling. Jordforsk expect the real area to be between 70 000 and 100 000 ha (Jordforsk 2004). It is assumed to be 85 000 ha in the calculations. The area estimate of organic soils is based on measurements of C in the soil (Jordforsk 2004).

# 6.4.2.7. Direct soil emissions from animal production (emissions from droppings on pastures)

#### $N_2O$

The fraction of the total amount of animal manure produced that is droppings on pastures is given by national data for the distribution of manure to different storage systems and data for pasture times (table 6.5). The amount of N deposited during grazing is multiplied with the IPCC default emission factor.

#### $NH_3$

Statistics Norway's NH<sub>3</sub> model is used for calculating the emissions of NH<sub>3</sub> from pastures. Animal population data, data for pasture times, and factors for the nitrogen amount in excreta for different animal categories give the nitrogen amounts for the animal categories on pastures. Specific emission factors by animal category are used.

#### 6.4.2.8. N losses by volatilisation

Atmospheric deposition of nitrogen compounds fertilises soils and surface waters, and enhances biogenic  $N_2O$  formation. Climate and fertiliser type influence the  $NH_3$  volatilisation. Deposition of  $NH_3$  is assumed to correspond to the amount of  $NH_3$  that volatilises during the spreading of synthetic fertiliser, storage and spreading of manure, and volatilisation from pastures. This amount is obtained from Statistics Norway's  $NH_3$  model. The  $N_2O$  emissions are calculated by multiplying the amount of N from deposition with the IPCC default emission factor.

#### 6.4.2.9. $N_2O$ from leaching and runoff

A considerable amount of fertiliser nitrogen is lost from agricultural soils through leaching and runoff. Fertiliser nitrogen in ground water and surface waters enhances biogenic production of N2O as the nitrogen undergoes nitrification and denitrification. The fraction of the fertiliser and manure nitrogen lost to leaching and surface runoff may range from 10 to 80 per cent. The IPCC (1997a, 1997b) proposes a default value of 30 per cent, but in the Norwegian inventory a national factor of 18 per cent is used that is believed to give better results under Norwegian conditions. This country specific factor has been calculated based on an estimate of the amount of nitrate leaching for the country on 33 kg N/hectare (Jordforsk 1998), which comes from a runoff model by Jordforsk (Norwegian Centre for Soil and Environmental Research),. The figure is an estimated average based on measurements of N-leaching in 12 small watershed areas, and expresses the discharge to nearest surface water recipient. Behind this average figure, there is a huge variation in N-leaching, depending on weather conditions, soil types, farm practices, geographical location etc. Climate data, soil data, agricultural practices etc. are monitored closely in these 12 watershed areas. The areas are chosen so that they together make up a representative selection of Norwegian farming with regard to farming practices, geographical localization and climate and soil conditions. The amount of nitrogen lost to leaching is multiplied with the IPCC default emission factor to calculate the emission of N<sub>2</sub>O.

#### 6.4.3. Activity data

 $N_2O$ 

The activity data significant for the estimation of direct and indirect emissions of  $N_2O$  from agricultural soils and  $N_2O$  emissions from pastures, and the sources for the activity data are listed in table 6.11.

Table 6.11. Activity data for non-combustion emissions of N<sub>2</sub>O in the agriculture

|                                               | Sources                                                                                                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consumption of synthetic fertilizer           | Norwegian Food Safety Authority (total sale),<br>NIJOS (2005) (fertilizing of forest)                                                                    |
| Number of animals                             | Statistics Norway (applications for productions<br>subsidies)                                                                                            |
| Distribution between manure storage systems   | Sample Survey of agriculture and forestry 2003<br>(Statistics Norway 2004) and Gundersen and<br>Rognstad (2001)                                          |
| Pasture times for different animal categories | Tine BA (2003) (Dairy cattle, goat), Statistics<br>Norway's Sample Survey 2001 (Statistics Norway<br>2002) (non-dairy cattle, sheep), expert judgements. |
| Biological N-fixation                         | Aakra and Bleken (1997)                                                                                                                                  |
| Crop yield                                    | Statistics Norway                                                                                                                                        |
| Amount of sewage sludge                       | Statistics Norway, waste water statistics                                                                                                                |
| Fraction sewage sludge applied on fields      | Statistics Norway, waste water statistics                                                                                                                |
| Area of cultivated organic soils              | Jordforsk (2004)                                                                                                                                         |

#### $NH_3$

#### Synthetic fertiliser

The Norwegian Food Safety Authority calculates a total value for annual consumption of synthetic fertilisers in Norway based on sale figures. These data are corrected for the amount of fertilizer used in forests. For the calculation of the emission of  $NH_3$  we need a specification of the use of different types of synthetic fertiliser. Due to the lack of newer data, we have to assume that the percentual distribution between the usage of different fertiliser types is the same as in 1994, see table 6.13.

#### Animal manure applied to soil and pasture

There are several sources of activity data on spreading of manure in the NH<sub>3</sub>model. The main sources are the manure survey in 2000 by Statistics Norway (Gundersen and Rognstad 2001), various sample surveys of agriculture and forestry 1990-2003 and the annual animal population. Animal population is updated annually. The animal population estimation methodology is described in section 6.2.3. Data from the manure survey do only exist for 2000, while the data from the sample surveys have been updated for several, but not all, years.

Data for time on pasture and share of animals on pasture are collected from the Sample Survey in Statistics Norway 2000 and from TINE BA (TINE BA is the sales and marketing organisation for Norway's dairy cooperative and covers most of the milk production). The data from TINE BA comprises pasture data for goats and milking cows and are updated annually. All other pasture data are from the Statistics Norway Sample survey 2000. The parameters used in the calculations and their sources are shown in table 6.12.

Table 6.12. Parameters included in the estimation of NH<sub>3</sub> emissions from manure

| Parameters (input)                                                                                                                     | Sources                                                                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Number of animals                                                                                                                      | Statistics Norway (applications for productions subsidies)                                                          |  |  |  |  |
| Nitrogen factors for manure                                                                                                            | Various sources, compiled by Statistics Norway                                                                      |  |  |  |  |
| Area where manure is spread, split on cultivated field and meadow.                                                                     | Statistics Norway (Sample Surveys of Agriculture, various years),<br>Gundersen and Rognstad (2001)                  |  |  |  |  |
| Area where manure is spread, split on spring and autumn.                                                                               | Statistics Norway (Sample Surveys of Agriculture), Gundersen and Rognstad (2001)                                    |  |  |  |  |
| Cultivation practices concerning the addition of water to manure, spreading techniques, and usage and time of harrowing and ploughing. | Gundersen and Rognstad (2001), expert judgements                                                                    |  |  |  |  |
| Pasture times for different animal categories                                                                                          | Tine BA (Dairy cattle, goats), Statistics Norway's Sample Survey 2001 (non-dairy cattle, sheep), expert judgements. |  |  |  |  |

## 6.4.4. Emission factors

 $N_2O$ 

The IPCC default emission factor of 0.0125 kg  $N_2$ O-N/kg N has been used for all sources of direct  $N_2$ O emissions from agricultural soils, with the following two exceptions: Emissions of  $N_2$ O from animals on pastures are calculated using the IPCC factor of 0.02 kg  $N_2$ O-N/kg N, and the emissions that occur as a result of cultivation of organic soils are calculated by using the IPCC default emission factor of 8 kg  $N_2$ O-N/ha per year (IPCC 2001).

The IPCC default emission factor of 0.01 kg N<sub>2</sub>O-N/kg NH<sub>3</sub>-N is used to calculate emissions of N<sub>2</sub>O from NH<sub>3</sub> volatilised. The IPCC default emission factor of 0.025 kg N<sub>2</sub>O-N/kg N lost to leaching/runoff is used.

# Table 6.13. Emission factors for NH<sub>3</sub>-N for different fertilisers and their share of the total use of fertiliser

| Fertiliser                             | Emission factor ( per<br>cent of applied N) | Used (per cent) |
|----------------------------------------|---------------------------------------------|-----------------|
| Urea                                   | 15                                          | 0.3             |
| Ammonium sulphate and Ammonium nitrate | 5                                           | 0.02            |
| Calcium nitrate                        | 0                                           | 9.7             |
| Calcium ammonium nitrate               | 1                                           | 10.7            |
| NPK (Nitrogen, phosphate, potassium)   | 1                                           | 77.6            |
| Other                                  | 1                                           | 1.6             |

Source: ECETOC (1994) and Norsk Hydro (1995).

#### $NH_3$

#### Synthetic fertiliser

Different types of synthetic fertilisers are being used, resulting in different emissions of NH<sub>3</sub>. Their share, based on data from 1994, and their NH<sub>3</sub> emission factors are shown in table 6.13.

#### Animal manure applied to soil and pasture

Emission factors for spreading of stored manure vary with spreading method, water contents, type and time of treatment of soil, time of year of spreading, cultivation, and region. The basic factors used are shown in table 6.14.

#### Table 6.14. Emissions factors for NH<sub>3</sub>-N for various methods of spreading of manure. Per cent of total N

|                              |                           |                       | Western and northern<br>Norway |        |        | Southern and eastern<br>Norway |        |        |
|------------------------------|---------------------------|-----------------------|--------------------------------|--------|--------|--------------------------------|--------|--------|
|                              |                           |                       | Spring                         | Summer | Autumn | Spring                         | Summer | Autumn |
| Meadow<br>Surface spreading  |                           |                       | 0.5                            | 0.6    | 0.4    | 0.5                            | 0.6    | 0.4    |
| Injection                    |                           |                       | 0.0                            | 0.0    | 0.05   | 0.0                            | 0.0    | 0.05   |
| Water mixing                 |                           |                       | 0.3                            | 0.3    | 0.2    | 0.3                            | 0.3    | 0.2    |
| Dry manure                   |                           |                       | 0.04                           | 0.1    | 0.1    | 0.04                           | 0.1    | 0.1    |
| <b>Open fields</b><br>Method | Time before down-moulding | Type of down-moulding |                                |        |        |                                |        |        |
| Surface spreading            | 0-4 hrs                   | plow                  | 0.2                            |        | 0.2    | 0.15                           |        | 0.3    |
| Surface spreading            | + 4 hrs                   | plow                  | 0.5                            |        | 0.35   | 0.4                            |        | 0.4    |
| Surface spreading            | 0-4 hrs                   | harrow                | 0.4                            |        | 0.35   | 0.35                           |        | 0.35   |
| Surface spreading            | + 4 hrs                   | harrow                | 0.5                            |        | 0.45   | 0.45                           |        | 0.45   |
| Water mixing                 | 0-4 hrs                   | plow                  | 0.1                            |        | 0.1    | 0.1                            |        | 0.15   |
| Water mixing                 | + 4 hrs                   | plow                  | 0.25                           |        | 0.2    | 0.2                            |        | 0.25   |
| Water mixing                 | 0-4 hrs                   | harrow                | 0.2                            |        | 0.2    | 0.2                            |        | 0.2    |
| Water mixing                 | + 4 hrs                   | harrow                | 0.3                            |        | 0.25   | 0.25                           |        | 0.25   |
| Dry manure                   |                           |                       | 0.04                           |        | 0.1    | 0.04                           |        | 0.1    |

Source: Morken and Nesheim (2004).

Table 6.15. Average NH<sub>3</sub> emission factors for cultivated fields and meadows after time of spreading and region. Per cent. Year 2000

|       |               |           |                                       | Rog                                           | aland                                                   |                                                               |                                                                     | Trøn                                                                                               | delag                                                                                                  |                                                                                                            | thern<br>way                                                                                                                      |
|-------|---------------|-----------|---------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Field | Meadow        | Field     | Meadow                                | Field                                         | Meadow                                                  | Field                                                         | Meadow                                                              | Field                                                                                              | Meadow                                                                                                 | Field                                                                                                      | Meadow                                                                                                                            |
| 32.9  | 43.1          | 35.3      | 43.0                                  | 23.2                                          | 49.1                                                    | 4.0                                                           | 40.4                                                                | 28.7                                                                                               | 46.8                                                                                                   | 5.1                                                                                                        | 49.5                                                                                                                              |
| 28.5  | 31.1          | 28.9      | 31.0                                  | 21.2                                          | 36.0                                                    | 10.0                                                          | 29.4                                                                | 31.1                                                                                               | 34.3                                                                                                   | 11.0                                                                                                       | 36.4                                                                                                                              |
|       | Field<br>32.9 | 32.9 43.1 | NorwayOppFieldMeadowField32.943.135.3 | NorwayOpplandFieldMeadowField32.943.135.343.0 | NorwayOpplandFieldMeadowFieldMeadow32.943.135.343.023.2 | NorwayOpplandField MeadowField Meadow32.943.135.343.023.249.1 | NorwayOpplandNorFieldMeadowFieldMeadowField32.943.135.343.023.249.1 | NorwayOpplandNorwayField MeadowField MeadowField MeadowField Meadow32.943.135.343.023.249.14.040.4 | NorwayOpplandNorwayField MeadowField MeadowField MeadowField Meadow32.943.135.343.023.249.14.040.428.7 | NorwayOpplandNorwayField MeadowField MeadowField MeadowField Meadow32.943.135.343.023.249.14.040.428.746.8 | NorwayOpplandNorwayNorField MeadowField MeadowField MeadowField MeadowField MeadowField32.943.135.343.023.249.14.040.428.746.85.1 |

Source: Statistics Norway, NH<sub>3</sub>-model estimations.

The factors in table 6.14 are combined with the activity data in the survey (Gundersen and Rognstad 2001) and a time series on mixture of water in manure, and emission factors for  $NH_3$  emissions from spreading of manure distributed to meadow and cultivated fields, time of season and region are calculated (see table 6.15). These factors are in turn connected to activity data that are updated in the years since 1990, i.e. number of animals (amount of manure), time of spreading and type of cultivation of the areas where the manure is spread.

The emission factors used for the calculation of the  $NH_3$  emissions from grazing animals are shown in table 6.16. These are the same as the emission factors used in Germany (Dämmgen et al. 2002) and Denmark (Hutchings et al. 2001).

| Table 6.16. | NH₃ emission factors from droppings from grazing animals on pasture. Per cent |
|-------------|-------------------------------------------------------------------------------|
|-------------|-------------------------------------------------------------------------------|

| N-loss/N app    | lied |  |
|-----------------|------|--|
| Cattle          | 7.5  |  |
| Sheep and goats | 4.1  |  |
| Reindeer        | 4.1  |  |
| Other animals   | 7.5  |  |

Source: Dämmgen et al. (2002), Hutchings et al. (2001).

#### 6.4.5. Uncertainties

#### 6.4.5.1. Activity data

There are several types of activity data entering the calculation scheme:

Sales of nitrogen fertiliser: The data are based on sales figures during one year (The Norwegian Food Safety Authority). The uncertainty in the sales figures is within  $\pm 5$  per cent (Rypdal and Zhang 2000). Another possible error is that sale does not equal consumption in a particular year due to storage. The distribution between the use of the various types of nitrogen fertiliser is fixed to an

investigation in 1994, and the error connected to this approach will probably increase over the years.

NH<sub>3</sub> losses from fertilizer containing ammonium (NH<sub>4</sub>) are related to soil pH. This could probably also lead to uncertainness, but Norwegian soils are very dominated by soils with low pH, which leads to small losses of this type.

Amount of nitrogen in manure: The figures are generated for each animal type, by multiplying the number of animals with a nitrogen excretion factor. The nitrogen excretion factors are uncertain. However, due to research on nitrogen leakage problems in parts of Norway, the certainty has been improved over time (the range is considered to be within  $\pm 15$  per cent (SFT 1999a)). The uncertainty is connected to differences in excreted N between farms in different parts of the country, that the farms included in the same survey may not have been representative, general measurement uncertainty and the fact that fodder and feeding practices have changed since the factors were determined.

The uncertainty connected to the estimate of the amount of manure is higher than for the amount of synthetic fertiliser used.

*Fate of manure:* There is significant uncertainty connected to the allocation of manure between what is used as fertiliser and droppings on pastures. *Deposition of other agricultural emissions:* The data are based on national  $NH_3$  emission figures. These are within ±30 per cent (SFT 1999a).

*Leakage of nitrogen:* The upper limit for the leakage is the applied nitrogen. The uncertainty is roughly about  $\pm 70$  per cent (SFT 1999a).

## 6.4.5.2. Emission factors

 $N_2O$ 

Uncertainty estimates used for the N<sub>2</sub>O emission factors are given in Appendix D.

#### $NH_3$

The uncertainty in the estimate of emissions of  $NH_3$  from use of fertiliser is assessed to be about ±20 per cent (Rypdal and Zhang 2001). This uncertainty could be lower if better data on fertiliser composition were obtained. The uncertainty is higher for animal manure (±30 per cent (Rypdal and Zhang 2001)). This is due to uncertainties in several parameters (fraction of manure left on pastures, amount of manure, conditions of storage, conditions of spreading and climate conditions) (Rypdal and Zhang 2001). Other factors that could lead to uncertainness are variation in storage periods, variation in house types and climate, variation in manure properties.

#### 6.4.6. Completeness

All sources described in the IPCC reporting guidelines are included in the estimates. However, the emission factors might not be reflecting national conditions.

#### 6.4.7. Source specific QA/QC

In a Nordic project in 2002, the estimates for emissions of direct and indirect  $N_2O$  from agricultural soils in the national emission inventories have been compared with the results using the IPCC default methodology and the IPCC default factors. The results for the Nordic countries are presented in a report (Petersen and Olesen 2002). The report concludes that there are significant differences between the Nordic countries in the application of the IPCC methodology. It states that there is a clear need to improve this IPCC methodology and to make it more locally adapted, but based on common guidelines. The emission factors for nitrous oxide from both direct and indirect sources should be differentiated more than what is

currently the case. There is a need to re-evaluate the principles of the current IPCC methodology for some of the emissions from manure management. In 2002, the calculation methodologies for the agricultural soil emission sources have been surveyed and one source has been added (industrial and urban waste). Some work is being done to find more updated activity data.

Statistics Norway has, in cooperation with the Norwegian University of Life Sciences (UMB), made improvements in the calculation model for NH<sub>3</sub> emissions from the agricultural sector. Data sources used for the recalculations in the revised NH<sub>3</sub> model are coefficients from the Norwegian University of Life Sciences, and two surveys from Statistics Norway; a manure survey (Gundersen and Rognstad 2001) and the sample survey of agriculture and forestry (2001).

Statistics Norway's detailed manure survey gives more extended activity data which are better related to emission source categories, for manure management and spreading. New loss factors for different manure management categories are also used in the revised NH<sub>3</sub>-model. These factors are closer connected to specific activities.

In 2006, the methodology used for estimating  $N_2O$  from crop residues has been changed to the method Tier 1b recommended in (IPCC 2001). The new method is more detailed and is supposed to better reflect the real emissions than the earlier used national method.

# 6.5. Emissions from agricultural residue burning (agricultural wastes)

IPCC 4F NFR 4F Last update: 15.05.06

#### 6.5.1. Description

Burning of agricultural residues gives emissions of a large range of standard combustion products. Included in the inventory are emissions of  $CH_4$ ,  $N_2O$ ,  $NO_X$  and CO, the heavy metals Pb, Cd, Hg, As, Cu and Cr, and PAH and dioxin.

#### 6.5.2. Method

 $CH_4$ ,  $N_2O$ ,  $NO_X$  and CO

The emissions from the burning of crop residues are being calculated according to the guidelines in the IPCC reference manual (IPCC 1997b).

| (6.6) | $CR = CRB^* Fdm^* Fo^* Fc$                |
|-------|-------------------------------------------|
| CR:   | Amount of carbon released (tonnes C/yr)   |
| CRB:  | Amount of crop residue burned (tonnes/yr) |
| Fdm:  | Dry matter fraction                       |
| Fo:   | Fraction oxidised                         |
| Fc:   | Carbon fraction                           |

The amount of carbon released is calculated according to equation (6.6). In the IPCC manual a default value of 0.9 for the fraction oxidised is given, and water content of 15 per cent for wheat and barley, which are the main cereals that gives straw in Norway. To find the C-fraction in Norwegian straw, the default values given for wheat and barley in the IPCC manual are being used, and scaled according to the per cent distribution between the two cereals in Norway in 1999 due to Food and Agriculture Organization of the United Nations (FAO 2002).

(6.7) 
$$E_i = CR * ER * MW_i * (N / C)$$

| E:   | Emissions (tonnes/yr)              |
|------|------------------------------------|
| CR:  | Carbon released (tonnes C/yr)      |
| ER:  | Emission ratio                     |
| MW:  | Molecular weight conversion factor |
| N/C: | Nitrogen/Carbon-ratio              |
| i    | Emission component                 |

| Table 6.17. | Factors used for agricultural residue burning in Norway | y |
|-------------|---------------------------------------------------------|---|
|             |                                                         |   |

| Factor          | Value                             |                          |                                        |                                                          | Source                                       |  |
|-----------------|-----------------------------------|--------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------|--|
| Fdm<br>Fo<br>Fc | n 0.85 0.9 0.4643                 |                          |                                        | IPCC (1997b)<br>IPCC (1997b)<br>IPCC (1997b), FAO (2002) |                                              |  |
| ER<br>MW<br>N/C | <i>CH₄</i><br>0.005<br>16/12<br>- | CO<br>0.06<br>28/12<br>- | <i>N</i> ₂O<br>0.007<br>44/28<br>0.012 | <i>NO<sub>x</sub></i><br>0.121<br>46/14<br>0.012         | IPCC (1997b)<br>IPCC (1997b)<br>IPCC (1997b) |  |

To calculate the emissions of  $CH_4$  and CO, the amount of carbon released is multiplied with an emission ratio. The emission ratio gives the mass of the actual chemical substance emitted (in C-units) related to the mass of the total carbon emissions by residual burning. To get total amount of emissions of the actual emission component, a molecular weight conversion factor must also be multiplied.

For  $N_2O$  and  $NO_X$ , the emission ratio gives the ratio of emissions of  $N_2O$  relative to the N-content of the crop residuals. This factor also has to be multiplied with the ratio between nitrogen and carbon.

For the emission ratios, the IPCC default values are used. As N/C ratio a value of 0.012 is used, which is the IPCC default value for wheat.

#### Heavy metals and POPs

Emission factors for heavy metals from agricultural residue burning are not found in the literature. Due to this lack of emission factors, emissions of heavy metals are calculated by using the same emission factors as burning of wood in small stoves in private households. The emission factors in PARCOM-ATMOS (TNO 1992) are used for Pb, Cd and Hg while the emission factors recommended in EPA (2002) are used for As, Cu and Cr.

The emissions of dioxin and PAH are calculated based on emission factors respectively from OSPAR (SFT 2001a) and NILU/NIVA (1995). The emission profile used for PAH is the one presented for open burning of garden waste (EPA 1998).

#### 6.5.3. Activity data

The annual amount of crop residue burned on the fields (CRB) is calculated based on crop production data from Statistics Norway, and estimates of the fraction burned made by the Norwegian Crop Research Institute and Statistics Norway (chapter 6.4.2.4).

#### 6.5.4. Emission factors

| Table 6.18. | Emission factors for agricultural residue burning. g emitted/tonnes crop residue |
|-------------|----------------------------------------------------------------------------------|
|             | burned                                                                           |

| builled              |                  |  |
|----------------------|------------------|--|
| Components           | Emission factors |  |
| Greenhouse gases     |                  |  |
| CH₄                  | 2 400            |  |
| N <sub>2</sub> O     | 46.9             |  |
|                      |                  |  |
| Precursors           |                  |  |
| NO <sub>x</sub>      | 1 700            |  |
| CO                   | 49 700           |  |
| Heavy metals         |                  |  |
| Pb                   | 0.05             |  |
| Hg                   | 0.1              |  |
| Cd                   | 0.1              |  |
| As                   | 0.159            |  |
| Cr                   | 0.152            |  |
| Cu                   | 0.354            |  |
|                      |                  |  |
| POPs                 |                  |  |
| PAH-total            | 30.0             |  |
| PAH-6                | 13.9             |  |
| PAH-4                | 3.0              |  |
| _Dioxin <sup>1</sup> | 17               |  |

<sup>1</sup> The unit of the dioxin emission factor is µg I-TEQ/tonnes crop residue burned.

#### 6.5.5. Uncertainties

Uncertainty estimates for the greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

#### Heavy metals

The emission factors used for heavy metals are not specific for agricultural residue burning, but for wood burning in small stoves in private households. It is expected that use of these emission factors will underestimate the emission of heavy metals from agricultural residue burning considering the two different burning conditions.

#### 6.5.6. Completeness

As mentioned, the estimations may not be entirely complete, since the statistics are not of particularly high quality or completeness.

#### 6.5.7. Source specific QA/QC

In 2002, the emissions of  $CH_4$ ,  $N_2O$ ,  $NO_X$  and dioxin from agricultural residual burning were included in the Norwegian inventory, and in 2003, the emissions of As, Cr and Cu were added. The time series were included but it should be noted that the figures for the earlier years have a higher uncertainty than the more recent years.

#### 6.6. Other agricultural emission sources

*IPCC -NFR 4G Last update: 01.09.05* 

#### 6.6.1. Description

Straw treated with NH<sub>3</sub> to be utilised as fodder is a source of NH<sub>3</sub> emissions in Norway. Agricultural activities are also a source of non-combustion emissions of particles.

#### 6.6.2. NH<sub>3</sub> emissions from treatment of straw

#### 6.6.2.1. Method

Emissions of  $NH_3$  from treatment of straw depend only on the amount of  $NH_3$  used. The total amount of  $NH_3$  used for treatment of straw in Norway is multiplied with the share of the  $NH_3$  that is not integrated in the straw.

#### 6.6.2.2. Activity data

The amount of NH<sub>3</sub> used per year is obtained from Norsk Hydro and the Norwegian Agricultural Supply Cooperative. The area of cultivated fields is given from a sample survey of agriculture and forestry made by Statistics Norway (Statistics Norway 2003).

#### 6.6.2.3. Emission factor

It is estimated that 65 per cent of the NH<sub>3</sub> applied is not integrated with the straw, and is therefore emitted after the treatment (Morken 2003b). The same estimation is being used in Denmark.

#### 6.6.2.4. Uncertainties

Uncertainty in the estimate of emissions from  $NH_3$  treatment of straw is rather low (±5 per cent) (Rypdal and Zhang 2001).

#### 6.6.2.5. Completeness

Major missing emission components are not likely.

#### 6.6.2.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 6.6.3. Particle emissions from the agricultural sector

Agriculture is responsible for various types of non-combustion emissions of particles. This is for example dust from crop that is harvested, soil dust from work with agricultural machines, wood particles from felling of trees etc.

#### 6.6.3.1. Method

Due to the relatively few analyses of particle emissions from agriculture the calculations from this source are limited. Emission figures for three types of noncombustion emissions of particles from the agriculture are calculated; emissions from reaper, and from loading and transport on the fields. The total grain cultivation area in Norway is multiplied with emission factors, which gives emissions per area unit. For other actual activities in the agricultural fields, no emission factors have been found.

#### 6.6.3.2. Activity data

The total grain cultivation area in Norway is used as activity data. Data source used are statistics over the area on holdings used for grain seeds from Statistics Norway.

#### 6.6.3.3. Emission factor

The emission factors used are shown in table 6.19. These factors refer to wheat cultivation, but they are used for all grain cultivation in Norway. The factors are based on measurements of particles with a diameter less than 7  $\mu$ m. No measurements have been made for estimating the ratio between PM<sub>2.5</sub>, PM<sub>10</sub> and TSP. Therefore the estimation has been made that the calculated emission figures (in reality PM<sub>7</sub>) is PM<sub>10</sub> = PM<sub>2.5</sub> = TSP.

| Table 6.19. | Emission factors for non-combustion emissions of particles from the agricultural |
|-------------|----------------------------------------------------------------------------------|
|             | sector                                                                           |

| Emission source | g/km² |
|-----------------|-------|
| Reaper          | 170   |
| Loading         | 12    |
| Transport       | 110   |

Source: EPA (1998).

#### 6.6.3.4. Uncertainties

No uncertainty analysis has been made for this source. The few studies made in this field give a relatively high uncertainty for this source.

#### 6.6.3.5. Completeness

The information about this emission source is poor, and it is likely that there are more particle sources from the agricultural sector than included here.

#### 6.6.3.6. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 7. Waste

IPCC 1A and 6 NFR 1A1a

# 7.1. Overview

This sector includes emissions from landfills (6A), waste water handling (6B) and small scale waste incineration (6C). Waste incineration from plants with energy utilization is accounted for under 1A (Energy combustion). Waste incineration included here are emissions of other greenhouse gases than  $CO_2$  from natural gas flared outside the energy sector, methane flared at landfills and combustion of hospital waste in hospital incinerators and cremations.

# 7.2. Solid waste disposal on land

*IPCC 6A, Key category for CH*<sub>4</sub> *NFR 6A* 

#### 7.2.1. Managed Waste Disposal on Land

*IPCC 6A1 NFR 6A1 Last update: 14.02.08* 

#### 7.2.1.1. Description

 $CH_4$  and non-fossile  $CO_2$  are emitted during biological decomposition of waste. This transformation of organic matter takes place in several steps. During the first weeks or months, decomposition is aerobic, and the main decomposition product is  $CO_2$ . When there is no more oxygen left, the decomposition becomes anaerobic, and methane emissions start to increase. After a year or so,  $CH_4$  emissions reach a peak, after that the emissions will decrease over some decades (SFT 1999d and Barlaz 2004).

The emissions of methane have decreased slightly since 1990 due to reduction of the amount of degradable waste disposed at disposal sites. This reduction in emissions is the result of several measures which were introduced in the waste sector particularly in the 1990s. With some few exceptions, it is prohibited to dispose easy degradable organic waste, sewage sludge included, at landfills in Norway. In 1999 a tax was introduced on waste delivered to final disposal sites. In 2007 this tax was 416 NOK per tonne waste disposed at landfill sites with double side and bottom lining, (rising to 434 NOK per tonne in 2008), and 541 NOK per tonne waste disposed at landfills without double lining (rising to 566 NOK per tonne in 2008). In addition, landfills receiving biodegradable waste (waste containing degradable organic carbon (DOC)) are required to collect and treat landfill gas. In 2006 a total of 57 landfills had installed a landfill gas extraction system, and approximately 22 ktonnes of methane was recovered. In addition, the amounts of waste recycled have increased significantly since 1990. The total amount of waste generated has increased by about 30 per cent since 1995, but due to the increase in material recycling and energy utilization in the period there has not been a similar increase in degradable waste to landfills.

In 2005 Statistics Norway took over the responsibility for the methane calculating model. Then considerable deviations were discovered between Statistics Norway's improved waste statistics, and the waste statistics from 1998-99 used in the model. In addition, an error in the calculation of manufacturing waste deposited at the industrial disposal sites was discovered. This could be of great importance to the calculated methane emissions. It was on this background Statistics Norway in November 2005 started a quality check of the waste calculations in the methane model (Skullerud 2006). A further improvement of Statistics Norway's waste statistics has been made, due to an improved allocation of landfilled industrial

waste to material (SSB 2006). By a mistake, the industrial sludge was not adjusted for wood content; this has now been corrected for all years. In addition, it was also by a mistake corrected for a DOC content of 320 kg/tonnes, instead of 400 kg/ tonne of waste. Future improvements must be expected as well, which may affect the calculated methane emissions. However, future changes in historical waste amounts are believed to be of minor importance to the calculated methane emissions.

Statistics Norway's quality check of the methane calculations also comprises an updating of the decomposition time for wood, paper and easy degradable waste, and new data series for extraction of methane from Norwegian landfills.

# 7.2.1.2. Method

 $CH_4$ 

In 1999, the Norwegian Pollution Control Authority (SFT) developed a model for calculating methane emissions from landfills (SFT 1999d). The model was based on the IPCC theoretical first order kinetics methodologies (IPCC 1997b) and the method was consistent with the IPCC Good Practice Guidance. The effect of weather conditions had also been taken into account.

However, both the former Norwegian and the IPCC 1997 model contain a mathematical error. As the rate of reaction decreases over the year, the average rate of reaction over the year has to be found. This is done through integration and neither the former Norwegian model, nor the IPCC 1997 model, contained such integration. The result was that with a half-life time of 10 years the emissions were underestimated by 3.5 per cent. The models were also complicated and difficult to understand, and gave a poor view into the calculations. Therefore a new model taking account of these issues was developed in 2004. Methane emissions are in the new model calculated from the amount deposited every year, and the amounts added at the end (SFT 2005a).

This new model starts with the calculation of the amount of dissimilating  $DDOC_m$  (mass of dissimilable organic carbon = the part of DOC (degradable organic carbon) that will dissimilate (degrade) under anaerobic conditions) contained in the amount of material being landfilled. This is done in exactly the same way as in the former Norwegian model.

As this is a first order reaction, the amount of product formed will always be proportional to the amount of reactant. This means that it is of no concern to the process when the  $DDOC_m$  came into the landfill. As far as we know the amount of  $DDOC_m$  in the landfill at the start of the year, all years can be considered to be the first calculating year. This simplifies calculations. With reaction start set to be on January 1 the year after landfilling, the "motor" of the new calculating model has been made out of these two very simple equations:

| (7.1) | $DDOC_{mdiss} = (DDOC_{ma(ly)} + DDOC_{md}) * (l - e^{-k})$ |
|-------|-------------------------------------------------------------|
| (7.2) | $DDOC_{ma} = (DDOC_{ma(ly)} + DDOC_{md}) * e^{-k}.$         |

Equation (7.1) calculates DDOC mass dissimilating ( $DDOC_{mdiss}$ ), from the not dissimilated DDOC mass accumulated from last year ( $DDOC_{ma(ly)}$ ), plus DDOC mass landfilled last year ( $DDOC_{md}$ ). Equation (7.2) calculates the DDOC mass accumulated as not dissimilated ( $DDOC_{ma}$ ), for next year's calculations from the same basis as equation (7.1).

After that the amount of dissimilated  $DDOC_m$  has been found,  $CH_4$  produced and  $CH_4$  emitted is found by using the same set of procedures and factors as in the former model.

The full set of equations is found below. If the reaction is set to start in the year of landfilling, separate calculations have to be made for that year and two extra calculating equations will have to be added. They are included in the equations below.

To calculate DDOC<sub>md</sub> from the amount of material

(7.3) 
$$DDOC_{md} = W * MCF * DOC * DOC_{f}$$

To calculate DDOC<sub>m</sub> accumulated in the SWDS

(7.4) 
$$DDOC_{ml} = DDOC_{md} * e^{-k*((13-M)/12)}$$

(7.5)  $DDOC_{ma} = DDOC_{ma(ly)} * e^{-k} + DDOC_{ml}$ 

To calculate DDOC<sub>m</sub> dissimilated

$$(7.6) DDOC_{mdi} = DDOC_{md} * (1-e^{-k} * ((13-M)/12))$$

(7.7) 
$$DDOC_{mdiss} = DDOC_{ma(ly)} * (1-e^{-k}) + DDOC_{mdi}$$

To calculate methane produced from DDOC dissimilated

(7.8)  $CH_{4 prod} = DDOC_{mdiss} * F * 16/12$ 

To calculate methane emitted

(7.9)  $CH_4$  emitted in year  $T = (\sum CH_4 \operatorname{prod} (T)) - R(T)) * (1-OX)$ 

Where:

| willere.              |                                                                        |
|-----------------------|------------------------------------------------------------------------|
| W                     | : amount landfilled                                                    |
| MCF                   | : Methane Correction Factor                                            |
| М                     | : Month number for reaction start. (January 1, year after landfilling, |
|                       | M=13)                                                                  |
| DOC                   | : Degradable Organic Carbon                                            |
| DOC <sub>f</sub>      | : Fraction of DOC dissimilating, anaerobic conditions                  |
| DDOC                  | : Dissimilatable Organic Carbon, anaerobic conditions                  |
| DDOC <sub>md</sub>    | : DDOC mass landfilled                                                 |
| DDOC <sub>ml</sub>    | : DDOC mass left not dissimilated from DDOCm landfilled, year of       |
|                       | landfilling                                                            |
| DDOC <sub>ma</sub>    | : DDOC mass left not dissimilated at end of year                       |
| DDOC <sub>ma(ly</sub> | ) : DDOC mass accumulated from last year                               |
| DDOC <sub>mdi</sub>   | : DDOC mass dissimilated from DDOCm landfilled, year of landfilling    |
| DDOC <sub>mdiss</sub> | : DDOC mass dissimilated in calculation year                           |
| CH <sub>4 prod</sub>  | : CH <sub>4</sub> produced                                             |
| F                     | : Fraction of CH <sub>4</sub> by volume in generated landfill gas      |
| 16/12                 | : Conversion factor from C to CH <sub>4</sub>                          |
| R(T)                  | : Recovered CH <sub>4</sub> in year of calculation                     |
| OX                    | : Oxidation factor (fraction).                                         |
|                       |                                                                        |

#### 7.2.1.3. Activity data

The methane is formed by decomposition of biological waste in landfills. The decomposition time varies from material to material. Easy degradable waste (food, etc.) has shortest decomposition time, while wood waste has the longest decomposition time. Other materials do not emit methane at all, either because they are inorganic (metal, glass, etc.) or because they break down extremely slowly (plastic). It is therefore of vital importance for the calculations that the waste

quantities used as input to the model are correct, both total quantity and the distribution by material.

Data over the amount of different waste materials is taken from Statistics Norway's waste accounts. Statistics Norway's waste accounts consist of data from several sources, such as special surveys, register data and statistics, indirect data sources as production statistics, foreign trade statistics and different factors combined with activity data. Data from all these sources are put together and used in the waste accounts, which give an overview of waste quantities in Norway, divided into type of product, material, industry and method of treatment.

For the new model, historic data have been recalculated from the former waste category basis, to a material waste basis. The amount of each materialtype deposited is estimated based on surveys and sorting analyses. The model is based on types of waste materials for instance food waste, paper, wood and textiles. All sources of waste, MSW, industrial, commercial, construction and demolition waste are accounted for in these annual surveys.

#### Municipal landfills

Historical data for years before 1973 on municipal solid waste deposited are based upon:

- 1. New statistics on municipal waste, divided into household waste and industrial waste (1974 to 1997)
- 2. Estimates based on population
- 3. Assumption that less people were connected to public waste management during the forties and fifties.

Since 1974 the amount of municipal waste is based upon questionnaires and linear interpolation. Surveys where held in 1974, 1980, 1985 and every year from 1992 to 1995. The amounts of waste going to landfills is allocated to material based on sorting analyses. For the period 1995-2002 the amounts of waste is taken from the waste accounts, with two exceptions:

- Wood content in sludge deposited at industrial sites is added to the amount of deposited wood from the waste accounts.
- Textiles are supposed to consist of 50 per cent plastic (SFT 2005a). The plastic fraction of deposited textiles is therefore subtracted from the amount of deposited textiles and added to deposited plastic.

#### Industrial disposal sites

Historical data for industrial waste for years before 1970 are made by extrapolation using the same trend as for municipal waste. After 1970, literature studies and information from the industrial waste study from the years 1993, 1996 and 1999 have been used. Linear interpolation is used for the years where data are missing.

Data from each landfill site with methane recovery units are compiled by the county governors and reported to the Norwegian Pollution Control Authority. These data are imported into the national model for calculating methane from landfills.

#### 7.2.1.4. Emission factor

The emission factors used in the Norwegian model are a mixture of countryspecific factors and IPCC default values. Table 7.1 shows some of the variables used in the calculations of methane emissions from solid waste disposals.

#### 7.2.1.5. Uncertainties

The amount of different waste materials is considered to be known within  $\pm 20$  per cent. The emission factors used are considered to have the uncertainty range  $\pm 30$  per cent. More information about the uncertainty estimates for this source is given in Appendix D.

The importance of the uncertainties in calculations of methane from landfills will decrease with decreased source contribution and improved IPCC default parameter values, but most likely it will still remain among the main uncertainties in the Norwegian GHG inventory.

The methodology Statistics Norway/the Norwegian Pollution Control Authority use to calculate methane emissions from landfills is identical for the whole time series. The quality of the activity data used in the model has been improved in the last years. This is also the case regarding the data for recovered methane.

| Table 7.1. | Variables used in the calculations of methane from landfills |
|------------|--------------------------------------------------------------|
|            |                                                              |

|                                              | Type of waste |             |             |             |  |
|----------------------------------------------|---------------|-------------|-------------|-------------|--|
| Variables                                    | Food waste    | Paper       | Wood        | Textiles    |  |
| t <sub>1/2</sub> (half life time)            | 3.7 years     | 11.6 years  | 23.1 years  | 11.6 years  |  |
| DOC                                          | 0.150 Mg/Mg   | 0.400 Mg/Mg | 0.400 Mg/Mg | 0.400 Mg/Mg |  |
| DOC <sub>f</sub> (Part of DOC dissimilating) | 0.5           | 0.5         | 0.5         | 0.5         |  |
| Ox. Methane oxidized in top layer            | 0.1           | 0.1         | 0.1         | 0.1         |  |
| F. Part of methane in generated landfill     |               |             |             |             |  |
| gas                                          | 0.5           | 0.5         | 0.5         | 0.5         |  |

Source: SFT (2005a) and Skullerud (2006).

#### 7.2.1.6. Completeness

Major missing emission sources are not likely.

#### 7.2.1.7. Source specific QA/QC

Internal checks of time series for all emission sources are made every year when an emission calculation for a new year is done.

Internal checks of time series of waste data, methane recovered at landfill sites and calculated methane emissions from the model are carried out and corrections are made if any kinds of errors are found. If there is a change in the trend of methane recovered from a landfill site, the site is contacted to identify a plausible explanation. Corrections are made if there is no plausible explanation of the change.

#### 7.2.2. Unmanaged Waste Disposal Sites

*IPCC 6A2 NFR 6A2 Last update: 01.09.05* 

In Norway landfilling of solid waste has been regulated and controlled for some decades, and unmanaged landfills are from before 1970. Furthermore, the methane emissions for all years have been calculated from the total amounts of landfilled materials. Therefore Norway does not separately report emissions from unauthorized/unmanaged SWDSs.

## 7.3. Waste water handling

*IPCC 6B NFR 6B Last update: 14.04.08* 

#### 7.3.1. Method

 $CH_4$ 

Emissions of methane from domestic and commercial waste water have been calculated. Emissions from water consumption in food processing industries (breweries, dairies and slaughterhouses) are included for all years since 1990, as recommended by the review team in 2007. Emissions of methane from industries with their own waste water treatment plants are small, because the plants are mainly aerobic or the methane gas is being recovered.  $CH_4$  from domestic sludge is calculated together with the waste water emissions.

Emissions of methane from domestic waste water are calculated according to the IPCC default methodology:

(7.10) 
$$E_i = N_i * D * B_0 * MCF$$

- E: Emissions of methane
- N: Population in Norway
- D: Organic load in biochemical oxygen demand (kg BOD/1000 persons/year)
- $B_0$ : Maximum methane-producing capacity (kg CH<sub>4</sub>/kg DC)
- MCF: Methane conversion factor
- i: Year

Emissions of methane from water consumption in each food processing industry are calculated using the same equation as for domestic water, except that COD is estimated based on water consumption multiplied with mg COD/l wastewater.

(7.11) 
$$E_i = W_i * COD_i * B_0 * MCF$$

E: Emissions of methane

W: Water consumbtion/economic turnover (mill NOK)

CO Organic load in chemical oxygen demand (kg COD/unit wastewater) D:

- $B_0$ : Maximum methane-producing capacity (kg CH<sub>4</sub>/kg DC)
- MC Methane conversion factor
- F:
- i: industry

 $N_2O$ 

For this source emissions of nitrous oxide from domestic and commercial wastewater have been calculated. Before 2008, only  $N_2O$  emissions from the part of the population connected to large waste water treatment plants (>50 pe) have been estimated. As recommended by the review team Norway now estimates  $N_2O$  emissions from human sewage, which is not treated in sewage treatment plants.

Emissions of  $N_2O$  from the part of the population not connected to large waste water plants (> 50 pe) are estimated by Tier 1 method, using the equation :

 $N_2O_{(S)}$  = Protein x Frac<sub>NPR</sub> x NR<sub>PEOPLE</sub> x EF<sub>6</sub>

| $N_2O_{(s)}$ :         | $N_2O$ emissions from human sewage (kg $N_2O$ -N/ yr)                       |
|------------------------|-----------------------------------------------------------------------------|
| Protein:               | annual per capita protein intake (kg/person/yr)                             |
| NR <sub>PEOPLE</sub> : | number of people not connected to treatment plants                          |
| $EF_6$ :               | emissions factor (default 0.01 (0.002-0.12) kg N2O -N/kg sewage- N          |
|                        | produced)                                                                   |
| Frac <sub>NPR</sub> :  | fraction of nitrogen in protein (default = $0.16 \text{ kg N/kg protein}$ ) |

The N<sub>2</sub>O from sewage sludge applied on fields is included under Agriculture in chapter 6.4.2.5. For N<sub>2</sub>O, emissions are calculated from nitrification/ denitrification that occurs in the pipelines and the N<sub>2</sub>O emissions that occur as a by-product in biological nitrogen-removal plants. This is assumed to be a more precise method than the recommended IPCC method that is based on the annual per capita protein intake. For the part of the population that is not connected to treatment plants, the N<sub>2</sub>O emissions are estimated as recommended by the IPCC review team. The IPCC method based on the annual per capita protein intake is being used.

# 7.3.2. Activity data

#### $CH_4$

Data for the number of people in Norway are given from Statistics Norway's population statistics. The IPCC default value of 18 250 kg BOD/1000 persons/year is used for D, the degradable organic component in the waste, for all years.

Industrial wastewater from breweries, dairies and slaughterhouses are released into domestic sewer systems. Emissions of methane from industries with their own wastewater treatment plants are small, because the plants are mainly aerobic or the methane gas is being recovered.

As recommended by the review team, Norway has estimated emissions of  $CH_4$  from food processing industries. The estimations are based on water consumption, in NACE 15 for the year 2004 (Stave 2006) and information from National Accounts on gross values from industry (NACE 15) in constant 2000 prices for the period 1990 to 2006.

Data for the economic turnover in million NOK for each industry are taken from Statistics Norway National Accounts on gross values from industry (NACE 15).

#### $N_2O$

A yearly estimate for the amount of nitrate supplied to the pipelines is obtained from Statistics Norway's waste water statistics. These figures are used for estimating  $N_2O$  emissions from the part of the population connected to waste water treatment plants.

Data for the amount of nitrogen that is removed in the biological step in the actual waste water plants is obtained from Statistics Norway's waste water statistics. An oversight of which plants that removes nitrogen is given by The Norwegian Pollution Control Authority (SFT).

Data for the number of people in Norway not connected to waste water treatment are obtained from the waste water statistics. We know the number of inhabitants connected to large treatment plants (>50 pe) for the years after 1990, and the number of inhabitants connected to small treatment plants (<50 pe) for the years 2002 to 2004. We have also received the percentage connected for 1990, which were 75 per cent. For the years between 1990 and 2002 the percentage connected has been interpolated.

Number of people not connected = Number of inhabitants \* Number of inhabitants connected to small treatment plants/ number of inhabitants connected to large treatment plants.

#### 7.3.3. Emission factor

#### $CH_4$

The IPCC emission factor for  $B_0$  of 0.6 kg CH<sub>4</sub>/kg DC is used. The methane conversion factor (MCF) is, according to good practice, given by the fraction of BOD that will ultimately degrade anaerobically. Country-specific MCF factors are estimated by Statistics Norway for the years 2000 - 2005, based on the part of the population connected to tanks with anaerobic conditions. The factors are from Statistics Norway (waste water statistics), and correspond to the fraction of the waste water plants that are categorized as "Sealed tank" and partly the category "Separate toilet system". The MCF factor is about 0.01 (1 per cent) for the years after 2000. We assume that in 1990, 2 per cent of the population were connected to anaerobic treatment systems for waste water and that the share gradually has decreased until 2000. From our best knowledge, we therefore assume that the MCF-factor of 0.02 is reflecting the condition in 1990 and that the factor for 1990 is consistent with the calculated factors for 2000-2005. Emissions from water consumption in food processing industries are calculated using the average MCF–factor (0.01) for wastewater. The IPCC emission factor for  $B_0$  of 0.6 kg CH<sub>4</sub>/kg DC is used. The COD factors for the different groups are taken from IPCC 2006 (Good Practice Guidance) and some are average factors made by Statistics Norway, based on the water consumption and gross values from industry in 2004. We know the water consumption per economic turnover. The same factor is used for all years for the different products. See table 7.2. The table also shows the default COD factors for the different products are the average of all the others.

| Table 7.2. | The developed water consumption coefficients and chemical oxygen demand. |
|------------|--------------------------------------------------------------------------|
|            | m3/mill NOK and mg/l                                                     |

| m <sup>3</sup> /mill NOK | COD mg/l                               |
|--------------------------|----------------------------------------|
| 125                      | 2.9                                    |
| 476                      | 2.5                                    |
|                          |                                        |
| 499                      | 5.2                                    |
| 314                      | 1.5                                    |
| 154                      | 2.72                                   |
| 170                      | 2.72                                   |
| 317                      | 1.5                                    |
|                          | 125<br>476<br>499<br>314<br>154<br>170 |

Source: IPCC (2006) and Statistics Norway

#### $N_2O$

For the part of the population that is connected to treatment plants the  $N_2O$  emissions are calculated by multiplying the total amount of nitrate supplied to the pipelines by the IPCC default emission factor of 0.01 kg  $N_2O$ -N/kg sewage-N produced. Conversion factor of  $N_2O$ -N to  $N_2O$  is 1.57

For the part of the population that is not connected to treatment plants, the emissions factors are as follow: The IPCC emission factors for  $EF_6$  of 0.01kg N<sub>2</sub>O/kg sewage -N produced are used, and the fraction of nitrogen in protein, Frac<sub>NPR</sub>, is 0.16 kg N/kg protein.

Protein is annual per capita protein intake (kg/person/yr).

A report from the Directorate for Health and Social Affairs estimates the amount of daily per capita protein intake for Norway for 1997 (Johansson and Solvoll 1999). There has not been done any other survey like this, where the daily per capita protein intake for Norway has been estimated.

In 1997 the daily per capita protein intake for Norway was 86 grammes, which gives 31.39 kilo per year. For the years 1990, 1995, 2000, 2003 and 2004 the Directorate for Health and Social Affairs has estimated the potential protein intake for the population. (Sosial og helsedirektoratet 2006)

The estimation is based on the equation: Potential protein intake = production + import - export

This estimation does not reflect that actual consumption is lower because everything not is eaten. Part of the food ends up as waste and so on. Lars Johansson at the Directorate for Health and Social Affairs recommends that Norway uses the 31.39 kilo per person for 1997 and that Norway uses the trend in potential protein intake when making the time series. Statistics Norway has estimated the intermediate years by interpolation. This is shown in table 7,3

| Table 7.3 | Potencial protein intake, and estimated protein intake. g/pers/day, kg/pers/year. |
|-----------|-----------------------------------------------------------------------------------|
|           | 1990-2005                                                                         |

|      | 1000 2000                             |              |                 |                                         |
|------|---------------------------------------|--------------|-----------------|-----------------------------------------|
| Year | Potencial protein<br>intake g/per/day | kg/pers year | Index 1997 =100 | Estimated protein<br>intake kg/per/year |
| 1990 | 94                                    | 34.3         | 100.2           | 31.5                                    |
| 1991 | 93.8                                  | 34.2         | 100.0           | 31.4                                    |
| 1992 | 93.6                                  | 34.2         | 99.8            | 31.3                                    |
| 1993 | 93.4                                  | 34.1         | 99.6            | 31.3                                    |
| 1994 | 93.2                                  | 34.0         | 99.4            | 31.2                                    |
| 1995 | 93                                    | 33.9         | 99.1            | 31.1                                    |
| 1996 | 93.4                                  | 34.1         | 99.6            | 31.3                                    |
| 1997 | 93.8                                  | 34.24        | 100             | 31.39                                   |
| 1998 | 94.2                                  | 34.4         | 100.4           | 31.5                                    |
| 1999 | 94.6                                  | 34.5         | 100.9           | 31.7                                    |
| 2000 | 95                                    | 34.7         | 101.3           | 31.8                                    |
| 2001 | 96                                    | 35.0         | 102.3           | 32.1                                    |
| 2002 | 97                                    | 35.4         | 103.4           | 32.5                                    |
| 2003 | 98                                    | 35.8         | 104.5           | 32.8                                    |
| 2004 | 101                                   | 36.9         | 107.7           | 33.8                                    |
| 2005 | 99                                    | 36.1         | 105.5           | 33.1                                    |

Numbers in bold in column 2 are from the Directorate for Health and Social Affairs, 2006 (Sosial og helsedirektoratet 2006)

 $N_2O$  emissions occur as a by-product in biological nitrogen-removal plants. It is assumed that 2 per cent of the nitrogen removed from plants will form  $N_2O$ . This country-specific emission factor is given in SFT (1992), and the assumption is based on measurements in plants and comparisons with factors used in Sweden. The amount of N removed at the plant is multiplied with 0.02 and then multiplied with the factor of 1.57 for conversion of N-removed to  $N_2O$ -N.

#### 7.3.3.1. Uncertainties

Uncertainty estimates for this source are given in Appendix D.

#### 7.3.3.2. Completeness

Major missing emission components are not likely.

#### 7.3.3.3. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

#### 7.4. Waste incineration

*IPCC 1A1a, 1A2d and 6C NFR 1A1a, 1A2d and 6C Last update: 08.04.08* 

#### 7.4.1. Description

Emissions from waste incineration in district heating plants are reported under energy (IPCC 1A1a), as the energy is utilised, and therefore described in chapter 3.2.2. In 2006, there were 15 waste incineration plants where household waste is incinerated. In addition, some incineration plants burn waste other than household waste, mainly wooden waste, paper, pasteboard and cardboard. These emissions are reported and described under energy (IPCC 1A2d). Waste, other than household waste, is also used as energy source in some manufacturing industries. In this chapter, the focus will be on waste reported in IPCC sector 6C. This includes emissions from flaring, except flaring from energy sectors, and emissions from cremation and hospital waste until 2005.

#### 7.4.2. Method

Emissions from flaring of landfill gas are estimated. However,  $CO_2$  emissions from flaring of landfills are not included in the inventory, as these are considered as being of biogenic origin. The emissions are estimated by multiplying the amount of gas flared with the emission factors shown in table 7.4

Emissions from cremation and hospital waste are estimated by emission factors multiplied with activity data. For hospital waste, the emissions of heavy metals used in the model are reported to the Norwegian Pollution Control Authority. Since 2006 all hospital waste is incinerated at waste incineration plants

#### 7.4.3. Activity data

#### Landfill gas

The total amount of landfill gas extracted each year is reported by landfills to the Norwegian Pollution Control Authority. Statistics Norway subtracts the amount utilized for district heating and thermal power, which is given by the energy statistics in Statistics Norway. To find the amount flared of the remaining landfill gas, a fraction given from a survey of waste statistics from Statistics Norway is used. This survey is made every third year, but is planned to be annual in the coming years.

#### Natural gas

The amount of natural gas flared by the production of methanol is, as recommended by the ERT, reported under 2B5,

#### Hospital waste

The amount of hospital waste was reported to Statistics Norway for the years 1998 and 1999. For the period 1990-1997 the average for 1998 and 1999 has been used. After 1999 there has been no collection of hospital waste data. Due to the lack of better information, the waste amount for 1999 has been used to calculate the emissions for subsequent years. The hospital incinerators have gradually been closed down, mainly due to new emission limits. Since 2006, no hospital incinerators have been in operation. Today hospital waste is incinerated in incinerators for municipal waste and emissions are included under 1A1a).

#### Cremation

The number of cremated bodies is taken from the death statistics at Statistics Norway (Statistical Yearbook).

#### 7.4.4. Emission factors

| Table 7.4.                 | Emission factors for | flare, cremation and  | hospital waste, incineration    |
|----------------------------|----------------------|-----------------------|---------------------------------|
| Component                  | Flare Landfill gas   | Cremation             | Hospital waste                  |
|                            | kg/tonnes            | Tonnes/body           | Tonnes/tonnes                   |
| SO <sub>2</sub>            | 0.02                 | 0.00001813            | 0.0014                          |
| CO <sub>2</sub>            | 0                    | 0                     | 0.3                             |
| CO                         | 0.04                 | 0.000735              | 0.0028                          |
| NO <sub>x</sub>            | 0.17                 | 0.0000441             | 0.0014                          |
| Particles PM <sub>10</sub> | 0.14                 | 2,54 <sup>E</sup> -08 | 0.0005                          |
| TSP                        |                      |                       | 0,0005                          |
| PM <sub>2.5</sub>          |                      |                       | 0,0005                          |
| NMVOC                      | 0                    | 0.0000637             | 0.0007                          |
| CH₄                        | 0.37                 | 0.00001176            | 0.00023                         |
| N <sub>2</sub> O           | 0.0015               | 0.0000147             | 0,000035                        |
|                            |                      | kg/body               | mg/tonne                        |
| Pb                         | NA                   | 1.86E-08              | Plant-specific emission factors |
| Cd                         | NA                   | 3.11E-09              | Plant-specific emission factors |
| Hg                         | NA                   | 0.005                 | Reported                        |
| Cu                         | NA                   | 7.70E-09              | 2594.6                          |
| Cr                         | NA                   | 8.44E-09              | 4705.6                          |
| As                         | NA                   | 1.10E-08              | 1272.4                          |
| Dioxin                     | NA                   | 9.99E-09              | 0.29685                         |
| PAH                        | NA                   | 0,0343                | 2.5                             |
| PAH-4                      | NA                   | 0,01127               | 0.04                            |
| PAH-Ospar                  | NA                   | 0,00049               | 0.9                             |

NA=Not Applicable.

#### 7.4.5. Uncertainties

Uncertainty estimates for greenhouse gases and long-range transboundary air pollutants are given in Appendix D.

### 7.4.5.1. Activity data

#### Amount of hospital waste

No new data has been reported since 1999. The amount of hospital waste the subsequent years may vary from the data reported in 1998 and 1999. Since 2007, no hospital incinerators have been in operation.

#### 7.4.5.2. Emission factors

If the composition of the hospital waste is different to the waste the emission factors are based on, the calculated emissions will be incorrect. Combustion engineering and processes also influence the emissions. These uncertainties have not been calculated. The emission factors used for calculating emissions of PAH from cremation are 1000 times higher due to a mistake. This will be corrected in the 2008 submission.

#### 7.4.5.3. Source specific QA/QC

There is no source specific QA/QC procedure for this sector. See section 1.5 for the description of the general QA/QC procedure.

# 7.5. Other emission sources from the waste sector

IPCC -NFR 6D Last update: 01.09.05

## 7.5.1. Description

Other emission sources that included in the waste sector are emissions from car fires, house fires, combustion of tobacco, emissions from recovering processes in the waste trade, and emission from the combustion of hazardous waste.

## 7.5.2. Method

## 7.5.2.1. Car- and house fires

Particles, heavy metals and POPs

Emissions of particles and dioxins are calculated from car fires and house fires. In addition, heavy metals are calculated for house fires. Emissions are calculated by multiplying the annually number of car- and house fires with emission factors. Four types of buildings are separated with different emission factors: detached house, undetached house, apartment building and industrial building.

#### 7.5.2.2. Tobacco

NO<sub>X</sub>, NMVOC, CO, particles, heavy metals and POPs

The emission components included from the combustion of tobacco are  $NO_X$ , NMVOC, CO, particles, heavy metals and POPs (Persistent organic pollutants). Emission figures have been calculated by multiplying the annual consumption of tobacco with emission factors for each pollutant.

#### 7.5.2.3. Waste trade

NH<sub>3</sub>, particles, heavy metals and POPs

Emissions from recovering processes in the waste trade includes emissions of  $NH_3$ , particles, heavy metals and PAH. The emission figures are reported annually by the actual plants to the Norwegian Pollution Control Authority.

#### 7.5.3. Activity data

#### 7.5.3.1. Car- and house fires

Data for the number of car- and house fires are provided annually by the Directorate for Civil Protection and Emergency Planning. These figures only include fires reported to the fire service.

#### 7.5.3.2. Tobacco

The total consumption of tobacco in Norway is given by the net import of tobacco from Statistics Norway's external trade statistics.

#### 7.5.4. Emission factor

#### 7.5.4.1. Car fires

The emission factor for particles is given by EPA (2002). EPA recommends the factor of 0.9 kg/car for combustion of wrecked cars without car tyres, and a factor for combustion of car tyres of 1.4 kg/car. This results in an overall emission factor of 2.3 kg/car. The emission factor for emission of dioxins from car fires is found in Hansen (2000).

#### 7.5.4.2. House fires

It is difficult to estimate the amount of material burned in a house fire. In Finstad et. al. (2002a) a calculation was made that has been used to scale the chosen emission factors, to reflect how much of the building got lost in the fire. This scaling calculation is based on the amount of damage estimated in monetary value, and value on how much of the building and the furniture was burned. The emission factors used for particles in the inventory are given by scaling the emission factors used for combustion of fuelwood in the households (Haakonsen and Kvingedal 2001). The emission factors for heavy metals are given by scaling the emission factors for combustion of wooden waste in the industry (EPA 2002). For dioxins, OSPAR (SFT 2001a) gives the emission factor of 170  $\mu$ g I-TEQ per tonne burned material. The scaled emission factors used for the different building types are given in table 7.5.

 Table 7.5.
 Emission factors used for car fires and house fires, emission unit/fire

|                       | Car    | Detached house | Undetached house | Apartement<br>building | lindustrial<br>building |
|-----------------------|--------|----------------|------------------|------------------------|-------------------------|
| TSP (kg)              | 0.0023 | 0.14382        | 0.06162          | 0.04378                | 0.02723                 |
| PM <sub>10</sub> (kg) | 0.0023 | 0.14382        | 0.06162          | 0.04378                | 0.02723                 |
| $PM_{2.5}(kg)$        | 0.0023 | 0.14382        | 0.06162          | 0.04378                | 0.02723                 |
| Pb (g)                |        | 0.00042        | 0.00018          | 0.00013                | 8E-05                   |
| Cd (g)                |        | 0.00085        | 0.00036          | 0.00026                | 0.00016                 |
| Hg (g)                |        | 0.00085        | 0.00036          | 0.00026                | 0.00016                 |
| As (g)                |        | 0.00135        | 0.00058          | 0.00041                | 0.00025                 |
| Cr (g)                |        | 0.00129        | 0.00055          | 0.00039                | 0.00024                 |
| Cu (g)                |        | 0.00299        | 0.00128          | 0.00091                | 0.00057                 |
| Dioxin (µg)           | 0.047  | 1.43817        | 0.61621          | 0.43779                | 0.27234                 |

#### 7.5.4.3. Tobacco

Table 7.6 gives emission factors used for tobacco combustion. For  $NO_X$ , NMVOC and CO the emission factors are calculated by Statistics Norway, based on values given in Directorate for Health (1990).

 Table 7.6.
 Emission factors used for tobacco combustion

|                       | Tobacco (unit/kg tobacco) | Source                                           |
|-----------------------|---------------------------|--------------------------------------------------|
| NO <sub>X</sub> (kg)  | 0.0034652                 | Statistics Norway, Directorate for Health (1990) |
| NMVOC (kg)            | 0.0048374                 | Statistics Norway, Directorate for Health (1990) |
| CO (kg)               | 0.1215475                 | Statistics Norway, Directorate for Health (1990) |
| TSP (kg)              | 0.04                      | TNO (2002)                                       |
| PM <sub>10</sub> (kg) | 0.04                      | TNO (2002)                                       |
| $PM_{2.5}(kg)$        | 0.04                      | TNO (2002)                                       |
| Pb (g)                | 0.00005                   | Finstad et al. (2001)                            |
| Cd (g)                | 0.0001                    | Finstad et al. (2001)                            |
| Hg (g)                | 0.0001                    | Finstad et al. (2001)                            |
| As (g)                | 0.000159                  | Finstad and Rypdal (2003)                        |
| Cr (g)                | 0.000354                  | Finstad and Rypdal (2003)                        |
| Cu (g)                | 0.000152                  | Finstad and Rypdal (2003)                        |
| PAH (g)               | 0.00825                   | Finstad et al. (2001)                            |
| PAH OSPAR (g)         | 0.00125                   | Finstad et al. (2001)                            |
| Dioxin (µg)           | 0.0013                    | Finstad et al. (2002a)                           |

# 8. Recalculations

The Norwegian greenhouse gas emission inventory has in 2008 been recalculated for the entire time series 1990-2005 for all components and sources, to account for new knowledge on activity data and emission factors and to correct for some errors in the calculations. The figures reported in this submission are therefore consistent through the whole time series.

The driving force for making improvements in the emission inventory is to meet the reporting requirements in the UNFCCC Reporting Guidelines on Annual Inventories as adopted by the COP by its Decision 18/CP. The in-country review in 2007 has led to improvements in the Norwegian inventory. In addition it is important for decision makers and others to have accurate emission estimates as basis for making decisions of what measures to introduce to reduce emissions.

The most important recalculations are:

- 1. Revised method for calculation of CH<sub>4</sub> and N<sub>2</sub>O emission from ferroalloy production. This has given considerably lower emissions for the whole time period from 1990
- 2. Revised N<sub>2</sub>O figures from one nitric acid production plant for most years since 1990
- 3. Methane from landfills. The emission figures of CH<sub>4</sub> has increased for all years since 1990 due to corrections of Statistics Norway's waste statistics
- 4. Inclusion of N<sub>2</sub>O emissions from human sewage from the part of the population that is not connected to wastewater treatment plants.

The total effect of the recalculations was for the time series 1990-2005 a reduction in total  $CH_4$  emissions of 150 to 850 tonnes, or 0.07 to 0.4 per cent. There has been a decrease in total N<sub>2</sub> O emissions of 60 to 600 tonnes, or 0.4 to 3.9 per cent for the years 1990-2005, except for 1992 were there has been an increase of 0.1 per cent or 126 tonnes.  $CO_2$  emissions were increased by 0.5 per cent in 1991 and 0.2 per cent in 1996.  $CO_2$  emissions were decreased by 0.1 per cent in 2003 for other years the emissions have varied slightly.

# 8.1. Specific description of the recalculations

#### 8.1.1. Energy

The recalculations performed in the energy sector concern primarily the year 2005. This is because the energy accounts for 2005 that constituted the basis for last year's submission were then "preliminary". Now the "final" energy accounts are available, because final energy consumption figures from the manufacturing statistics and some other final energy figures are presently included in the energy accounts. These types of revisions caused by changes in the energy balance will not be commented on specifically under each IPCC code.

## 1 A 2 d Pulp,

Paper and Print

• CO<sub>2</sub> emissions have been reduced for all years since 2000 because of correction of a discovered double counting for one plant. For another plant, a minor double counting of CH<sub>4</sub> and N<sub>2</sub>O emissions for the years 2000-2005 has also been corrected. In addition, a double counting in 2004 for a third plant has been corrected for all gases. These changes influence total national emissions by less than 0.1 per cent.

#### 1 A 2 f Other Stationary

• CO<sub>2</sub> emissions from one plant for the years 2002-2005 were previously registered in ktonnes instead of tonnes. This error has now been corrected. The emissions increase by approximately 16 000 tonnes in 2002, 3000 tonnes in

2003 and 2004 and 4100 tonnes in 2005, which is less than 0.1 per cent of total national emissions.

- Reported CO<sub>2</sub> emissions for one plant have been corrected for some years. This has resulted in reduced figures for 1990, 2002 and 2003, by, respectively, 19, 34 and 75 ktonnes and, an increase of 6 000 tonnes 2001. In 2003, the total national emissions have been reduced by 0.2 per cent because of this correction, whereas the change is less than 0.1 per cent in the other years.
- A previous double counting of CO<sub>2</sub> emitted from one plant in the years 2001-2003 and in 2005 was discovered. Correction has caused minor decreases in emissions for these years.
- In 2005, a too high figure was previously used for combustion of coal at one plant. The correction has decreased the emissions by 27 000 tonnes CO<sub>2</sub>, which is less than 0.1 per cent of total national emissions

#### 1 A 3 a Civil Aviation

• Activity data for Norwegian domestic air traffic have been revised for 2005. Due to these revisions, the emissions from civil aviation have been reduced. The total national CO<sub>2</sub> emissions have been reduced by 0.3 per cent

#### 1 A 3 b Road transport

- The transfer of a minor quantity of petrol from road traffic to motorized equipment in 1998 has caused a corresponding transfer in emissions.
- A slight adjustment of consumption figures for petrol in road transport has caused minor reductions in emissions in the period 1990-1993 and increases in the period 1994-1997.
- Consumption of gasoline has been decreased slightly for all years since 1998 due to a reappraisal of consumption in agriculture. This activity data revision has led to minor decreases in emissions.

#### 1 A 3 d ii National Navigation

- Revised calculations for use of heavy distillate in national navigation in the period 2003-2005 have caused minor increases in emissions for these years.
- Activity data for national navigation in 2005 have been revised, due to changes in the energy accounts. The revisions have reduced national CO<sub>2</sub> emissions by 0.4 per cent.
- Emission factors for use of marine fuels in the oil and gas sector have been revised. All fuel is now assumed to be used by moveable drilling rigs. Previously, a fraction of the fuel was assumed to be used by ships, which have different emission factors.

For the above reasons emissions of  $N_2O$  from national navigation have decreased by 0.05 to 0.1 per cent for all years since 1990. Emissions of  $CO_2$  have decreased most years since 1997 by less then 0.1 per cent, but increased 0.1 per cent in 1997 and 0.05 per cent in 2004.

#### 1 A 3 e ii Other Mobile Sources and Machinery

- The transfer of a minor quantity petrol from road traffic to motorized equipment in 1998 has caused a corresponding transfer in emissions.
- Consumption of auto diesel was decreased slightly for all years since 1998 due to a reappraisal of consumption in agriculture. This activity data revision has led to minor decreases in emissions of all components (less than 0.01 per cent).

#### 1 A 4a Commercial/Institutional

• No emissions from combustion of biogas at a sewage treatment plant were previously included, but reported CO<sub>2</sub> figures and calculated figures of other emissions are now registered for all years since 1993. These emissions amount to approximately 6 000 tonnes CO<sub>2</sub> in 1993 and 15-19 000 tonnes in 1994-2005. However, as the CO<sub>2</sub> emissions have a non-fossil origin, they should not have been included and will be removed in next year's submission. These CO<sub>2</sub> emissions are not included in the CRF-tables reported to UNFCCC 15 April 2008.

#### 1 A 4b Residential

• Revised calculations for use of heavy distillate in private households for the period 2003-2005 have caused minor decreases in emissions for these years.

#### 1 A 4 c Agriculture/forestry/fishing

• Consumption of auto diesel and gasoline were increased slightly for all years since 1998 due to a reappraisal of consumption in agriculture. This activity data revision has increased the emissions of CO<sub>2</sub> by less than 0.1 per cent.

#### 1 B 1 b Solid Fuel Transformation

• Emissions from a fire in a coal mine in 2005 have been added. The emissions amount to no more than 1260 tonnes CO<sub>2</sub>, and affect the national total only marginally.

#### 1 B 2 c i Venting

• The CO<sub>2</sub> emissions from venting in 1996 have increased by 81 000 tonnes; these emissions from re-injection at one gas field on the continental shelf were previously not included. The total national emissions have increased by 0.2 per cent because of this recalculation.

#### 8.1.2. Industrial processes

2 A 1 Cement Production

• Revised emission data. Reported CO<sub>2</sub> figures from one plant have been revised for 1991 and 2002. Total emissions for these years have increased by, respectively, 0.4 and less than 0.1 per cent because of this revision.

2 A 3 Limestone and dolomite use

- Revised emission data. Reported CO<sub>2</sub> figures from one plant have been adjusted somewhat upwards for 1994 and 1995. The effect on total emissions is insignificant.
- 2 B 2 Nitric acid production
- Revised emission data. Reported N<sub>2</sub>O figures from one plant have been revised most years from 1990. A considerable decrease in 1991 has reduced the national total by 3.2 per cent, whereas the totals in 1992 and 1997 have increased by 1.9 and 2.8 per cent, respectively. In addition, the national totals have increased by 0.3, 0.6 and 0.8 per cent, respectively, in 1990, 1993 and 1999, and decreased by 0.5 and 0.2 per cent in 1994 and 2001. For other years there are only minor changes.

#### 2 B 2Carbid production

• Revised emission data. Reported CO<sub>2</sub> and CH<sub>4</sub> figures from two plants have been revised for 2005. The effect on total emissions is insignificant.

#### 2 B 5 Manufacture of other inorganic chemicals

• Reallocation. Emissions of CO<sub>2</sub> from flaring of natural gas by production of methanol are now, as recommended by IPCC's review team, reported under 2B5. Emissions of CO<sub>2</sub> from manufacture of other inorganic chemicals have due to this reallocation increased by 539 per cent in 1997, 3042 per cent in 2000 and 476 per cent in 2005. This reallocation has no effect on the total national emissions.

#### 2 C 2 Ferroalloys Production

• Revised method for N<sub>2</sub>O and CH<sub>4</sub>. By request of IPCC's review team, the method for calculation of CH<sub>4</sub> and N<sub>2</sub>O emission from ferroalloy production

has been revised. This has given considerably lower emissions for the whole time period from 1990: Total  $CH_4$  and  $N_2O$  emissions have been reduced by, respectively, 0.2-0.3 and 1.1-1.8 per cent.

- Revised emission data. Reported figures for CO<sub>2</sub> emissions from two plants have been revised for 1990-1997 and 2002. The effect on total emissions is 0.1 per cent or lower. The reduction in CH<sub>4</sub> emissions mentioned above has also caused minor reductions in indirect CO<sub>2</sub> emissions all years from 1990.
- Revised activity data: The reported consumption of reducing agents is slightly changed since NIR 2007.

#### 2F Consumption of Halocarbons

• Revised activity data. Activity data on imports of PFC-218 and HFC-134 were revised. This had insignificant effect on the estimated emissions from HFCs and PFCs.

#### 2G Paraffin wax use

New emission category. By request of IPCC's review team, emissions of  $CO_2$  from the use of paraffin waxes has been calculated for the period 1990-2006, using a modified version of equation 5.4 for Waxes – Tier 1 Method of the 2006 IPCC Guidelines. Consumption figures on paraffin waxes are obtained using data on import, export and sold produce of "Candles, tapers and the like (including night lights fitted with a float)" and assuming that 66 per cent of all candles are made of paraffin waxes. The resulting net consumption of paraffin waxes is multiplied by the default net calorific values (NCV) given in the 2006 IPCC Guidelines. Net consumption in calorific value is then converted to carbon amount, using the value for carbon content (Lower Heating Value basis) and finally to  $CO_2$  emissions, using the mass ratio of  $CO_2/C$ . This increases the total emissions of  $CO_2$  by less than 0.15 per cent.

#### 8.1.3. Agriculture

- 4 A Enteric Fermentation
- Revised activity data. Minor increase in CH<sub>4</sub> emissions due to revised figures for the number of reindeer 2004-2005. This changed the total emissions of CH<sub>4</sub> by less than 0.2 per thousand.

#### 4 B Manure Management

• Revised activity data. Minor changes in CH<sub>4</sub> and N<sub>2</sub>O emissions due to revised figures for the number of reindeer 2004-2005.

#### 4 D Direct Soil Emission

- Revised activity data. Minor changes in N<sub>2</sub>O emissions due to revised figures for the number of reindeer 2004-2005.
- Revised activity data. Minor changes in N<sub>2</sub>O emissions 2003-2005, due to revised crop figures. This changed the total emissions of N<sub>2</sub>O by less than 0.2 per thousand
- Revised activity data. New figures for N<sub>2</sub>O from sewage sludge applied on fields 1994-2005, due to revised figures for the total amount of sewage sludge in Norway in the period. For 2002 this means an increase in total emissions of N<sub>2</sub>O by 5.5 per thousand, and for 2000 a decrease of 1 per thousand. For the other years the change in total emissions is less than 0.4 per thousand.

#### 4 F Field Burning of Agricultural Wastes

• Revised activity data. Minor changes in emissions of CH<sub>4</sub>, and N<sub>2</sub>O 2003-2005, due to revised crop figures.

#### 8.1.4. Waste

#### 6 A Solid Waste Disposal on Land

Correction of error. Revised figures from the waste accounts. This is due to corrections of Statistics Norway's waste statistics. By a mistake the industrial sludge was not adjusted for wood content. The wood fraction of the sludge is 45 per cent. In addition it was also by a mistake corrected for a DOC content of 320 kg/tonnes, instead of 400 kg /tonne of waste. As a result of these corrections the emission figures of CH<sub>4</sub> has increased for all years since 1990 compared to latest submission. The total emissions of CH<sub>4</sub> have increased by 0.1 to 0.4 per cent

#### 6 B Waste Water Handling

- Revised emission factor. The methane conversion factor (MCF) used for calculating CH<sub>4</sub>emissions from the part of the population connected to anaerobic wastewater treatment was earlier held constant (0.02). The review team recommended SN to estimate the MCF factors for the years 2000 - 2005, based on the part of the population connected to tanks with anaerobic conditions. This corresponds to the fraction of the wastewater plants that are categorized as "Sealed tank" and partly the category "Separate toilet system". The MCF factor is about 0.01 (1%) for the years after 2000. We assume that in 1990, 2 per cent of the population was connected to anaerobic treatment systems for wastewater and that the share gradually has decreased until 2000. From our best knowledge we therefore assume that the MCF-factor of 0.02 is reflecting the condition in 1990 and that the factor for 1990 is consistent with the calculated factors for 2000-2005. This change in emission factor has led to a decrease in emissions. The decrease has increased for all years since 1991. While the emissions in 1990 are the same as they where before.)MCF = 0.02). This has reduced the total emissions of CH<sub>4</sub> by less than 0.02 per cent in 1990 to 0,3 per cent in 2005.
- Additional source. Emissions of CH<sub>4</sub> from water consumption in food processing industries (breweries, dairies and slaughterhouses) are included for all years since 1990 as recommended by the review team in 2007. This has led to minor increase in emissions of CH<sub>4</sub>.
- Additional source. As recommended by the review team Norway has estimated N<sub>2</sub>O emissions from human sewage from the part of the population that is not connected to wastewater treatment plants. This is done for all years after 1990. The emissions of N<sub>2</sub>O are estimated by Tier 1method. This has increased the total emissions of N<sub>2</sub>O in the range between 0.63 per cent to 0.43 per cent.

#### 6 C Waste Incinerations

- Reallocation. Emissions of CO<sub>2</sub> from flaring by the production of methanol are now, as recommended by the IPCC's review team, reported under 2B5. Emissions of CO<sub>2</sub> in this sector has decreased.
- Additional emission. Emissions of N<sub>2</sub>O from combustion of hospital waste have previously not been calculated. The inclusion of these emissions leads to marginal increases in total emissions for all years.

# 8.2. Implications of the recalculations for the greenhouse gases

#### 8.2.1. Implications for emissions levels

Tabell 8.1 shows the effects of recalculations on the emission figures for the greenhouse gases 1990 - 2005. 0Table 8.2 shows the effect on recalculations on the emission figures for HFCs, PFCs and SF<sub>6</sub>. 1990 - 2005.

|      | CO <sub>2</sub> -equiva | lients            |                   |                     |                                 |                   |                     |                   |                   |  |  |
|------|-------------------------|-------------------|-------------------|---------------------|---------------------------------|-------------------|---------------------|-------------------|-------------------|--|--|
|      |                         | CO <sub>2</sub>   |                   |                     | CO <sub>2</sub> CH <sub>4</sub> |                   |                     |                   | N <sub>2</sub> O  |  |  |
|      | Previous submission     | Latest submission | Difference<br>(%) | Previous submission | Latest submission               | Difference<br>(%) | Previous submission | Latest submission | Difference<br>(%) |  |  |
| 1990 | 34785.9                 | 34774.5           | 0.0               | 4644.6              | 4635.1                          | -0.2              | 4750.6              | 4718.5            | -0.7              |  |  |
| 1991 | 33212.3                 | 33370.8           | 0.5               | 4699.3              | 4692.5                          | -0.1              | 4757.8              | 4573.2            | -3.9              |  |  |
| 1992 | 34193.7                 | 34187.4           | 0.0               | 4772.6              | 4766.2                          | -0.1              | 3973.7              | 4012.7            | 1.0               |  |  |
| 1993 | 35906.8                 | 35908.8           | 0.0               | 4855.5              | 4849.5                          | -0.1              | 4260.3              | 4241.8            | -0.4              |  |  |
| 1994 | 37880.3                 | 37872.0           | 0.0               | 4944.6              | 4937.3                          | -0.1              | 4411.8              | 4338.5            | -1.7              |  |  |
| 1995 | 37810.5                 | 37800.1           | 0.0               | 4941.0              | 4934.3                          | -0.1              | 4461.4              | 4404.1            | -1.3              |  |  |
| 1996 | 40807.3                 | 40892.2           | 0.2               | 4977.4              | 4972.4                          | -0.1              | 4512.3              | 4454.7            | -1.3              |  |  |
| 1997 | 40998.5                 | 41005.6           | 0.0               | 5013.3              | 5009.3                          | -0.1              | 4398.6              | 4462.1            | 1.4               |  |  |
| 1998 | 41091.1                 | 41125.6           | 0.1               | 4901.7              | 4897.4                          | -0.1              | 4613.7              | 4541.6            | -1.6              |  |  |
| 1999 | 41951.9                 | 41986.7           | 0.1               | 4767.4              | 4764.2                          | -0.1              | 4784.5              | 4752.8            | -0.7              |  |  |
| 2000 | 41553.1                 | 41592.9           | 0.1               | 4912.1              | 4907.9                          | -0.1              | 4592.9              | 4517.7            | -1.6              |  |  |
| 2001 | 42948.3                 | 42957.3           | 0.0               | 4926.7              | 4922.5                          | -0.1              | 4504.0              | 4429.2            | -1.7              |  |  |
| 2002 | 42048.6                 | 42018.6           | -0.1              | 4758.8              | 4752.1                          | -0.1              | 4674.1              | 4618.5            | -1.2              |  |  |
| 2003 | 43393.8                 | 43334.8           | -0.1              | 4786.0              | 4777.0                          | -0.2              | 4514.3              | 4467.0            | -1.0              |  |  |
| 2004 | 42855.2                 | 43863.5           | 0.0               | 4758.4              | 4741.4                          | -0.4              | 4682.3              | 4624.7            | -1.2              |  |  |
| 2005 | 43148.8                 | 42880.0           | -0.6              | 4599.9              | 4582.0                          | -0.4              | 4780.7              | 4734.6            | -1.0              |  |  |

# Table 8.1. Recalculations in 2008 submission to the UNFCCC compared to the 2007 submission. CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O. Tonnes CO<sub>2</sub>-equivalents

 Table 8.2.
 Recalculations in 2008 to the UNFCCC submission compared to the 2007 submission. HFCs, PFCs and SF<sub>6</sub>.

 Ktonnes CO<sub>2</sub>-equivalents
 Ktonnes CO<sub>2</sub>-equivalents

|      | HFCs       |            |            | PFCs       |            |            | SF <sub>6</sub> |            |            |
|------|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|
|      | Previous   | Latest     | Difference | Previous   | Latest     | Difference | Previous        | Latest     | Difference |
|      | submission | submission | (%)        | submission | submission | (%)        | submission      | submission | (%)        |
| 1990 | 0.02       | 0.02       | 0.00       | 3370.40    | 3370.40    | 0.00       | 2199.78         | 2199.78    | 0.00       |
| 1991 | 0.11       | 0.11       | 0.00       | 2992.92    | 2992.92    | 0.00       | 2079.15         | 2079.15    | 0.00       |
| 1992 | 0.34       | 0.34       | 0.00       | 2286.92    | 2286.92    | 0.00       | 705.03          | 705.03     | 0.00       |
| 1993 | 2.42       | 2.42       | 0.00       | 2297.72    | 2297.72    | 0.00       | 737.71          | 737.71     | 0.00       |
| 1994 | 9.20       | 9.20       | 0.00       | 2032.47    | 2032.47    | 0.00       | 877.98          | 877.98     | 0.00       |
| 1995 | 25.82      | 25.82      | 0.00       | 2007.81    | 2007.74    | 0.00       | 607.79          | 607.79     | 0.00       |
| 1996 | 52.24      | 52.24      | 0.00       | 1829.33    | 1829.08    | -0.01      | 574.10          | 574.10     | 0.00       |
| 1997 | 86.52      | 86.52      | 0.00       | 1633.29    | 1632.94    | -0.02      | 579.86          | 579.86     | 0.00       |
| 1998 | 129.82     | 129.82     | 0.00       | 1485.88    | 1485.53    | -0.02      | 726.74          | 726.74     | 0.00       |
| 1999 | 180.56     | 180.56     | 0.00       | 1388.80    | 1388.46    | -0.03      | 873.96          | 873.96     | 0.00       |
| 2000 | 238.36     | 238.36     | 0.00       | 1318.25    | 1317.90    | -0.03      | 934.42          | 934.42     | 0.00       |
| 2001 | 303.71     | 303.71     | 0.00       | 1328.97    | 1328.63    | -0.03      | 791.20          | 791.20     | 0.00       |
| 2002 | 362.68     | 362.68     | 0.00       | 1437.95    | 1437.60    | -0.02      | 238.30          | 238.30     | 0.00       |
| 2003 | 402.84     | 402.84     | 0.00       | 909.45     | 909.10     | -0.04      | 234.86          | 234.86     | 0.00       |
| 2004 | 439.74     | 439.42     | -0.07      | 880.29     | 879.94     | -0.04      | 275.68          | 275.68     | 0.00       |
| 2005 | 482.50     | 481.68     | -0.17      | 828.99     | 828.65     | -0.04      | 312.03          | 312.03     | 0.00       |

|                     |           |                 | •      |                  |        | -               |           |
|---------------------|-----------|-----------------|--------|------------------|--------|-----------------|-----------|
|                     | Total GHG | CO <sub>2</sub> | $CH_4$ | N <sub>2</sub> O | PFCs   | SF <sub>6</sub> | HFCs      |
| This submission     | 8.29      | 23.31           | -1.15  | 0.34             | -75.41 | -85.82          | 2 628 050 |
| Previous submission | 8.85      | 24.04           | -0.96  | 0.63             | -75.40 | -85.82          | 2 632 522 |
|                     |           |                 |        |                  |        |                 |           |

#### 8.2.2. Implications for emission trends

As a result of the different recalculations for 1990-2005 there have been some small changes in the trends. The differences are shown in table 8.3 below.

The changes in methods have resulted in new figures.  $N_2O$  emissions have been adjusted down by 1.0 per cent in 2005. Emissions of  $CO_2$  have been adjusted down by 0.6 per cent in 2005 due to revised activity data for civil aviation and navigation. There are only minor changes for CH<sub>4</sub>, PFC and HFC. The gap between 1990 and 2005 for all the six greenhouse gases together has been reduced by 281 000 tonnes  $CO_2$  equivalents since the previous calculation

# 8.3. Overall description of the recalculations for the longrange transbundary air pollutants

The Norwegian emission inventory has been recalculated for the entire time series 1990-2005 for all components and sources, to account for new knowledge on activity data and emission factors and to correct for some errors in the calculations The figures reported in this submission are therefore consistent through the whole time series.

The most important recalculations are:

- 1. NO<sub>x</sub> emissions from flaring were reduced considerably for all years due to revised emission factor.
- 2. Lead emissions from ferroalloy were increased considerably for all years due to inclusion of diffuse emissions in the reported figures to the Norwegian Pollution Control Authority from one ferroalloy plant.

The total effect of these changes was a reduction in total  $NO_x$  emissions of 2 000 to 5 500 tonnes, or 12 to 26 per cent. The total effect was an increase in total lead emissions of 350 to 1750 kilos, or 2 to 26 per cent. For the other pollutants there were only minor changes.

# 8.4. Specific description of the recalculations

## 8.4.1. Energy

#### 8.4.1.1. Fuel Combustion Activities

• Most of the recalculations have been performed for 2005, because the energy accounts for 2005 that was the basis for last year's submission were "preliminary". Now the "final" figures for the energy accounts are available. This is due to the fact that final energy consumption figures from the manufacturing statistics and some other final energy figures now are included in the energy accounts. These types of revisions caused by the energy balance will not be commented on specifically under each NFR code.

#### 1 A 2 b Non-ferrous metals

• Correction of error. A previous double counting of SO<sub>2</sub> 1990-2005 and NO<sub>x</sub> 1997-2005 for one plant has been discovered and corrected. The corrections affect national totals by less than 0.1 per cent.

#### 1 A 2 c Chemicals

• Correction of error. Emissions of particulate matter from one plant have erroneously been registered as zero 2001-2005. Emissions are now calculated by using energy combustion figures and emission factors. The emissions of particulate matter have increased less than 0.01 per cent.

#### 1 A 2 d Pulp and paper

- Revised acitivity data. Emissions of particulate matter has increased insignificant due to new reported figures from one plant for the years after 2003. Emissions for 2003-2005 has earlier been held constant.
- Correction of error. Emissions of particulate matter from another plant have been somewhat reduced all years from 2000 because of a discovered double counting.
- Correction of error. For a third plant, the correction of a double counting in 2004 has led to insignificant reductions in all emissions.

The total emissions of particulate matter have decreased by less than 0.01 per cent for the years after 2000.

#### 1 A 2 f i Other Stationary

• Correction of error. In 2005, a too high figure was previously used for combustion of coal at one plant. The correction has decreased total emissions of SO<sub>2</sub> by 0.7 per cent and all other emissions by less than 0.1 per cent.

#### 1 A 3 a Civil Aviation

Revised activity data. Due to revised data on Norwegian domestic air traffic in 2005, the emissions have been reduced. Total national total emissions of NOx have been reduced by 0.2 per cent, CO emissions by 0.1 per cent and other emissions by less than 0.1 per cent.

#### 1 A 3 b Road transport

- Revised activity data. Consumption of gasoline was decreased slightly for all years since 1998 due to a reappraisal of consumption in agriculture. This has led to minor decreases in emissions of all components (less than 0.01 per cent).
- Revised activity data. The transfer of a minor quantity petrol from road traffic to motorized equipment in 1998 has caused a corresponding transfer in emissions.

#### 1 A 3 d ii National Navigation

- Revised activity data. Revised figures on fuel use at moveable drilling rigs for the years 1997-2005. For some years the fuel consumption increases and for others it decreases. This revision influence in particular emissions of NOx and dioxin. For 1997 emissions of NOx and dioxin have increased by 0.4 and 0.1 per cent respectively. For the period 2000 2004 emissions of NOx and dioxin have decreased by 0.1 to 0.5 and 0.03 to 0.2 per cent respectively. For the other components there are minor changes. The revised figures have influenced on the total emission for these components less then 0.1 per cent.
- Revised activity data. Minor changes in emissions of all components for the years 2003-2005 due to an earlier mistake in the calculations. Some heavy distillate has now been transferred from stationary combustion navigation, causing minor increases in emissions for all gases. The influence of this revision on the emissions is less than 0.1 per cent.

#### 1 A 3 e ii Other Mobile Sources and Machinery

- Revised activity data. The transfer of a minor quantity petrol from road traffic to motorized equipment in 1998 has caused a corresponding transfer in emissions.
- Revised activity data. Consumption of auto diesel was decreased slightly for all years since 1998 due to a reappraisal of consumption in agriculture. This has led to minor decreases in emissions of all components (less than 0.01 per cent).
- Correction of error. An error in the emission factors for PAH and PAH-OSPAR from heating oil used in equipment has been discovered and corrected. This leads to a marginal increase in these emissions all years 1990-2005.

#### 1A 4a Other Sectores

 Additional activity. Biogas burnt for energy utilisation at one sewage treatment plant is included for all years since 1993. Emissions are estimated based on biogas burned. The emission factors for natural gas in turbines are used. Small increases (less than 0.1 per cent) in emissions of NOx, MNVOC, CO and particulate matter for all years since 1993.

#### 1A 4b Other Sectores Residential

• Revised emission factors and correction of error. Emission factors used for estimation of emissions of PAH, PAH-OSPAR and PAH-4 from wood combustion in residential sector are changed due to new knowledge about the amount of wood used in fireplaces with different technology (open fireplaces, enclosed stoves, old technology and enclosed stoves, clean technology). Earlier

the same emission factor was used for all years. Now one emission factor is used for the period 1990-1998. For the years 1999 and 2000 the old emission factor is used and for 2005 and 2006 the emission factor is based on information from a new wood burning study. For the years 2001 to 2004 the emission factors are based on information on amount of wood burnt at different fireplaces taken from the Survey of level of living. This survey is not yearly so for the years where there is no survey the share of wood used at fireplaces with different technologies is estimated. The emission factors for PAH-4 and PAH-OSPAR was earlier wrong and has now been corrected.

• Revised activity data. Minor changes in emissions of all components for the years 2003-2005 due to a mistake in the calculations. Some heavy distillate has been transferred from stationary combustion to navigation, causing minor reductions in emissions for all gases. The influence of this revision on the emissions is less than 0.1 per cent.

#### 1 A 4 c Agriculture/forestry/fishing

• Revised activity data. Consumption of auto diesel and gasoline were increased slightly for all years since 1998 due to a reappraisal of consumption in agriculture. This has increased the emissions of N<sub>2</sub>O by less than 0.02 per cent, while other emissions have increased by less than 0.01 per cent.

#### 1 B 1 b Solid Fuel Transformation

• Additional activity. Emissions from a fire in a coal mine in 2005 have been added. The emissions affect the national totals only marginally.

#### 1B 2c Emissions from flaring

Revised emission factor. The emission factor used for etimation of NOx from flaring has been changed from 12 to 1.4. Emissions from this source has been reduced by 88 per cent for all years. The influence of this revision on the total national  $NO_x$  emissions 2-3 per cent.

#### 8.4.2. Industrial processes

#### 2 B 5 Manufacture of other inorganic chemicals

 Reallocation. Emissions of NO<sub>X</sub> from flaring of natural gas by production of methanol are now, as recommended by IPCC's review team, reported under 2B5. Emissions of NO<sub>X</sub> in this sector has increased by 0.2 per cent in 1990 to 0,02 per cent in 2005

#### 2 C 1 Iron and steel Production

Revised reported emissions and additional reporting. For the first time diffuse emissions have been included in the emissions reported from one plant. These emissions are included for all years since 1999 for arsenic, cadmium, cupper, mercury and chromium. Since 1992 for lead and particulate matter. New figures are reported for dioxin for 1997 to 1999 and PAH are reported for the first time for the period 1997-2006 (PAH-OSPAR and PAH-4 are also estimated). For each component the same amount of diffuse emissions are included for all years. For the years were there are not reported new figures the same amount of diffuse emission are included. Emissions of lead have increased by 1717 kilo for all years since 1992. This recalculation increased the total emission of lead by 1 per cent in 1992 to 27 per cent in 2001. The increase in 2005 was 21 per cent. The reason why the increase is increasing every year from 1992 to 2001 is the decrease in total lead emissions. The emissions of lead from road traffic have been dramatically reduced in the period 1990 to 1997 as leaded petrol has been phased out. In 1990 and 1991 the emissions of lead have increase by 417 kilo. This increase is lower than for other years because the emissions figures already used in the emission inventory were higher for these years than for the other years. Emissions of cadmium have increased by 30 kilo for all years since 1990. This recalculation increased the total emission of cadmium by 3 to 5 per cent for all years. Emissions of chromium have increased by 76,5 kilo for all years since

1990. This recalculation increased the total emission of chromium by 0.6 to 3 per cent for all years. Emissions of cupper have increased by 116.5 kilo for all years since 1990. This recalculation increased the total emission of cupper by 0.5 to 0.6 per cent for all years. Emissions of arsenic have increased by 3 kilo for all years since 1990. This recalculation increased the total emission of arsenic by 0.1 to 0.2 per cent for all years. Emissions of mercury have increased by 0.1 kilo for all years since 1990. This recalculation has minor influence on the total emission of mercury. Emissions of particulate matter increased by 52.5 tonnes for all years since 1990. This recalculation increased the total emission of particulate matter by less than 0.2 per cent for all years. Emissions of PAH are included for all years since 1997. For the years before 1997 the figure for 1997 has been used. In addition one other plant, starting up in 2003 has reported figures for the years after 2003. This influence on the total emissions of PAH by 0.1 to 0.2 per cent and emissions of PAH-OSPAR and PAH-4 by 0.2 to 0.3 and 0.2 to 0.3 per cent respectively. Emissions of dioxin have decreased for all years before 1999. The new reported figures for 1997 to 1999 are lower than the figures reported for 2000. Earlier the emission figure from 2000 was used for the years 1990 to 1999. Now the reported figures for 1997 are used for the years 1990 to 1996. This recalculation has decreased the total emission of dioxin by 0.7 to 2.5 per cent.

#### 2 C 2 Ferroalloys Production

• Revised method. Reported NO<sub>X</sub> figures from production of ferroalloys have been revised most years from 1990. This has given considerably higher emissions for the whole time period from 1990: Total NO<sub>X</sub> emissions have been increased by, 0.5-1.1 per cent.

#### 2 C 5 Production of magnesium

• Correction of error. The plant that produces magnesium closed down the production of primary magnesium in 2002, the production of cast magnesium is continuing. The production of cast magnesium does not emit arsenic. By å mistake reported 2003 figures for arsenic have been used for years after 2003. These figures are now deleted. The emissions of arsenic form metal production is reduces by 17 per cent for 2004 and 2005. This recalculation reduced the total emission of arsenic by 0.1 per cent for 2004 and 2005.

#### 2D 2 Pulp and paper

• Emissions figures reported to Statistics Norway from the Norwegian Pollution Control Authority for one plant included new information on the split between process and combustion emissions. For the years after 2003. Emissions of particulate matter have decreased insignificantly due to this new knowledge. It was earlier assumed that the reported figures were all process emissions. Since 2003 a part of the reported figures, were emissions from combustion and are now reported under 1A 2d. This changed the total emissions of particulate matter by less than 0.01 per cent

#### 8.4.3. Agriculture

- 4 B Manure Management
- Revised activity data. Minor changes in NH<sub>3</sub> emissions due to revised figures for the number of reindeer 2004-2005.

#### 4 D Direct and indirect emissions from agricultural soils

• Revised activity data. Minor changes in NH<sub>3</sub> emissions due to revised figures for the number of reindeer 2004-2005.

#### 4 G Other

• Revised activity data. Minor changes in emission of PM in 2005, due to revised figures for area used for grain. The influence on the total national emissions of PM is less then 0.01 per cent.

#### 8.4.4. Waste

#### 6 C Waste incinerationt

Reallocation. Emissions of NO<sub>X</sub> from flaring by the production of methanol are now, as recommended by the IPCC's review team, reported under 2B5. Emissions of  $NO_X$  in this sector has increased by 0,2 per cent in 1990 to 0,02 per cent in 2005

Additional component. Emissions of TSP and PM2.5 from hospital waste are included for all years. Minor increase in emissions (less than 0.1 per cent)

# 8.5. Implications of the recalculations for the long-range transbundary air pollutants

#### 8.5.1. Implications for emissions levels

Table 8.4 shows the effects of recalculations on the emission figures for the main pollutants 1990-2005, table 8.5 the effect on the PM emissions and table 8.6 the effects on the POP and heavy metal emission figures.

|      | pollutants      |        |        |        |        |  |
|------|-----------------|--------|--------|--------|--------|--|
|      | SO <sub>2</sub> | NOx    | NMVOC  | CO     | NH₃    |  |
|      | tonnes          | tonnes | Tonnes | tonnes | tonnes |  |
| 1990 | -75             | -4812  | 405    | -82    | 0      |  |
| 1991 | -73             | -2667  | 330    | -101   | 0      |  |
| 1992 | -69             | -2358  | 399    | -72    | 0      |  |
| 1993 | -57             | -2501  | 635    | -29    | 0      |  |
| 1994 | -57             | -2562  | 521    | 62     | 0      |  |
| 1995 | -21             | -3026  | 525    | 31     | 0      |  |
| 1996 | -8              | -3455  | 534    | 61     | 0      |  |
| 1997 | -44             | -2920  | 605    | 5      | 0      |  |
| 1998 | -48             | -3189  | 709    | 1428   | 0      |  |
| 1999 | -24             | -5443  | 821    | 1665   | 0      |  |
| 2000 | -3              | -5196  | 802    | 1646   | 0      |  |
| 2001 | -8              | -3532  | 536    | 1170   | 0      |  |
| 2002 | -5              | -2174  | 472    | 1007   | 0      |  |
| 2003 | -5              | -2491  | 538    | 1193   | 1      |  |
| 2004 | -80             | -2017  | 559    | 1254   | 16     |  |
| 2005 | -274            | -5061  | -251   | 1520   | -65    |  |

Table 8.4. Recalculations in 2008 submission compared to the 2007 submission. Main

| Table 8.5. | Recalculations in 2008 submission compared to the 2007 submission. Particulate |
|------------|--------------------------------------------------------------------------------|
|            | Matter                                                                         |

| watt | ler    |                  |                   |
|------|--------|------------------|-------------------|
|      | TSP    | PM <sub>10</sub> | PM <sub>2.5</sub> |
|      | tonnes | tonnes           | Tonnes            |
| 1990 | 73     | 74               | 76                |
| 1991 | 74     | 74               | 76                |
| 1992 | 47     | 48               | 49                |
| 1993 | 48     | 49               | 50                |
| 1994 | 48     | 49               | 50                |
| 1995 | 49     | 49               | 51                |
| 1996 | 49     | 49               | 51                |
| 1997 | 54     | 55               | 55                |
| 1998 | 61     | 61               | 62                |
| 1999 | 58     | 58               | 59                |
| 2000 | 59     | 60               | 60                |
| 2001 | 97     | 85               | 84                |
| 2002 | 82     | 65               | 65                |
| 2003 | 104    | 84               | 82                |
| 2004 | 125    | 106              | 106               |
| 2005 | 183    | 156              | 172               |

| Table 8.6. | Recalculations in 2008 submission compared to the 2007 submission. POPs and |
|------------|-----------------------------------------------------------------------------|
|            | heavy metals                                                                |

|      |      |    |    |    |     |       | PAH-4   |         |
|------|------|----|----|----|-----|-------|---------|---------|
|      | Pb   | Cd | Hg | As | Cr  | Cu (( | CLRTAP) | Dioxins |
|      | Kg   | Kg | Kg | Kg | Kg  | Kg    | Kg      | mg      |
| 1990 | 376  | 30 | -1 | 0  | 71  | 114   | 11902   | -900    |
| 1991 | 387  | 30 | -1 | 1  | 71  | 114   | 10999   | -900    |
| 1992 | 1689 | 30 | -1 | 1  | 71  | 114   | 10664   | -900    |
| 1993 | 1706 | 30 | -1 | 1  | 72  | 114   | 12160   | -900    |
| 1994 | 1715 | 30 | -1 | 1  | 71  | 115   | 12976   | -900    |
| 1995 | 1714 | 30 | -1 | 1  | 71  | 115   | 12632   | -900    |
| 1996 | 1713 | 30 | -1 | 1  | 71  | 115   | 13448   | -900    |
| 1997 | 1714 | 30 | -1 | 1  | 72  | 115   | 14004   | -900    |
| 1998 | 1713 | 30 | -1 | 1  | 71  | 115   | 11337   | -700    |
| 1999 | 1715 | 27 | 0  | 2  | 74  | 116   | 9381    | -1000   |
| 2000 | 1717 | 30 | 0  | 3  | 77  | 116   | 7614    | 10      |
| 2001 | 1717 | 30 | 0  | 3  | 76  | 116   | 5568    | 0       |
| 2002 | 1717 | 30 | 0  | 2  | 76  | 116   | 3712    | -21     |
| 2003 | 1717 | 30 | 0  | 3  | 76  | 116   | 870     | -17     |
| 2004 | 1712 | 30 | -1 | -2 | 70  | 114   | -1745   | -4      |
| 2005 | 1720 | 30 | -3 | -2 | 146 | 207   | -6661   | -136    |

#### 8.5.2. Implications for emission trends

As a result of the different recalculations for 1990-2005 there have been some small changes in the trends. The differences are shown in the tables below.

# Table 8.7. Trends in emissions 1990-2005. This submission vs. previous submission. Main Pollutants. Per cent change 1990-2005

|                     | SO <sub>2</sub> | NO <sub>X</sub> | NMVOC | CO    | $NH_3$ |
|---------------------|-----------------|-----------------|-------|-------|--------|
| This submission     | -54.6           | -7.7            | -25.0 | -48.4 | 12.7   |
| Previous submission | -52.2           | -6              | -10.1 | -45.4 | 12.4   |

# Table 8.8. Trends in emissions 1990-2005. This submission vs. previous submission. Particulate Matter. Per cent change 1990-2005

|                     | TSP   | PM <sub>10</sub> | PM <sub>2.5</sub> |
|---------------------|-------|------------------|-------------------|
| This submission     | -17.1 | -19.7            | -19.6             |
| Previous submission | -15.6 | -15.5            | -14               |
|                     | -15.0 | -15.5            |                   |

# Table 8.9. Trends in emissions 1990-2005. This submission vs previous submission. POPs and heavy metals. Per cent change 1990-2005

|                     | Pb    | Cd    | Hg    | As    | Cr    | Cu   | PAH-4<br>(CLRTAP) | Dioxins |
|---------------------|-------|-------|-------|-------|-------|------|-------------------|---------|
| This submission     | -96.0 | -51.3 | -54.2 | -53.2 | -78.5 | -6.6 | 8.8               | -81.2   |
| Previous submission | -95.6 | -47.1 | -53   | -55.5 | -76.8 | -7.2 | 2.4               | -75.1   |

# 9. Areas for further improvement

# 9.1. Overview

There are several areas where improvement actions are needed to improve the Norwegian emission inventory system. In this chapter the main issues are listed. For greenhouse gases the yearly international review identifies areas where the Norwegian inventory needs improvements to be consistent with the IPCC Guidelines.

# 9.2. General

• Many of the emission factors used in the inventory are relatively old, some over 10 years, and they need to be analysed. Some of them also lack good documentation and source references.

# 9.3. Energy

- Emissions from road traffic (both greenhouse gases and LRTAP-gases) are calculated by a model that was developed in the early nineties and revised in 1998/1999. The model has not been updated since and does not reflect new available knowledge. An exception is the N<sub>2</sub>O emission factors for road transportation, which was updated in 2006. In order to deal with this inad-equacy in the national inventory, a project is ongoing aiming at updating these emission factors. The model must be updated for NO<sub>X</sub>, CO, VOC and particles.
- The emission estimations for navigation still need to be updated. The methodology calculating NO<sub>X</sub> emissions from navigation used today does not reflect changes over time in emission factors. However, today almost no measures to reduce NO<sub>X</sub> from ship emissions have been carried out but the few that have been implemented are included in the inventory. There is a large uncertainty in the activity data for navigation
- The sulphur content in fuel wood and carbon used for stationary combustion need to be revised. The calculations used today are highly uncertain. There may also be a need to improve other emission factors for POPs and heavy metals for fuel wood combustion.
- Wear of asphalt from studded tyres is one of the most important sources of particulate emissions in Norway (along with fuel wood burning and road traffic exhaust). The model used for calculating these emissions was developed in 1998 and needs evaluation and probably also revision.
- The energy statistics used as input to the Norwegian emission inventory need to be improved for some sectors. A project was initiated in 2005, with the aim to review the methods and data sources used in the energy statistics, and to propose alternative sources and methods where needed. For use of petroleum products, Statistics Norway's sales statistics for petroleum products are used. The division between sectors in the sales statistics is not as detailed as the one needed in the energy statistics. A number of different methods are being used to distribute the energy use of the different energy products on actual sectors. Some are based on very old assumptions and surveys that need to be updated.

# 9.4. Industry

- The CO<sub>2</sub> emissions from aluminium production will be investigated.
- HFCs and PFCs from Products and Processes. The methodology will progressively be improved as new import statistics and information from users and sectors become available.

## 9.5. Solvent and other product use

• The model used to calculate emissions of NMVOC from solvents is based on a study made in 1995. This means that reduced emissions as a consequence of the EU VOC-directive is not reflected in the inventory, which can/ may lead to an overestimation of NMVOC and hence also indirect CO<sub>2</sub> from this emission source. Solvents and other product use is the second most important NMVOC source in Norway. A project that will lead to a new model for calculating NMVOC from solvent use was started in March 2007. This project will result in improved estimates for emissions from solvent use for all years from 1987.

# 9.6. Agriculture

• High uncertainty is connected to the calculations of N<sub>2</sub>O from agricultural soils. The calculations are based on a simple Tier 1 methodology, which results in that some efforts made to reduce the emissions not are reflected in the calculations, e.g. changes in soil cultivation practices. Changes are proposed both for the methodology and emission factors used for the calculations of N<sub>2</sub>O from agricultural soils in IPCC (2006). These changes need to be implemented in the Norwegian emission inventory.

# References

Aakra, Å. and M.A. Bleken (1997): N<sub>2</sub>O Emissions from Norwegian Agriculture as Estimated by the IPCC Methodology, Departement of Biotechnological Sciences, Ås: Norwegian University of Life Sciences.

Aasestad, K. (2007): *The Norwegian emission inventory 2007, Documentation of methodologies for estimating emissions of long-range transboundary air pollutants*, Report 2007/38, Statistics Norway.

Aker Engineering (1992): Direct Hydrocarbon Gas Emissions from Production and Riser Platforms

Bang, J. (1993): *Utslipp fra dieseldrevne anleggsmaskiner, arbeidsredskaper, traktorer og lokomotiver* (Emissions from diesel-powered construction machinery, tools, tractors and locomotives), Oslo: National Institute of Technology.

Bang, J. (1996): Utslipp av NMVOC fra fritidsbåter og bensindrevne motorredskaper (Emissions of NMVOC from leisure craft and gasoline-powered equipment), Oslo: National Institute of Technology.

Barlaz, M. (2004): National Council for Air and Stream Improvment USA, *Technical Bulletin* no. **872**, March 2004.

Benestad C. (2000): Personal information, E-mail dating 30/10-2000.

Bergfald & Co as (2000): Emissions of methane from coal mining at Svalbard. (Only in Norwegian).

Bolstad, T. (1994): *Utskilling av nitrogen og fosfor i gjødsel og urin frå husdyr i Norge* (Nitrogen and phosphorus in manure and urine from domestic animals in Norway), Department of animal science, Ås: Norwegian University of Life Sciences.

Bremmer, H.J., L.M. Troost, G. Kuipers, J. de Koning J and A.A. Sein (1994): *Emission of dioxins in the Netherlands*, Bilthoven: National institute of public health and environmental protection (RIVM).

Brink, R. M. M. v. d. (1996): *Deeltjesemissie door wegverkeer; emissiefactoren, deeltjesgrootteverdeling en chemische samenstelling* (Particle emissions from road traffic; emission factors, particle size distribution and chemical composition), Bilthoven: National institute of public health and environmental protection (RIVM).

Brock C.A., A. Döpelheuer, A. Petzol and F. Schröder (1999): In situ observations and model calculations of black carbon emissions by aircraft at cruise altitude. *Journal of Geophysical Research* Vol **104**. No D18, 22,171-22,181.

Buhaug, Ø. *NO<sub>x</sub> emission Factores -2006 estimates*. Marintek report MT28 F06-033- Confidential

Bækken (1993): Miljøvirkninger av vegtrafikkens asfalt og dekkslitasje (Environmental effects of the asphalt paving and tyre wear from road traffic), rapport O-92090, Oslo: Norsk institutt for vannforskning.

Dämmgen, U., Lüttich, M., Döhler, H., Eurich-Menden, B. and B. Osterburg (2002): GAS-EM - A Procedure to Calculate Gaseous Emissions from Agriculture. *Landbauforschung Völkenrode* 52, 19-42.

Daasvatn L., K. Flugsrud, H. Høie, K. Rypdal, T. Sandmo (1992): Modell for beregning av nasjonale utslipp til luft. Dokumentasjon (Model for calculation of national air emissions. Documentation), Interne notater 92/17, Statistics Norway.

Daasvatn, L., K. Flugsrud, O.K. Hunnes and K. Rypdal (1994): Beregning av regionaliserte utslipp til luft. Beskrivelse av modell og metoder for estimering (Calculation of emissions to air on a regional basis. Description of a model and estimation methods), Notater 94/16, Statistics Norway.

Directorate for Health (1990): Retningslinjer for inneluftkvalitet (Guidelines for indoor air quality). Helsedirektoratets utredningsserie 6/90.

Döpelheuer, A. and M. Lecht (1998): *Influence of engine performance on emission characteristics*. RTO AVT Symposium on "Gas Turbine Engine Combustion, Emissions and Alternative Fuels". NATO Research and Technology Organization. RTO Meeting Proceedings. 14. ECETOC (1994): *Ammonia Emissions to Air in Western Europe*, ECETOC

Technical report No. 62, Brussels: European Centre for Ecotoxicology and Toxicology of Chemicals.

EEA (1996): *EMEP/Corinair. The Atmospheric Emission Inventory Guidebook.* First edition, Copenhagen: European Environmental Agency.

EEA (1997): Copert II. Computer programme to calculate emissions from road transport. Methodology and emission factors, Topic report 1997, Copenhagen: European Environmental Agency.

EEA (2001): Emission Inventory Guidebook, 3<sup>rd</sup> Edition. A joint EMEP/CORINAIR Production, Copenhagen: European Environmental Agency.

Eggleston, Gorißen, Joumard, Rijkeboer, Samaras and Zierock (1991): CORINAIR Working Group on Emission Factors for Calculating 1990 Emissions from Road Traffic. Volume 1: Methodology and Emission Factors, Final report, December 1991.

Eikeland (2002): Personal information, E-mail dating 29.05.2002. Elkem@elkem.no

EPA (1986): *Ferro-alloy Industry Particulate Emissions: Source Category Report*, Report no EPA/600/7-86/039, U.S. Environmental Protection Agency.

EPA (1998): Locating and Estimating Airmissions From Sources of Polycyclic Organic Matter. EPA-454/R-98-014, U.S. Environmental Protection Agency.

EPA (2002): Compilation of air pollutant emission factors. Fifth edition, AP-42, Volume 1, Stationary Point & Area Sources, Update 2001 & Update 2002, U.S. Environmental Protection Agency.

EPA (2004): Update of Methane and Nitrous Oxide Emission Factors for On – Highway Vehicles. EPA420-P-04-016, U.S. Environmental Protection Agency

Erlandsen K., J.L. Hass and K.Ø. Sørensen (2002): Norwegian Economic and Environment Accounts (NOREEA) Project Report - 2001, Documents 2002/15, Statistics Norway.

EU (2002): Final Technical Report of the SACS2 project, issued 30. Aug. 2002, EU project NNE-1999-00521.

Evans, F. (2000): Personal information, telephone call 20/11-00, Oslo: Norwegian Institute of Wood Technology.

Evensen, R. (1997a): Personal information, telephone call 11/12 1997. Bærum: ViaNova.

Evensen, R. (1997b): Note for Johnny Johansen. 14/12 1997. Bærum: ViaNova.

FAO (2002): FAOSTAT database, http://apps.fao.org.

Finstad, A., G. Haakonsen, E.Kvingedal and K.Rypdal (2001): *Utslipp til luft av noen miljøgifter i Norge - Dokumentasjon av metode og resultater* (Emissions of some hazardous chemicals to air in Norway - Documentation of methodology and results), Report 2001/17, Statistics Norway.

Finstad, A., G. Haakonsen and K. Rypdal (2002a): *Utslipp til luft av dioksiner i Norge - Dokumentasjon av metode og resultater* (Emissions to air of dioxins in Norway - Documentation of methodology and results), Report 2002/7, Statistics Norway.

Finstad, A., K. Flugsrud and K. Rypdal (2002b): *Utslipp til luft fra norsk luftfart* (Emissions to air from Norwegian air traffic), Report 2002/8, Statistics Norway.

Finstad, A., and K. Rypdal (2003): *Utslipp til luft av kobber, krom og arsen i Norge - Dokumentasjon av metode og resultater* (Emissions to air of copper, chromium and arsenic in Norway - Documentation of methodology and results), Report 2003/7, Statistics Norway.

Finstad, A., G. Haakonsen and K. Rypdal (2003): *Utslipp til luft av partikler i Norge - Dokumentasjon av metode og resultater* (Emissions to air of particles in Norway - Documentation of methodology and results), Report 2003/15, Statistics Norway.

Flugsrud K., and K. Rypdal (1996): *Utslipp til luft fra innenriks sjøfart, fiske og annen sjøtrafikk mellom norske havner* (Emissions to air from domestic shipping, fisheries and other maritime traffic between Norwegian ports). Report 96/17, Statistics Norway.

Flugsrud, K., E. Gjerald, G. Haakonsen, S. Holtskog, H. Høie, K. Rypdal, B. Tornsjø and F. Weidemann (2000): *The Norwegian Emission Inventory*. *Documentation of methodology and data for estimating emissions of greenhouse gases and long-range transboundary air pollutants*, Report 2000/1, Statistics Norway.

Fontelle, J.P. (2002): Personal information (e-mail correspondance), April 2002, CITEPA.

Fyns Amt (2000): *Estimeret beregning for årlig dioxinemission på 8 anlæg i Fyns Amt* (Estimated calculation for yearly dioxin emissions on 8 plants in Fyns Amt). Report 15.420. dk-TEKNIK Fredericia, May 2000.

Gense, N.LJ, Vermeulen, R.J.(2002): N<sub>2</sub>O –emissions from passenger cars. TNO report 02.OR.VM.016.1/NG

Geological Society of London Memoir (under publishing): 4D seismic imaging of an injected CO2 plume at the Sleipner field, central North Sea.

Gjensidige (2006): *Piggdekk eller piggfritt? Hvilke valg gjør norske bilister i 2006?* (Studded tyres or free from stud? Which choices makes Norwegian motorists in 2006?), (Author: T. Vaaje), Sollerud: Gjensidige

Gundersen, G. I. and O. Rognstad (2001): *Lagring og bruk av husdyrgjødsel* (Storage and use of manure), Reports 2001/39, Statistics Norway.

Hansen, E. (2000): *Substance flow analysis for dioxins in Denmark*, Environmental project No 570 2000, Danish Environmental Protection Agency, Danish Ministry of the Environment.

Hansen K. L. (2007): Emissions from consumptin of HFCs, PFcs and SF6 in Norway. Documents 2007/8, Statistics Norway.

Hassel, Jost, Weber, Dursbeck, Sonnborn and Plettau (1994): *Abgas-Emissionsfaktoren von Pkw in der Bundesrepublik Deutschland*. Berichte 8/94. Umweltbundesamt (UBA) 1994.

Haukeland J.V., A. Skogli and I. Stangeby (1999): *Reisevaner i Norge 1998* (Travel habits in Norway 1998), Report 418/1999, Oslo: Institute of Transport Economics (TØI).

Hedalen, T. (1994): *Vegslitasje - partikkelstørrelsesfordeling* (Road abrasion - particle size distribution), Report no. STF36 A94011, Trondheim: Institute of Social Research in Industry (SINTEF) Bergteknikk.

Hedalen, T. and T. Myran (1994): *Vegstøvdepot i Trondheim partikkelstørrelsesfordeling, kjemisk og mineralogisk sammensetning* (Road dust depot in Trondheim - particle size distribution, chemical and mineralogic composition), STF36 A94037, Trondheim: Institute of Social Research in Industry (SINTEF) Bergteknikk.

Hoem, B. (2005): *The Norwegian emission inventory, Documentation of methodologies for estimating emissions of long-range transboundary air pollutants*, Report 2005/28, Statistics Norway.

Hoem, B. (2006): *The Norwegian emission inventory, Documentation of methodologies for estimating emissions of long-range transboundary air pollutants*, Report 2006/30, Statistics Norway.

Hutchings, N.J., Sommer, S.G., Andersen, J.M. and W.A.H. Asman (2001): A detailed ammonia emission inventory for Denmark. *Atmospheric Environment* 35, 1959-1968.

Haakonsen, G., K. Rypdal and B. Tornsjø (1998): Utslippsfaktorer for lokale utslipp - PAH, partikler og NMVOC (Emission factors for local emissions - PAH, particles and NMVOC), Notater 98/29, Statistics Norway.

Haakonsen, G. and E. Kvingedal (2001):*Utslipp til luft fra vedfyring i Norge. Utslippsfaktorer, ildstedsbestand og fyringsvaner* (Emissions to air from combustion of wood in Norway), Report 2001/36, Statistics Norway.

IMC (2000): Seam Gas Content Analysis. Technical Services Limited.

IPCC (1997a): Greenhouse Gas Inventory. Workbook. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, London: Intergovernmental Panel on Climate Change.

IPCC (1997b): Greenhouse Gas Inventory. Reference Manual. Revised 1996. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3, London: Intergovernmental Panel on Climate Change.

IPCC (2001): Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. J. Penman et. al. (eds.), Hayama, Japan: IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit.

IPCC (2006): Draft 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Subject to Final Copyedit).

Jebsens miljøteknikk (1991): Undersøkelse av utslipp av støv, PAH, CO, SO<sub>2</sub> og tyngre organiske forbindelser fra et motstrøms og et ordinært trommelblandeverk for asfalt.

Johansson L. and K.Solvoll (1999). Norkost 1997, Landsomfattende kostholdsundersøkelse blant menn og kvinner i alderen 16-79 år. Rapport nr. 2/1999 http://www.shdir.no/vp/multimedia/archive/00003/IS-0168\_3745a.pdf.

Jordforsk (1998): *Report from the monitoring of nutrients in 1997* (Authors: Vagstad, N., M. Bechmann, P. Stålnacke, H.O. Eggestad and J. Deelstra), Ås: Centre for Soil and Environmental Research.

Jordforsk (2004): Personal information (e-mail correspondance) Arne Grønlund, Centre for Soil and Environmental Research, February 2004.

Karlsson M.L., P.A. Wallin and L. Gustavsson (1992): *Emissioner från biobrensleeldade anläggningar mellan 0,5 och 10 MW* (Emissions from biofuel plants between 0,5 and 10 MW), SP report 1992:46, Borås: Swedish National Testing and Research Institute.

Larssen, S. (1985): *Støv fra asfaltveier. Karakterisering av luftbåret veistøv. Fase 1: Målinger i Oslo, våren 1985* (Dust from asphalt roads. Characterization of air carried road dust. Phase 1: Measurements in Oslo, spring 1985), O-8431, Kjeller: Norwegian Institute for Air Research (NILU).

Morken, J. (2003a): Personal information, Department of Agricultural Engineering, Norwegian University of Life Sciences.

Morken, J. (2003b): Evaluering av ammoniakkutslippsmodellen (Evaluation of the ammonia emission model), internal note, Department of Agricultural Engineering, Norwegian University of Life Sciences.

Morken, J. and L. Nesheim (2004): Utnytting og tap av næringsstoff i husdyrgjødsel - framtidige utfordringar, *Grønn kunnskap* Vol. 8 Nr. 3-2004, 51-64.

NIJOS (2005): *Emissions and removals of greenhouse gases from land use, land-use change and forestry in Norway* (Report 11/05) (Authors: Rypdal,K., Bloch, V.V.H., Flugsrud, K., Gobakken, T., Hoem, B., Tomter, S.M. and Aalde, H.), Ås: Norwegian Institute of Land Inventory.

NILU/NIVA (1995): *Materialstrømsanalyse av PAH, 1995* (Material flow analysis of PAHs, 1995), Report O-92108, Kjeller and Oslo: Norwegian Institute for Air Research (NILU) and Norwegian institute for Water research (NIVA).

Norsk Hydro (1995): Personal information, Kaarstad, Norsk Hydro.

NPD (2001): Forskrift om måling av petroleum for fiskale formål og for beregning av CO2-avgift (Regulation on measurements of petroleum for fiscal purposes and for the calculation of the CO2 tax), 1. november 2001, Oslo: Oljedirektoratet (OD), http://www.npd.no/regelverk/r2002/frame\_n.htm

NPRA (1995a): Undersøkelse av vegvedlikehold og kjøreforhold - vinteren 1994/1995. Del I: Samlet fremstilling og analyser av undersøkelsene i perioden 1990 - 94 (Investigation of road maintenance and driving circumstances -Winter 1994/1995. Part I: Summary description and analyses of the investigations in the period 1990-94), Nr. 95-333, Norwegian Public Roads Administration. NPRA (1995b): Undersøkelse av vegvedlikehold og kjøreforhold - vinteren 1994/1995. Del II: Statistikkhefte for undersøkelsene i perioden 1990 - 94 (Investigation of road maintenance and driving circumstances -Winter 1994/1995. Part II: Statistical booklet about the investigations in the period 1990-94). Nr. 95-334, Norwegian Public Roads Administration.

NPRA (1996): *Veg-grepsprosjektet; Delprosjekt 5.15: Samfunnsøkonomiske konsekvenser; Dokumentasjon av beregningsmodell* (The road grip project; Part project 5.15: Social economic consequences; Documentation of calculation modell), Internal report no. 1918, Norwegian Public Roads Administration.

NPRA (1997): Veg-grepsprosjektet: Samlerapport; Konklusjoner, forslag til ny veg-grepspolitikk og resultater (The road grip project: Summary report; Conclutions, proposals for new road grip politics and results), Internal report no. 1994, Norwegian Public Roads Administration.

NPRA (1998): Undersøkelse av vegvedlikehold og kjøreforhold - vinteren 1997/98 Landssammenstilling (Investigation of road maintenance and driving circumstances -Winter 1997/98, Country collocation), STF22 A98561, Norwegian Public Roads Administration.

NPRA (2000): *Piggfriundersøkelsen 2000. Modell for piggdekkbruk* (The investigation of studded tyres 2000. A model for the use of studded tyres), Note dated 28.2.2000, (Authors: Johansen, K. and F. H. Amundsen), Norwegian Public Roads Administration.

NTI (2000): Fokus på tre, Nr. 21, Norwegian Institute of Wood Technology.

OLF (1991): OLF Environmental Programme. Emissions to air. Report Phase I - Part A, Stavanger: Norwegian Oil Industry Association.

OLF (1994): Anbefalte retningslinjer for utslippsberegning. Identifisering, kvantifisering og rapportering av forbruks- og utslippsdata fra aktiviteter i norsk oljevirksomhet (Recommended guidelines for emission calculations. Identification, quantification and reporting of data on consumption and emissions from activities in the Norwegian oil and gas sector), Stavanger: Norwegian Oil Industry Association.

OLF (2004): Veiledning til Vedlegg til Opplysningspliktforskriften; Krav til rapportering fra offshore petroleumsvirksomhet på norsk kontinentalsokkel. (Recommended guidelines for reporting from activities at the Norwegian oil and gas sector.), Novatech as December 2004.

Olivier, J.G.J. (1991): *Inventory of aircraft Emissions: A review of Recent Literature*, Report no. 736 301 008, Bilthoven: National Institute of Public Health and Environmental Protection

Parma, Z., Vosta J., Horejs J., Pacyna J.M. and D. Thomas (1995): *Atmospheric Emission Inventory Guidelines for Persistent Organic Pollutants (POPs)*, Prague, The Czech Republic: Report for External Affairs Canada.

Petersen, S.O. and J.E. Olesen (2002): Greenhouse gas Inventories for Agriculture in the Nordic Countries. Proceedings from an international workshop, Helsingør, Denmark 24-25 January 2002, *DIAS report Plant Production* no. **81.** Rideng, A. (2001): *Transportytelser i Norge 1946-2000* (Transport performance in Norway 1946-2000), Report 515/2001, Oslo: Institute of Transport Economics.

Riemersma, I.J., Jordaan, K., Oonk, H.(2003): *N*<sub>2</sub>*O* - *emissions of HD vehicles*. TNO report 03.OR.VM.006.1/IJR

Rosland, A. (1987): Utslippskoeffesienter. Oversikt over koeffesienter for utslipp til luft og metoder for å beregne disse (Emission factors. Overview of factors for emissions to air and methods of calculating them), Oslo: Norwegian Pollution Control Authority (SFT).

Rypdal, K. (1993): Anthropogenic Emissions of the greenhouse gases  $CO_2$ ,  $CH_4$  and  $N_2O$  in Norway, Reports 93/24, Statistics Norway.

Rypdal, K. (1995a): *Løsemiddelbalanse for Norge* (Solvent balance for Norway), Report 95:02, Oslo: Norwegian Pollution Control Authority (SFT).

Rypdal, K. (1995b): Anthropogenic Emissions of SO<sub>2</sub>, NO<sub>X</sub>, NMVOC and NH<sub>3</sub> in Norway, Reports 95/12, Statistics Norway.

Rypdal, K. and T. Mykkelbost (1997): Utslippsfaktorer for miljøgifter (Emission factors for hazardous chemicals), Internal notes 25.06.1997, Statistics Norway.

Rypdal, K. and L-C. Zhang (2000): *Uncertainties in the Norwegian Greenhouse Gas Emission Inventory*, Report 2000/13, Statistics Norway.

Rypdal, K. and L-C. Zhang (2001): Uncertainties in Emissions of Long-Range Air Pollutants, Report 2001/37, Statistics Norway.

Sérié, E. and R. Joumard (1996): *Proposition of modelling of cold start emissions for road vehicles*. MEET Project, INRETS report LEN 9624, December 1996.

SFT (1990): Klimagassregnskap for Norge. Beskrivelse av utslippsmengder, drivhusstyrke og utslippsfaktorer. Bidrag til den interdepartementale klimautredningen (Greenhouse gas inventory for Norway. Emission figures, global warming potentials and emission factors. Contribution to the interministerial climate report.), Oslo: Norwegian Pollution Control Authority.

SFT (1992): *Biologiske nitrogenfjerningsprosesser - en kilde til lystgassutslipp?* (Biological nitrogen removal processes - a source of nitrogen oxide emissions), Report 92:27, Oslo: Norwegian Pollution Control Authority.

SFT (1993): Utslipp fra veitrafikken i Norge. Dokumentasjon av beregningsmetode, data og resultater (Emissions from road traffic in Norway -Method for estimation, input data and emission estimates), Report 93:12, Oslo: Norwegian Pollution Control Authority.

SFT (1996): *Utslipp ved håndtering av kommunalt avfall* (Emissions from municipal waste management), Report 96:16 (Authors: Sandgren J., A. Heie, and T. Sverud), Oslo: Norwegian Pollution Control Authority.

SFT (1999a): *Evaluation of uncertainty in the Norwegian emission inventory*, Report 99:01 (Author: K. Rypdal), Oslo: Norwegian Pollution Control Authority.

SFT (1999b): *Calculations of emissions of HFCs and PFCs in Norway. Tier 2 method*, Report 99:03 (Author: Hans T. Haukås, Sigurd Holtskog, and Marit Viktoria Pettersen), Oslo: Norwegian Pollution Control Authority.

SFT (1999c): Utslipp fra vegtrafikk i Norge. Dokumentasjon av beregningsmetode, data og resultater (Emissions from road traffic in Norway - Method for estimation, input data and emission estimates), Report 99:04 (Updated SFT report 93:12, Author: Bang, J., K. Flugsrud, G. Haakonsen, S. Holtskog, S. Larssen, K.O. Maldum, K. Rypdal and A. Skedsmo), Oslo: Norwegian Pollution Control Authority. SFT (1999d): Beregningsmodell for utslipp av metangass fra norske deponier (Model for estimation of  $CH_4$  from landfills in Norway), Report 99:16 (Author: Frøiland Jensen J.E., Williksen T. and J. Bartnes at Norconsult), Oslo: Norwegian Pollution Control Authority.

SFT (1999e): PAH-utslipp til sjø og luft fra aluminiumsverkene på Lista, Karmøy og Mosjøen, (Elkem Aluminium, Teknologisk institutt, SINTEF, NIVA), Notat, Norwegian Pollution Control Authority.

SFT (2001a): *Harmonized Quantification and Reporting Procedures (HARP-HAZ Prototype)*, Report 1789/2001, Oslo: Norwegian Pollution Control Authority.

SFT (2001b): Units for dioxins (dioxins.doc). Personal information C. Benestad, 13 March 2001, Norwegian Pollution Control Authority.

SFT (2005a): *Methane emissions from solid waste disposal sites*, TA- 2079/2005, ISBN 82-7655-246-3, Oslo: Norwegian Pollution Control Authority. http://www.sft.no/publikasjoner/luft/2079/ta2079.pdf

SFT (2005b): National Inventory Report 2005, Norway, Greenhouse Gas Emissions 1990-2003 Reported According to the UNFCCC Reporting Guidelines, TA- 2097/2005, ISBN 82-7655-258-7, Oslo: Norwegian Pollution Control Authority. http://www.sft.no/publikasjoner/luft/2097/ta2097.pdf

SFT (2007): Revised National Inventory Report 2007–Norway, Greenhouse Gas Emissions 1990-2005 Reported According to the UNFCCC Reporting Guidelines: Annex VI, Oslo: The Norwegian Pollution Control Authority. http://cdr.eionet.europa.eu/no/un/UNFCCC/envrlbg7g/Revised\_Annex\_NIR\_2007 \_FINAL.doc/manage\_document

SFT (2008): National Inventory Report 2008, Norway, Greenhouse Gas Emissions 1990-2006 Reported According to the UNFCCC Reporting Guidelines, Oslo: The Norwegian Pollution Control Authority. http://cdr.eionet.europa.eu/no/un/UNFCCC/envryoww/NIR\_2008\_v1.doc/manage\_document

SINTEF (1995): *Round robin test of a wood stove-emissions*, SINTEF Report STF12 F95012 (Author: Karlsvik, E.), Trondheim: SINTEF (Institute of Social Research in Industry).

SINTEF (1998a): *Emisjonsfaktorer for CO<sub>2</sub>-utslipp fra sementproduksjon i Norge for 1990 og 1997* (Emission factors for CO<sub>2</sub> emissions from cement production in Norway for 1990 and 1997), SINTEF Report STF66 A98511 (Authors: Andersen, T. and K.H.Karstensen), Oslo: SINTEF (Institute of Social Research in Industry).

SINTEF (1998b): Omregningsfaktorer for CO<sub>2</sub>-utslipp fra metallurgisk industri og sementproduksjon. Delprosjekt 1. CO<sub>2</sub>-utslipp fra forskjellige typer reduksjonsmaterialer (Conversion factors for CO<sub>2</sub> emissions from metal manufacturing and cement production. Part 1. CO<sub>2</sub> emissions from various types of reducing agents), Revised edition, SINTEF Report STF24 A98550 (Author: Raaness, O.), Trondheim: SINTEF (Institute of Social Research in Industry).

SINTEF (1998c): Omregningsfaktorer for CO<sub>2</sub>-utslipp fra metallurgisk industri og sementproduksjon. Delprosjekt 2. Produksjon av ferrosilisium og silisiummetall i Norge (Conversion factors for CO<sub>2</sub> emissions from metal manufacturing and cement production. Part 2. Production of ferro silicon and silicon metal in Norway), Revised edition, SINTEF Report STF24 A98537 (Author: Monsen, B.), Trondheim: SINTEF (Institute of Social Research in Industry). SINTEF (1998d): Omregningsfaktorer for CO<sub>2</sub>-utslipp fra metallurgisk industri og sementproduksjon. Delprosjekt 3. Produksjon av ferromangan, silikomangan og ferrokrom i Norge (Conversion factors for CO<sub>2</sub> emissions from metal manufacturing and cement production. Part 3. Production of ferro manganese, silicon manganese and ferro chromium in Norway), ST24 A98548 (Authors: Monsen, B. and S.E. Olsen), Trondheim: SINTEF (Institute of Social Research in Industry).

SINTEF (1998e): Omregningsfaktorer for CO<sub>2</sub>-utslipp fra metallurgisk industri og sementproduksjon. Delprosjekt 4. Utslipp av CO<sub>2</sub> ved produksjon av silisiumkarbid og kalsiumkarbid (Conversion factors for CO<sub>2</sub> emissions from metal manufacturing and cement production. Part 4. CO<sub>2</sub> emissions from production of silicon carbide and calcium carbide), SINTEF Report STF24 A98549 (Authors: Raaness, O. and S. Olsen), Trondheim: SINTEF (Institute of Social Research in Industry).

SINTEF (1998f): Omregningsfaktorer for CO<sub>2</sub>-utslipp fra metallurgisk industri og sementproduksjon. Delprosjekt 5. Produksjon av magnesium (Conversion factors for CO<sub>2</sub> emissions from metal manufacturing and cement production. Part 5. Magnesium production), SINTEF Report STF24 A98574 (Authors: Olsen, K., T. Støre and R. Tunold), Trondheim: SINTEF (Institute of Social Research in Industry).

SINTEF and Det Norske Veritas (2004): *Hvitbok om klimagassutslipp fra norsk landbasert prosessindustri* (White book about greenhouse gas emissions from Norwegian land based process industry), SINTEF Report STF24A03501, DNV Report 2002-1609, Revised February 2004.

SLB (1998): *Metallemission från trafiken i Stockholm- Slitasje av bromsbelägg* (Metal emissions from the traffic in Stockholm- Brake wear). Report 2:98, Stockholm: Stockholms luft- och bulleranalys.

Skullerud H. (2006): *Methane emissions from Norwegian landfills. Revised calculations for waste landfilled 1945-2004*, Documents 2006/7, Statistics Norway. http://www.ssb.no/emner/01/04/10/doc 200607/doc 200607.pdf

Sosial og helsedirektoratet (2006). Utviklingen i Norsk kosthold. Matforsyningsstatistikk og Forbruksundersøkelser. 12/2006. IS-1407

Statistics Norway/SFT (2000): Verification of the Norwegian Emission Inventory comparing emission intensity values with similar countries, Report 2000:1736 (Authors: Haakonsen G., S. Holtskog, E. Kvingedal, K. Rypdal and B. Tornsjø at Statistics Norway), Oslo: Statistics Norway and Norwegian Pollution Control Authority.

Statistics Norway (2001): *Natural resources and the environment 2001. Norway*, Statistical Analyses 47, Statistics Norway.

Statistics Norway (2002): Sample Survey of agriculture and forestry 2001, Statistics Norway.

Statistics Norway (2003): Standard Industrial Classification (SIC2002), internet version only, http://www3.ssb.no/stabas/ItemsFrames.asp?ID=3152101&Language=en&Version Level=classversion&MenuChoice=Language

Statistics Norway (2004): Sample Survey of agriculture and forestry 2003, Statistics Norway.

Stave S.E. (2006). *Water consumption in the Food Processing and the Service Industries in Norway*. Documents 2006/12, Statistics Norway http://www.ssb.no/emner/01/04/20/doc 200612/doc 200612.pdf

Sternbeck J., Sjödin, Å. and Andrèasson, K. (2001): *Spridning av metaller från vägtrafik,* Report B1431, Stockholm: IVL Swedish Environmental Research Institute.

Sundstøl, F. and Z. Mroz (1988): *Utskillelse av nitrogen og fosfor i gjødsel og urin fra husdyr i Norge* (Nitrogen and phosphorus in manure and urine from domestic animals in Norway) (*see Bolstad 1994*), Report no. 4 from the project "Agricultural policy and environmental management", Ås: Norwegian University of Life Sciences.

Swedish Environmental Protection Agency (2005): *Sweden's National Inventory Report 2005 - Submission under the EC Monitoring Mechanism*, Vienna: Swedish Environmental Protection Agency.

TI (1991): *Tiltak 11. Reduksjon av VOC-utslipp fra totaktsmotorer. Rapport utarbeidet av Teknologisk Institutt for Statens Forurensningstilsyn* (Reduction of VOC-emissions from two stroke engines), Oslo: National Institute of Technology.

Tine BA (2003): http://org.tine.no/nokkeltall.cfm

TNO (1992): Emission Factors Manual Parcom-Atmos. Emission factors for air pollutants 1992, Report 92-235, Institute of Environmental and Energy Technology.

TNO (2002): CEPMEIP Database, www.mep.tno.nl Tornsjø, B. (1998): *Emissions of greenhouse gases in Norway - estimated by the default IPCC methodologies and the Norwegian national inventory model*, Report 98:06, Oslo: Norwegian Pollution Control Authority.

Tornsjø, B. (2001): Utslipp til luft fra innenriks sjøfart, fiske og annen sjøtrafikk mellom norske havner. (Emissions to Air from Fishing Fleet and Sea Traffic between Norwegian Harbours), Report 2001/6, Statistics Norway.

UMB (2001): Expert judgement by Department of Animal Science, Ås: Norwegian University of Life Sciences.

UMB (2006): Email from Harald Volden, the Norwegian University of Life Sciences, January 27 2006.

Umweltbundesamt (2005): Austia's National Inventory Report 2005 - Submission under the EC Monitoring Mechanism, Vienna: Umweltbundesamt.

UN-ECE (2002): Control Techniques For Preventing And Abating Emissions Of Ammonia EB.AIR/WG.5/1999/8/Rev.1.

Winther, M. and O-K. Nielsen (2006): *Fuel use and emissions from non-road machinery in Denmark from 1985-2004 - and projections from 2005-2030*, Environmental Project No. 1092 2006, National Environmental Research Institute, Danish Ministry of the Environment.

7th Greenhouse Gas Control Technologies Conference (2004): *Recent time-lapse seismic data show no indication of leakage at the Sleipner CO2-injection site*, 7th Greenhouse Gas Control Technologies Conference (GHGT7), Vancouver 2004.

### Appendix A

# Abbreviations

| Pollutants       |                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------|
| GHG              | greenhouse gases                                                                                |
| CO <sub>2</sub>  | Carbon dioxide                                                                                  |
| CH <sub>4</sub>  | Methane                                                                                         |
| N <sub>2</sub> O | Nitrous oxide                                                                                   |
| PFCs             | Perfluorocarbons                                                                                |
| HFCs             | Hydrofluorocarbons                                                                              |
| SF <sub>6</sub>  | Sulphur hexafluoride                                                                            |
| SO <sub>2</sub>  | Sulphur dioxide                                                                                 |
| NO <sub>X</sub>  | Nitrogen oxides                                                                                 |
| NH <sub>3</sub>  | Ammonia                                                                                         |
| CO               | Carbon monoxide                                                                                 |
| (NM)VOC          | (Non-methane) volatile organic compounds                                                        |
| TSP              | Total suspended particulates                                                                    |
| HM               | heavy metals                                                                                    |
| Pb               | Lead                                                                                            |
| Cd               | Cadmium                                                                                         |
| Hg               | Mercury                                                                                         |
| As               | Arsenic                                                                                         |
| Cr               | Chromium                                                                                        |
| Cu               | Copper                                                                                          |
| POPs             | persistent organic pollutants                                                                   |
| Other            |                                                                                                 |
| BOD              | Biological oxygen demand                                                                        |
| CLRTAP           | Convention on Long-Range Transboundary Air Pollution                                            |
| COZSTORE         | Continuation project following SACS                                                             |
| CRB              | Crop residue burned                                                                             |
| CRF              | Common Reporting Format                                                                         |
| DOC              | Degradable organic carbon                                                                       |
| EEA              | European Environment Agency                                                                     |
| EPA              | U.S. Environmental protection agency                                                            |
| GIS              | Gas-insulated switchgear                                                                        |
| INKOSYS          | Register at the SFT with data and information on point sources                                  |
| IAI              | International Aluminium Institute                                                               |
| IPCC             | Intergovernmental Panel on Climate Change                                                       |
| Jordforsk        | Norwegian Centre for Soil and Environmental research                                            |
| LPG              | Liquid Petroleum Gas                                                                            |
| LTO              | Landing Take off                                                                                |
| NFR              | Nomenclature For Reporting                                                                      |
| Skog + Landskap  | Norwegian Forest and Landscape Institute (until 2006                                            |
|                  | Norwegian Institute of Land Inventory NIJOS)                                                    |
| NILF             | Norwegian Agricultural Economics Research Institute                                             |
| NILU             | Norwegian Institute for Air Research                                                            |
| NIVA             | Norwegian Institute for Water Research                                                          |
| NPD<br>NPRA      | Norwegian Petroleum Directorate                                                                 |
| OECD             | Norwegian Public Roads Administration<br>Organisation for Economic Co-operation and Development |
| OLF              | Norwegian Oil Industry Association                                                              |
| OSPAR            | The Oslo and Paris Convention                                                                   |
| PRODCOM          | PRODucts of the European COMmunity                                                              |
| QA/QC            | Quality Assurance and Quality Control                                                           |
| RVP              | Reid vapour pressure                                                                            |
| SACS             | Saline aquifer carbon dioxide storage project                                                   |
| SFT              | Norwegian Pollution Control Authority                                                           |
| SINTEF           | Institute of Social Research in Industry                                                        |
| SPS              | Specific wear of studded tyres                                                                  |
| SWDS             | Solid waste disposal sites                                                                      |
| TNO              | Institute of Environmental and Energy Technology                                                |
| UNECE            | United nations - Economic Commission for Europe                                                 |
| UNFCCC           | United Nations Framework Convention on Climate Change                                           |
| VPU              | Vapour recovery units                                                                           |
|                  |                                                                                                 |

## **Emission factors**

In the calculations the numbers are used with the highest available accuracy. In this tables though, they are only shown rounded off, which i some cases can lead to the result that the exceptions looks the same as the general factors.

For road traffic this general view of the emission factors only includes last years factors and not all time series.

In the tables for stationary combustion, dotted cells indicate combinations of fuel and source without consumption.

A description of the sector codes used in the tables is given in Appendix F.

### CO<sub>2</sub>, SO<sub>2</sub> and heavy metals - Stationary and mobile combustion

| Table B1. | General emission factors for CO <sub>2</sub> , SO <sub>2</sub> and heavy metals |
|-----------|---------------------------------------------------------------------------------|
| Table B1. | General emission factors for $CO_2$ , $SO_2$ and heavy metals                   |

|                                     | CO <sub>2</sub> | SO <sub>2</sub> <sup>1</sup> | Pb                | Cd                 | Hg                | As                 | Cr                 | Cu                 |
|-------------------------------------|-----------------|------------------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--------------------|
|                                     | tonne/tonne     | kg/tonne                     | g/tonne           | g/tonne            | g/tonne           | g/tonne            | g/tonne            | g/tonne            |
| Coal                                | 2.52            | 16 <sup>2</sup>              | 0.22              | 0.003 <sup>2</sup> | 0.05 <sup>2</sup> | 0.089 <sup>2</sup> | 0.065 <sup>2</sup> | 0.087 <sup>2</sup> |
| Coke                                | 3.19            | 18                           | 0.2 <sup>2</sup>  | 0.003 <sup>2</sup> | 0.05 <sup>2</sup> | 0.089 <sup>2</sup> | 0.065 <sup>2</sup> | 0.087 <sup>2</sup> |
| Petrol coke                         | 3.59            | 18                           | 0.2               | 0.003              | 0.05              | 0.089              | 0.065              | 0.087              |
| Motor gasoline                      | 3.13            | 0.01                         | 0.03 <sup>3</sup> | 0.01               | 0                 | 0.05               | 0.05               | 1.7                |
| Aviation gasoline                   | 3.13            | 0.4                          | 675.7             | 0.01               | 0                 | 0.05               | 0.05               | 1.7                |
| Kerosene (heating)                  | 3.15            | 0.28                         | 0.07              | 0.01               | 0.03              | 0.05               | 0.04               | 0.05               |
| Jet kerosene                        | 3.15            | 0.28                         | 0.07              | 0.01               | 0.03              | 0.05               | 0.05               | 0.05               |
| Auto diesel                         | 3.17            | 0.02776 <sup>4</sup>         | 0.1               | 0.01               | 0.05              | 0.05               | 0.05               | 1.7                |
| Marine gas oil/diesel               | 3.17            | 1.8                          | 0.1               | 0.01               | 0.05              | 0.05               | 0.04               | 0.05               |
| Light fuel oils                     | 3.17            | 0.8                          | 0.1               | 0.01               | 0.05              | 0.05               | 0.04               | 0.05               |
| Heavy distillate                    | 3.17            | 4.6                          | 0.1               | 0.01               | 0.05              | 0.05               | 0.04               | 0.05               |
| Heavy fuel oil                      | 3.2             | <b>13.6</b> ⁵                | 1                 | 0.1                | 0.2               | 0.057              | 1.35               | 0.53               |
| Natural gas (1000 Sm <sup>3</sup> ) | 2.34            | 0                            | 0.00025           | 0.002              | 0.001             | 0.004              | 0.021              | 0.016              |
| LPG                                 | 3               | 0                            | 0                 | 0                  | 0                 | 0.004              | 0.021              | 0.016              |
| Refinery gas                        | 2.8             | 0                            | 0                 | 0                  | 0                 | 0.004              | 0.021              | 0.016              |
| Blast furnace gas                   | 1.571           | 0                            | 0                 | 0                  | 0                 | 0.004              | 0.021              | 0.016              |
| Fuel gas                            | 2.5             | 0                            | 0                 | 0                  | 0                 | 0.004              | 0.021              | 0.016              |
| Landfill gas                        | 0               | 0.019                        | 0                 | 0                  | 0                 | 0.004              | 0.021              | 0.016              |
| Biogas                              | 0 <sup>6</sup>  | 0                            | 0.000294          | 0.001998           | 0.001175          | 0.004446           | 0.024679           | 0.018803           |
| Fuel wood                           | 0               | 0.2                          | 0.05              | 0.1                | 0.010244          | 0.159              | 0.152              | 0.354              |
| Wood waste                          | 0               | 0.37                         | 0.05              | 0.1                | 0.010244          | 0.159              | 0.152              | 0.354              |
| Black liquor                        | 0               | 0.37                         | 0.05              | 0.1                | 0.010244          | 0.159              | 0.152              | 0.354              |
| Municipal waste                     | 0.251           | 1.4                          | 0.00304           | 0.00015            | 0.00016           | 0.022              | 0.001              | 0.000985           |
| Special waste                       | 3.2             | 9.2                          | 14                | 0.6                | 0.2               | 1                  | 31                 | 25                 |

<sup>1</sup> Apply 2005 to petroleum products; the factors changes yearly, in accordance with changes in the sulphur content in the products.

<sup>2</sup> Apply to industry.

<sup>3</sup> From 1997 - considerably higher earlier years. Earlier used factors are not shown in this Appendix.

<sup>4</sup> Apply to road traffic.Weighted average of duty-free and dutiable auto diesel.

<sup>5</sup> Stationary combustion.

 $^{\rm 6}$  CO\_2 emissions from biogas were erroneously included in the 2008 inventory.

Numbers in italics have exceptions for some sectors, see Table B2, B5 and B6. Bold numbers are different for different years, see Table B3, B4 and B6. Source: Norwegian Petroleum Industry Association, Rosland (1987), SFT (1990), SFT (1996), Finstad et al. (2001) and Finstad et al. (2003).

#### Table B2. Exceptions from the general emission factors for heavy metals: Solid fuels in small stoves

|      | Pb      | Cd      | Hg      | As      | Cr      | Cu      |
|------|---------|---------|---------|---------|---------|---------|
|      | g/tonne | g/tonne | g/tonne | g/tonne | g/tonne | g/tonne |
| Coal | 2.5     | 0.15    | 0.3     | 1.2     | 0.9     | 1.2     |
| Coke | 2.5     | 0.15    | 0.3     | 1.2     | 0.9     | 1.2     |

#### Table B3. Time series for variable emission factors for SO<sub>2</sub> (kg/tonne)

| Years | V11      | V13               | V14 Jet           |         | V15 Au    | to diesel  |          | V17        | V18       | V19        | V20      | V20      |
|-------|----------|-------------------|-------------------|---------|-----------|------------|----------|------------|-----------|------------|----------|----------|
|       | Motor    | Kerosene          | kerosene          |         |           |            |          | Marine     | Light     | Heavy      | Heavy    | Heavy    |
|       | gasoline | (heating)         |                   |         |           |            |          | gas        | fuel oils | distillate | fuel oil | fuel oil |
|       |          |                   |                   |         |           |            |          | oil/diesel |           |            | (LS-oil) | (NS-oil) |
|       | General  | General           | General           | General | M.1A3B.1  | M.1A3B.2   | M.1A3B.3 | General    | General   | General    | General  | General  |
|       |          |                   |                   |         | Passenger | Light duty | Heavy    |            |           |            |          |          |
|       |          |                   |                   |         | cars      | vehicles   | duty     |            |           |            |          |          |
|       |          |                   |                   |         |           |            | vehicles |            |           |            |          |          |
| 1980  | 1        | 0.2               | 0.2               | 6.6     |           |            |          | 6.6        | 6.6       | 15         | 19       | 46       |
| 1987  | 0.7      | 0.4               | 0.4               | 4.4     | -         |            |          | 4.4        | 4.4       | 9          | 19       | 44       |
| 1989  | 0.6      | 0.4               | 0.4               | 3.4     |           |            |          | 3.4        | 3.4       | 7.6        | 18.2     | 40       |
| 1990  | 0.6      | 0.3               | 0.3               | 3.2     | -         |            |          | 3.2        | 3.2       | 6          | 17       | 39.4     |
| 1991  | 0.6      | 0.38              | 0.38              | 2.8     | •         |            |          | 2.8        | 2.8       | 4.6        | 16.8     | 43.6     |
| 1992  | 0.6      | 0.32              | 0.32              | 2.6     | •         |            |          | 2.6        | 2.6       | 4.4        | 16.4     | 42.6     |
| 1993  | 0.6      | 0.42              | 0.42              | 2.2     | -         |            |          | 2.2        | 2.2       | 4.4        | 16.2     | 45.8     |
| 1994  | 0.6      | 0.36              | 0.36              | 1.4     | -         |            | -        | 1.4        | 1.4       | 4.2        | 14.2     | 44.8     |
| 1995  | 0.24     | 0.46              | 0.46              | 1.4     | -         |            |          | 1.4        | 1.4       | 4.6        | 11.8     | 43.4     |
| 1996  | 0.22     | 0.46              | 0.5               | 1.2     | -         |            | -        | 1.2        | 1.2       | 3.8        | 12.6     | 46.6     |
| 1997  | 0.16     | 0.46              | 0.46              | 1.2     | -         |            | -        | 1.2        | 1.2       | 3.8        | 12.6     | 47.2     |
| 1998  | 0.16     | 0.42              | 0.42              | 0.8     |           |            |          | 1.8        | 1.8       | 4.2        | 12.4     | 42.8     |
| 1999  | 0.22     | 0.32              | 0.32              | 0.6     |           |            |          | 1.6        | 1.6       | 4.4        | 12.8     | 39       |
| 2000  | 0.18     | 0.36              | 0.36              | 1.4     | 0.126     | 0.126      | 0.126    | 1.8        | 1.8       | 4.6        | 14.4     | 31       |
| 2001  | 0.18     | 0.46              | 0.46              | 0.8     | 0.0944    | 0.0944     | 0.0944   | 1.8        | 1.8       | 4.8        | 13.2     | 44.4     |
| 2002  | 0.2      | 0.32              | 0.32              | 0.6     | 0.0708    | 0.0708     | 0.0708   | 1.6        | 1.2       | 4.8        | 12       | 43.8     |
| 2003  | 0.1      | 0.3               | 0.3               | 0.8     | 0.0748    | 0.0748     | 0.0748   | 2          | 0.8       | 4.6        | 14       | 44.2     |
| 2004  | 0.06     | 0.3               | 0.3               | 0.8     | 0.0748    | 0.0748     | 0.0748   | 1.8        | 0.8       | 5          | 14.2     | 44.2     |
| 2005  | 0.01     | 0.28              | 0.28              | 0.8     | 0.02776   | 0.02776    | 0.02776  | 1.8        | 0.8       | 4.6        | 13.6     | 39.2     |
| 2006  | 0.01     | 0.27 <sup>1</sup> | 0.27 <sup>1</sup> | 1.38    | 0.040144  | 0.040144   | 0.040144 | 2          | 1.38      | 4.44       | 10.4     | 26.2     |

<sup>1</sup>By mistake, 0.01 were used to calculate the emissions reported in the 2008 inventory

#### Table B4. Time series for variable emission factors for heavy metals, stationary combustion g/tonne

|         |        |      |        | 1990-1991 |         | 1992-   |         |         |  |  |
|---------|--------|------|--------|-----------|---------|---------|---------|---------|--|--|
| Sector  | Source | Fuel | Pb     | Cd        | Hg      | Pb      | Cd      | Hg      |  |  |
| General | S.03   | V51  | 0.0085 | 0.00047   | 0.00035 | 0.00304 | 0.00015 | 0.00016 |  |  |

#### Table B5. Exceptions from the general emission factors for natural gas combusted on gas terminals, tonne CO<sub>2</sub>/1000 Sm<sup>3</sup> natural gas

| Sector | Source | Fuel | CO <sub>2</sub> |  |
|--------|--------|------|-----------------|--|
| 232340 | S.02   | V31  | 2.04            |  |
| 232340 | S.1B2C | V31  | 2.04            |  |

### Exceptions with time series for variable emission factors for natural gas combusted by oil exploration, tonne $CO_2/1000 \text{ Sm}^3$ natural gas Table B6.

| Sector | Source | Fuel | Component       | 1990-<br>1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002* |
|--------|--------|------|-----------------|---------------|------|------|------|------|------|------|------|-------|
| 231110 | S.02   | V31  | CO <sub>2</sub> | 2.34          | 2.29 | 2.3  | 2.3  | 2.31 | 2.5  | 2.48 | 2.47 | 2.45  |
| 231110 | S.1B2C | V31  | $CO_2$          | 2.34          | 2.42 | 2.34 | 2.34 | 2.34 | 2.48 | 2.52 | 2.42 | 2.47  |

\*For the years after 2002 reported emissions are used

### Aviation - CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>X</sub>, NMVOC, CO, particles and PAH

 Table B7.
 General emission factors for aviation

| Source                                    | Fuel                     | CH₄<br>kg/<br>tonne | N <sub>2</sub> O<br>kg/<br>tonne | NO <sub>x</sub><br>kg/<br>tonne | NMVOC<br>kg/<br>tonne | CO<br>kg<br>/tonne | NH₃ <sup>·</sup><br>kg/<br>tonne | TSP, PM <sub>10</sub> ,<br>PM <sub>2.5</sub><br>kg/tonne | PAH g/<br>tonne | PAH-<br>OSPAR<br>g/tonne | PAH-4<br>g/tonne | Dioxin<br>ug/<br>tonne |
|-------------------------------------------|--------------------------|---------------------|----------------------------------|---------------------------------|-----------------------|--------------------|----------------------------------|----------------------------------------------------------|-----------------|--------------------------|------------------|------------------------|
| M.1A3A.111<br>Jet/turboprop<br>0-100 m    | V14 Jet<br>kerosene      | 0.1854              | 0.1                              | 6.8543                          | 1.6684                | 18.7643            | 0                                | 0.025                                                    | 0.54            | 0.02                     | 0.005            | 0.06                   |
| M.1A3A.112<br>Jet/turboprop<br>100-1000 m | V14 Jet<br>kerosene      | 0.0304              | 0.1                              | 13.2081                         | 0.2732                | 2.0361             | 0                                | 0.025                                                    | 0.32            | 0.02                     | 0.005            | 0.06                   |
| M.1A3A.12<br>Jet/turboprop cruise         | V14 Jet<br>kerosene      | 0                   | 0.1                              | 12.1063                         | 0.5693                | 3.0802             | 0                                | 0.007                                                    | 0.29            | 0.02                     | 0.005            | 0.06                   |
| M.1A3A.211<br>Helicopter 0-100 m          | V14 Jet<br>kerosene      | 3.2                 | 0.1                              | 6.67                            | 28.8                  | 36.6               | 0                                | 0.025                                                    | 0.54            | 0.02                     | 0.005            | 0.06                   |
| M.1A3A.212<br>Helikopter<br>100-1000 m    | V14 Jet<br>kerosene      | 3.2                 | 0.1                              | 6.67                            | 28.8                  | 36.6               | 0                                | 0.025                                                    | 0.32            | 0.02                     | 0.005            | 0.06                   |
| M.1A3A.22<br>Helicopter cruise            | V14 Jet<br>kerosene      | 0                   | 0.1                              | 6.67                            | 32                    | 36.6               | 0                                | 0.007                                                    | 0.29            | 0.02                     | 0.005            | 0.06                   |
| M.1A3A.311 Small<br>aircrafts 0-100 m     | V12 Aviation<br>gasoline | 3.61                | 0.1                              | 0                               | 32.5                  | 898.7              | 0                                | 0.025                                                    | 0.54            | 0.02                     | 0.005            | 2                      |
| M.1A3A.312 Small<br>aircrafts 100-1000 m  | V12 Aviation             | 1.55                | 0.1                              | 3.61711                         | 13.95                 | 932.5              | 0                                | 0.025                                                    | 0.32            | 0.02                     | 0.005            | 2                      |
| M.1A3A.32 Small<br>aircrafts cruise       | V12 Aviation<br>gasoline | 0                   | 0.1                              | 2.92                            | 19.48                 | 926                | 0                                | 0.007                                                    | 0.29            | 0.02                     | 0.005            | 2                      |

Numbers in italics have exceptions for some sectors, see Table B8, and bold numbers are different for different years, see Table B9.

Source: IPCC (2001), Finstad et al. (2001) and Finstad et al. (2002b).

#### Table B8. Exceptions from the general factors for aviation

| Component        | Emission<br>factor | Fuel    |                                 | Source                                                               | Sectors |
|------------------|--------------------|---------|---------------------------------|----------------------------------------------------------------------|---------|
| CH <sub>4</sub>  | 0.35               | V14     | Jet kerosene                    | M.1A3A.111-112, M1A3A.211-212                                        | 247520  |
| NO <sub>X</sub>  | 13.51              | V14     | Jet kerosene                    | M.1A3A.111, M1A3A.211                                                | 247520  |
| NO <sub>X</sub>  | 13.29              | V14     | Jet kerosene                    | M.1A3A.112, M1A3A.212                                                | 247520  |
| NO <sub>X</sub>  | 11.7               | V14     | Jet kerosene                    | M.1A3A.12, M.1A3A.22                                                 | 247520  |
| NMVOC            | 7.43               | V14     | Jet kerosene                    | M.1A3A.111, M1A3A.211                                                | 247520  |
| NMVOC            | 7.36               | V14     | Jet kerosene                    | M.1A3A.112, M1A3A.212                                                | 247520  |
| NMVOC            | 4.3                | V14     | Jet kerosene                    | M.1A3A.12, M.1A3A.22                                                 | 247520  |
| CO               | 23.67              | V14     | Jet kerosene                    | M.1A3A.111, M1A3A.211                                                | 247520  |
| CO               | 23.15              | V14     | Jet kerosene                    | M.1A3A.112, M1A3A.212                                                | 247520  |
| CO               | 20.9               | V14     | Jet kerosene                    | M.1A3A.12, M.1A3A.22                                                 | 247520  |
| PAH              | 0.18               | V12, 14 | Aviation gasoline, jet kerosene | M.1A3A.111, M1A3A.211, M1A3A.311                                     | 236203  |
| PAH              | 0.05               | V12, 14 | Aviation gasoline, jet kerosene | M.1A3A.112, M1A3A.212, M1A3A.312                                     | 236203  |
| PAH              | 0.1                | V12, 14 | Aviation gasoline, jet kerosene | M.1A3A.12, M.1A3A.22, M.1A3A.32                                      | 236203  |
| PAH-OSPAR, PAH-4 | 0                  | V12, 14 | Aviation gasoline, jet kerosene | M.1A3A.112, M.1A3A.12, M1A3A.212,<br>M.1A3A.22, M1A3A.312, M.1A3A.32 | 236203  |

 
 Table B9.
 Time series for variable emission factors for aviation Factors for 1989, 1995, and 2000 were calculated as given in the table. Faactors for 1990-1994 and 1996-1999 were calculated by linear interpolation. Factors before 1989 and after 2000 were kept constant

|         |            |      |        | $CH_4$ |        | NO <sub>X</sub> |         |         |        | NMVO   | С       | CO      |         |         |
|---------|------------|------|--------|--------|--------|-----------------|---------|---------|--------|--------|---------|---------|---------|---------|
| Sector  | Source     | Fuel | 1989   | 1995   | 2000   | 1989            | 1995    | 2000    | 1989   | 1995   | 2000    | 1989    | 1995    | 2000    |
|         | M.1A3A.111 | V14  | 0.1558 | 0.2014 | 0.1854 | 6.0256          | 7.2     | 6.8543  | 1.4022 | 1.8    | 1.6684  | 11.1046 | 17.5    | 18.7643 |
| General | M.1A3A.112 | V14  | 0.0255 | 0.033  | 0.0304 | 11.6111         | 13.9041 | 13.2081 | 0.2296 | 0.2969 | 0.2732  | 1.2049  | 1.8951  | 2.0361  |
|         | M.1A3A.12  | V14  | 0      | 0      | 0      | 10.6633         | 12.0612 | 12.1063 | 1.0224 | 0.6599 | 0.5693  | 3.4502  | 3.2676  | 3.0802  |
|         | M.1A3A.111 | V14  | 0.1567 | 0.3361 | 0.3927 | 6.7254          | 8.118   | 7.6891  | 1.4104 | 3.0253 | 3.534   | 11.5571 | 17.2131 | 18.9539 |
| 236203  | M.1A3A.112 | V14  | 0.0257 | 0.055  | 0.0672 | 12.9597         | 15.6432 | 15.6189 | 0.231  | 0.4954 | 0.605   | 1.254   | 1.8677  | 2.9777  |
|         | M.1A3A.12  | V14  | 0      | 0      | 0      | 10.6633         | 11.5718 | 11.333  | 1.0224 | 3.5046 | 0.50178 | 3.4502  | 6.2931  | 1.70096 |
|         | M.1A3A.111 | V14  | 0.1567 | 0.3361 | 0.3927 | 6.7254          | 8.118   | 7.6891  | 1.4104 | 3.0253 | 3.534   | 11.5571 | 17.2131 | 18.9539 |
| 660000  | M.1A3A.112 | V14  | 0.0257 | 0.055  | 0.0672 | 12.9597         | 15.6432 | 15.6189 | 0.231  | 0.4954 | 0.605   | 1.254   | 1.8677  | 2.9777  |
|         | M.1A3A.12  | V14  | 0      | 0      | 0      | 10.6633         | 11.5718 | 11.333  | 1.0224 | 3.5046 | 0.50178 | 3.4502  | 6.2931  | 1.70096 |

## Road traffic - CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>X</sub>, NMVOC, CO, NH<sub>3</sub>, particles and PAH

#### Table B10.General emission factors for road traffic

| Source                  | Fuel                                 | CH₄            | 2 -             | - /           | NMVOC          | CO           | NH3        | TSP,             | PM2.5           | PAH         | PAH-             | PAH-4    | Dioxin       |
|-------------------------|--------------------------------------|----------------|-----------------|---------------|----------------|--------------|------------|------------------|-----------------|-------------|------------------|----------|--------------|
|                         |                                      | kg/tonne       | kg/tonne        | kg/tonne      | kg/tonne       | kg/tonne     | kg/tonne   | PM10<br>kg/tonne | kg/tonne        | g/tonne     | OSPAR<br>g/tonne | g/tonne  | ug/tonne     |
| M.1A3B.1                | V11<br>Motor<br>gasoline             | 1.07078        | 0.28613         | 8.29556       | 12.6118        | 104.638      | 1.47245    | 0.15142          | 0.15142         | 1.000068    | 0.445696         | 0.125624 | 0.1          |
| Passenger<br>car        | V15 Auto<br>diesel<br>V31            | 0.0434         | 0.07819         | 5.90325       | 1.38075        | 8.0904       | 0.02267    | 1.31487          | 1.26352         | 4.366809    | 2.382979         | 0.446809 | 0.1          |
|                         | Naturgass<br>V32 LPG                 | 0.261<br>0.195 | 0.0255<br>0.213 | 0.871<br>4.61 | 0.0653<br>1.78 | 1.69<br>13.4 | 0<br>0.973 | 0.122<br>0.0745  | 0.122<br>0.0745 | 0.0153<br>0 | 0.00085<br>0     | 0<br>0   | 0.05<br>0.06 |
| M.1A3B.2<br>Other light |                                      | 0.58441        | 0.14757         | 7.8524        | 9.52426        | 86.792       | 0.78646    | 0.11514          | 0.11514         | 1.000068    | 0.445696         | 0.125624 | 0.1          |
| duty cars               | V15 Auto<br>diesel                   | 0.05219        | 0.04758         | 5.66308       | 1.70192        | 11.0205      | 0.01377    | 1.2268           | 1.17548         | 4.366809    | 2.382979         | 0.446809 | 0.1          |
| M.1A3B.3<br>Heavy duty  | V11<br>Motor<br>gasoline<br>V15 Auto | 0.79625        | 0.04528         | 24.2507       | 12.4028        | 64.9399      | 0.09256    | 0.10023          | 0.10023         | 1.994992    | 0.997496         | 0.21     | 0.1          |
| vehicles                | diesel<br>V31                        | 0.09688        | 0.12555         | 23.7026       | 2.52142        | 5.5787       | 0.00292    | 0.7858           | 0.73808         | 3.563499    | 1.78175          | 0.428321 | 0.1          |
|                         | Naturgass                            | 4.29           | 0.0255          | 11.8          | 1.073          | 2.51         | 0          | 0.122            | 0.122           | 0.0153      | 0.00085          | 0        | 0.05         |
| M.1A3B.41<br>Moped      | V11<br>Motor<br>gasoline             | 5.85474        | 0.05855         | 2.73767       | 367.532        | 699.883      | 0.05306    | 0.13956          | 0.13956         | 2           | 0.53             | 0.08     | 0.1          |
| M.1A3B.42<br>Motorcycle |                                      | 4.93887        | 0.0516          | 6 96265       | 130.653        | 711 011      | 0.05107    | 0 14407          | 0 14407         | 2           | 0.53             | 0.08     | 0.1          |

Bold numbers are different for different years, but only the 2005 data are shown in this Appendix, except for CH<sub>4</sub> (Table B11) and N<sub>2</sub>O (Table B12). Source: SFT (1999c), Bang (1993) and Finstad et al. (2001).

| Table B11. Averag | e CH <sub>4</sub> emission factors for road traffic including | cold start emissions and evaporation, g CH <sub>4</sub> / kg fuel |
|-------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
|-------------------|---------------------------------------------------------------|-------------------------------------------------------------------|

|      |                  | V                     | 11 Motor gasoline   | ;     |            | V15 Auto         |                       |                        |
|------|------------------|-----------------------|---------------------|-------|------------|------------------|-----------------------|------------------------|
|      | Passenger<br>car | Other light duty cars | Heavy duty vehicles | Moped | Motorcycle | Passenger<br>car | Other light duty cars | Heavy duty<br>vehicles |
| 1973 | 1.759            | 1.279                 | 1.983               | 5.896 | 4.926      | 0.119            | 0.156                 | 0.208                  |
| 1980 | 1.684            | 1.259                 | 1.964               | 5.843 | 4.94       | 0.119            | 0.154                 | 0.208                  |
| 1986 | 1.601            | 1.043                 | 1.994               | 5.85  | 4.946      | 0.12             | 0.145                 | 0.193                  |
| 1987 | 1.601            | 1.032                 | 2.014               | 5.85  | 4.944      | 0.121            | 0.146                 | 0.194                  |
| 1989 | 1.615            | 1.05                  | 2.115               | 5.855 | 4.938      | 0.126            | 0.151                 | 0.192                  |
| 1990 | 1.589            | 1.052                 | 2.168               | 5.855 | 4.939      | 0.127            | 0.153                 | 0.19                   |
| 1991 | 1.565            | 1.049                 | 2.234               | 5.855 | 4.939      | 0.126            | 0.154                 | 0.189                  |
| 1992 | 1.61             | 1.079                 | 2.303               | 5.855 | 4.939      | 0.124            | 0.15                  | 0.188                  |
| 1993 | 1.591            | 1.056                 | 2.35                | 5.855 | 4.939      | 0.116            | 0.142                 | 0.183                  |
| 1994 | 1.565            | 1.027                 | 2.395               | 5.855 | 4.939      | 0.107            | 0.13                  | 0.174                  |
| 1995 | 1.537            | 0.996                 | 2.406               | 5.855 | 4.939      | 0.102            | 0.118                 | 0.167                  |
| 1996 | 1.498            | 0.951                 | 2.404               | 5.855 | 4.939      | 0.097            | 0.11                  | 0.158                  |
| 1997 | 1.442            | 0.914                 | 2.388               | 5.855 | 4.939      | 0.09             | 0.104                 | 0.15                   |
| 1998 | 1.382            | 0.877                 | 2.362               | 5.855 | 4.939      | 0.085            | 0.098                 | 0.142                  |
| 1999 | 1.331            | 0.833                 | 2.31                | 5.855 | 4.939      | 0.079            | 0.091                 | 0.136                  |
| 2000 | 1.311            | 0.795                 | 2.154               | 5.855 | 4.939      | 0.074            | 0.084                 | 0.132                  |
| 2001 | 1.247            | 0.724                 | 1.677               | 5.855 | 4.939      | 0.068            | 0.077                 | 0.126                  |
| 2002 | 1.207            | 0.679                 | 1.267               | 5.855 | 4.939      | 0.061            | 0.071                 | 0.118                  |
| 2003 | 1.159            | 0.645                 | 1.038               | 5.855 | 4.939      | 0.055            | 0.065                 | 0.111                  |
| 2004 | 1.103            | 0.608                 | 0.886               | 5.855 | 4.939      | 0.049            | 0.059                 | 0.104                  |
| 2005 | 1.071            | 0.585                 | 0.796               | 5.855 | 4.939      | 0.043            | 0.052                 | 0.097                  |
| 2006 | 1.027            | 0.556                 | 0.788               | 5.855 | 4.939      | 0.039            | 0.046                 | 0.09                   |

Source: Statistics Norways' road model.

Table B12. Average N<sub>2</sub>O emission factors for road traffic including cold start emissions and evaporation, g N<sub>2</sub>O/ kg fuel

|      | V11 Motor gase | oline                 |                     |       |            | V15 Auto diese | el                       |                        |
|------|----------------|-----------------------|---------------------|-------|------------|----------------|--------------------------|------------------------|
|      | Passenger car  | Other light duty cars | Heavy duty vehicles | Moped | Motorcycle | Passenger car  | Other light<br>duty cars | Heavy duty<br>vehicles |
| 1973 | 0.024          | 0.017                 | 0.031               | 0.059 | 0.061      | 0.038          | 0.025                    | 0.146                  |
| 1980 | 0.026          | 0.018                 | 0.032               | 0.058 | 0.058      | 0.037          | 0.025                    | 0.136                  |
| 1986 | 0.029          | 0.02                  | 0.034               | 0.059 | 0.054      | 0.038          | 0.025                    | 0.127                  |
| 1987 | 0.03           | 0.02                  | 0.036               | 0.059 | 0.054      | 0.037          | 0.025                    | 0.128                  |
| 1989 | 0.036          | 0.02                  | 0.039               | 0.059 | 0.053      | 0.037          | 0.025                    | 0.128                  |
| 1990 | 0.049          | 0.02                  | 0.041               | 0.059 | 0.052      | 0.037          | 0.025                    | 0.128                  |
| 1991 | 0.062          | 0.02                  | 0.042               | 0.059 | 0.052      | 0.037          | 0.025                    | 0.128                  |
| 1992 | 0.071          | 0.023                 | 0.043               | 0.059 | 0.052      | 0.038          | 0.025                    | 0.128                  |
| 1993 | 0.087          | 0.03                  | 0.044               | 0.059 | 0.052      | 0.039          | 0.025                    | 0.13                   |
| 1994 | 0.107          | 0.04                  | 0.045               | 0.059 | 0.051      | 0.039          | 0.025                    | 0.128                  |
| 1995 | 0.132          | 0.053                 | 0.045               | 0.059 | 0.051      | 0.04           | 0.025                    | 0.131                  |
| 1996 | 0.161          | 0.069                 | 0.045               | 0.059 | 0.051      | 0.04           | 0.025                    | 0.131                  |
| 1997 | 0.188          | 0.086                 | 0.045               | 0.059 | 0.051      | 0.042          | 0.025                    | 0.133                  |
| 1998 | 0.207          | 0.1                   | 0.045               | 0.059 | 0.051      | 0.044          | 0.026                    | 0.129                  |
| 1999 | 0.228          | 0.112                 | 0.045               | 0.059 | 0.051      | 0.045          | 0.028                    | 0.126                  |
| 2000 | 0.25           | 0.125                 | 0.044               | 0.059 | 0.051      | 0.047          | 0.029                    | 0.126                  |
| 2001 | 0.262          | 0.133                 | 0.044               | 0.059 | 0.051      | 0.052          | 0.032                    | 0.126                  |
| 2002 | 0.273          | 0.138                 | 0.044               | 0.059 | 0.051      | 0.058          | 0.036                    | 0.126                  |
| 2003 | 0.28           | 0.143                 | 0.044               | 0.059 | 0.051      | 0.065          | 0.04                     | 0.126                  |
| 2004 | 0.283          | 0.145                 | 0.045               | 0.059 | 0.052      | 0.072          | 0.044                    | 0.126                  |
| 2005 | 0.286          | 0.148                 | 0.045               | 0.059 | 0.052      | 0.078          | 0.048                    | 0.126                  |
| 2006 | 0.284          | 0.147                 | 0.046               | 0.059 | 0.052      | 0.082          | 0.051                    | 0.126                  |

Source: Statistics Norways' road model.

### Navigation (M.1A3D) - CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>X</sub>, NMVOC, CO, particles and POPs

#### Table B13. General emission factors for navigation

|                                                                                                   | CH₄<br>kg/<br>tonne | N <sub>2</sub> O<br>kg/<br>tonne | NO <sub>x</sub><br>kg/<br>tonne | NMVOC<br>kg<br>/tonne | CO kg/<br>tonne | NH <sub>3</sub> kg/<br>tonne | TSP,<br>PM₁₀ kg/<br>tonne | PM <sub>2.5</sub><br>kg/<br>tonne | PAH g/<br>tonne | PAH-<br>OSPAR<br>g<br>/tonne | PAH-4<br>g/<br>tonne | Dioxin<br>ug/<br>tonne |
|---------------------------------------------------------------------------------------------------|---------------------|----------------------------------|---------------------------------|-----------------------|-----------------|------------------------------|---------------------------|-----------------------------------|-----------------|------------------------------|----------------------|------------------------|
| V17 Marine gas oil/diesel,<br>V18 Light fuel oils, V19<br>Heavy distillate, V20<br>Heavy fuel oil | 0.23                | 0.08                             | 60.8                            | 2.4                   | 2.9             | 0                            | 0.7                       | 0.665                             | 1.6             | 0.26                         | 0.04                 | 1                      |
| V31 Natural gas<br>(1000 Sm <sup>3</sup> )                                                        | 40.029              | 0.08                             | 7.407                           | 2.4<br>0.814          | 2.9             | 0                            | 0.018                     | 0.018                             |                 | 0.20                         | 0.04                 | 4<br>0.05              |

Numbers in italics have exceptions for some sectors, see Table B14, and bold numbers are different for different years, see Source: Flugsrud and Rypdal (1996), Tornsjø (2001), Finstad et al. (2001), Finstad et al. (2002a) and Finstad et al. (2003).

#### Table B14. Exceptions from the general factors for navigation

|                  | •                                | •               |                                                                          |                           |
|------------------|----------------------------------|-----------------|--------------------------------------------------------------------------|---------------------------|
| Component        | Emission<br>factor<br>(kg/tonne) | Fuel            |                                                                          | Sector                    |
| CH <sub>4</sub>  | 0.8                              | V17             | Marine gas oil/diesel                                                    | 231110 -231120            |
| CH <sub>4</sub>  | 1.9                              | V20             | Heavy fuel oil                                                           | 231110 -231120            |
| N <sub>2</sub> O | 0.02                             | V17             | Marine gas oil/diesel                                                    | 231110 -231120            |
| NO <sub>X</sub>  | 56.76                            | V17, 18, 19, 20 | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 230510                    |
| NOx              |                                  | V17, 19,20      | Marine gas oil/diesel, light fuel oils, heavy distillate, Heavy fuel oil | 231110 - 231120           |
|                  | 69.34                            | , ,             |                                                                          |                           |
| NO <sub>x</sub>  | 54,68                            | V17, 19, 20     | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 247520                    |
| NMVOC            | 1.4                              | V17, 18, 19, 20 | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 230510                    |
| NMVOC            | 2.3                              | V17, 19, 20     | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 247520                    |
| NMVOC            | 5                                | V17             | Marine gas oil/diesel, light fuel oils                                   | 231110 -231120            |
| NMVOC            | 5                                | V19, 20         | Heavy distillate, heavy fuel oil                                         | 231110 -231120            |
| со               | 7.9                              | V17, 18, 19, 20 | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 230510                    |
| CO               | 7                                | V17, 19, 20     | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 231110 -231120            |
| CO               | 2.3                              | V17, 19, 20     | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 247520                    |
| TSP, PM10        | 0.5                              | V17, 18, 19, 20 | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 230510, 231110 -          |
|                  |                                  |                 |                                                                          | 231120, 247520            |
| PM2.5            | 0.5                              | V17, 18, 19, 20 | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 230510                    |
| PM2.5            | 0.48                             | V17, 19, 20     | Marine gas oil/diesel, light fuel oils, heavy distillate, heavy fuel oil | 231110 -231120,<br>247520 |

#### Table B15. Time series for variable emission factors for navigation. NO<sub>X</sub>

|          |        |                    |         |       | -     |       |       |       |       |       |       |       |       |
|----------|--------|--------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sector   | Fuel   | 1980-2003 1980-199 | 3 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004- |
| General  | V17-20 | 61.7               | ) 61.77 | 61.84 | 61.92 | 61.99 | 62.06 | 61.85 | 61.64 | 61.43 | 61.22 | 61.01 | 60.80 |
| 230510   | V17-20 | 56.2               | 7 56.34 | 56.41 | 56.48 | 56.56 | 56.63 | 56.65 | 56.67 | 56.69 | 56.72 | 56.74 | 56.76 |
| 231110 - | V17-20 |                    |         |       |       |       |       |       |       |       |       |       |       |
| 231120   |        | 70                 |         |       |       |       |       |       |       |       |       |       | 69.34 |

#### Table B16. Time series for variable emission factors for navigation. NMVOC, CO, TSP, PM<sub>10</sub> and PM<sub>2.5</sub>

|          |          |       | NMVOC     |           |       | CO    |       |           | TSP, PM10 |       |       |       | PM2.5     |       |       |
|----------|----------|-------|-----------|-----------|-------|-------|-------|-----------|-----------|-------|-------|-------|-----------|-------|-------|
| Sector   | Fuel     | 1980- |           |           |       |       |       |           |           | 1980- |       |       |           |       | 1998- |
|          |          | 1990  | 1980-1997 | 1980-1998 | 1991- | 1998- | 1999- | 1980-1997 | 1998-     | 1997  | 1993- | 1998- | 1980-1997 | 1993- |       |
| General  | V17-20   |       |           |           |       |       |       | 3.1       | 2.9       | 0.6   |       | 0.7   | 0.57      |       | 0.665 |
| 230510   | V17-20   |       |           | 1.5       |       |       | 1.4   |           |           |       |       |       |           |       |       |
| 231110 - | - V19,20 |       |           |           |       |       |       |           |           |       |       |       |           |       |       |
| 231120   |          | 6.4   |           |           | 5     |       |       |           |           |       | 0.5   |       |           | 0.48  |       |
| 231110 - | - V 20   |       |           |           |       |       |       |           |           |       |       |       |           |       |       |
| 231120   |          |       |           |           |       |       |       |           |           |       |       |       |           |       |       |
| 247520   | V17-20   |       | 2.2       |           |       | 2.3   |       |           |           |       |       |       |           |       |       |

### Other mobile sources including railways - CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>X</sub>, NMVOC, CO, NH<sub>3</sub>, particles and POPs

#### Table B17. General emission factors for other mobile sources

|                                                 |                                   | CH₄ kg/<br>tonne | N <sub>2</sub> O<br>kg/<br>tonne | NO <sub>x</sub><br>kg/<br>tonne | NMVOC<br>kg/<br>tonne | CO<br>kg/<br>tonne | NH₃<br>kg/<br>Tonne | TSP,<br>PM <sub>10</sub><br>kg/ | PM <sub>2.5</sub><br>kg/<br>tonne | PAH<br>g/<br>tonne | PAH-<br>OSPA<br>R | PAH-4<br>g/<br>tonne | Dioxin<br>ug/<br>tonne |
|-------------------------------------------------|-----------------------------------|------------------|----------------------------------|---------------------------------|-----------------------|--------------------|---------------------|---------------------------------|-----------------------------------|--------------------|-------------------|----------------------|------------------------|
|                                                 |                                   |                  | terme                            |                                 | terme                 | terme              |                     | tonne                           |                                   |                    | g/tonn<br>e       |                      | terme                  |
| M.1A3C                                          | V15 Auto                          |                  |                                  |                                 |                       |                    |                     |                                 |                                   |                    |                   |                      |                        |
| Railway                                         | diesel                            | 0.18             | 1.2                              | 47                              | 4                     | 11                 | 0                   | 3.8                             | 3.8                               | 3.3                | 0.53              | 0.08                 | 0.1                    |
| M.1A3E.21<br>Small boats 2<br>stroke            | V11 Motor<br>gasoline             | 5.1              | 0.02                             | 6                               | 240                   | 415                | 0                   | 8                               | 8                                 | 2                  | 0.53              | 0.08                 | 0.1                    |
| SUDKE                                           | 0                                 | 0.1              | 0.02                             | 0                               | 240                   | 415                | 0                   | 0                               | 0                                 | 2                  | 0.55              | 0.00                 | 0.1                    |
| M.1A3E.22<br>Small boats 4                      | V11 Motor<br>gasoline<br>V15 Auto | 1.7              | 0.08                             | 12                              | 40                    | 1 000              | 0                   | 1                               | 1                                 | 2                  | 0.53              | 0.08                 | 0.1                    |
| stroke                                          | diesel                            | 0.18             | 0.03                             | 54                              | 27                    | 25                 | 0                   | 4                               | 4                                 | 3.3                | 0.53              | 0.08                 | 0.1                    |
| M.1A3E.31<br>Motorized<br>equipment 2<br>stroke | V11 Motor<br>gasoline             | 6                | 0.02                             | <b>2</b> <sup>1</sup>           | 500                   | 700                | 0                   | 8                               | 8                                 | 2                  | 0.53              | 0.08                 | 0.1                    |
| M.1A3E.32                                       | V11 Motor<br>gasoline<br>V15 Auto | 2.2              | 0.07                             | 10                              | 110                   | 1 200              | 0                   | 1                               | 1                                 | 2                  | 0.53              | 0.08                 | 0.1                    |
| Motorized equipment 4t                          | diesel<br>V18 Light               | 0.17             | 1.3                              | 33.7                            | 6                     | 15                 | 0.005               | 4                               | 3.8                               | 3.3                | 0.53              | 0.08                 | 0.1                    |
|                                                 | fuel oils                         | 0.17             | 1.3                              | 50                              | 6                     | 15                 | 0.005               | 7.1                             | 6.75                              | 3.3                | 0.53              | 0.08                 | 0.1                    |
|                                                 |                                   |                  |                                  |                                 |                       |                    |                     |                                 |                                   |                    |                   |                      |                        |

M.1A3E.1 Snow scooter has the same emission factors as M.1A3B.41 Moped, see Table B9.

Bold numbers are different for different years. <sup>1</sup>Before 1995 the emission factor was 1.3.

Numbers in italics have exceptions for some sectors, see Table B18, Table B19 and Table B20.

Sources: Bang (1993), SFT (1999c), Finstad et al. (2001), Finstad et al. (2002a), Finstad et al. (2003) and Winther and Nielsen (2006).

| Table B18. | Exceptions from the general factors for greenhouse gases and precursors for other mobile sources |
|------------|--------------------------------------------------------------------------------------------------|
| Table Dio. | Exceptions from the general factors for greenhouse gases and precursors for other mobile sources |

| Component        | Emission<br>factor<br>(kg/tonne) | Fuel    |                              | Source                                 | Sectors                  |
|------------------|----------------------------------|---------|------------------------------|----------------------------------------|--------------------------|
| CH <sub>4</sub>  | 6.2                              | V11     | Motor gasoline               | M.1A3E.31 Motorized equipment 2 stroke | 230100                   |
| CH₄              | 3.7                              | V11     | Motor gasoline               | M.1A3E.32 Motorized equipment 4 stroke | 230100                   |
| CH₄              | 7.7                              | V11     | Motor gasoline               | M.1A3E.31 Motorized equipment 2 stroke | 230200                   |
| CH₄              | 8.1                              | V11     | Motor gasoline               | M.1A3E.31 Motorized equipment 2 stroke | 330000                   |
| CH₄              | 5.5                              | V11     | Motor gasoline               | M.1A3E.32 Motorized equipment 4 stroke | 330000                   |
| CH₄              | 0.18                             | V15     | Auto diesel                  | M.1A3E.32 Motorized equipment 4 stroke | 330000                   |
| N <sub>2</sub> O | 0.08                             | V11     | Motor gasoline               | M.1A3E.32 Motorized equipment 4 stroke | 231000-233720            |
| NOx              | 36.4                             | V15     | Auto diesel                  | M.1A3E.32 Motorized equipment 4 stroke | 230100                   |
| NO <sub>X</sub>  | 32.3                             | V15     | Auto diesel                  | M.1A3E.32 Motorized equipment 4 stroke | 230200                   |
| NOx              | 54                               | V18     | Light fuel oils              | M.1A3E.32 Motorized equipment 4 stroke | 230100                   |
| NOx              | 52                               | V18     | Light fuel oils              | M.1A3E.32 Motorized equipment 4 stroke | 230200                   |
| NO <sub>X</sub>  | 47                               | V18     | Light fuel oils              | M.1A3E.32 Motorized equipment 4 stroke | 231300-231400,<br>236010 |
| NOx              | 48                               | V18     | Light fuel oils              | M.1A3E.32 Motorized equipment 4 stroke | 232640, 247520           |
| NOx              | 46                               | V18     | Light fuel oils              | M.1A3E.32 Motorized equipment 4 stroke | 234500                   |
| NMVOC            | 7.2                              | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 230100                   |
| NMVOC            | 5.7                              | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 230200                   |
| NMVOC            | 4                                | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 231300-<br>231400,236010 |
| NMVOC            | 4.8                              | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 232640, 247520           |
| NMVOC            | 3.8                              | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 234500                   |
| CO               | 25                               | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 230100                   |
| СО               | 20                               | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 230200                   |
| CO               | 11                               | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 231300-231400,<br>236010 |
| CO               | 17                               | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 234500                   |
| СО               | 18                               | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 247520                   |

 Table B19.
 Exceptions from the general factors for other pollutants for other mobile sources

| Component             | Emission             | Fuel    |                              | Source                                 | Sectors               |
|-----------------------|----------------------|---------|------------------------------|----------------------------------------|-----------------------|
|                       | factor<br>(kg/tonne) |         |                              |                                        |                       |
| TSP, PM <sub>10</sub> | 7.1                  | V15     | Auto diesel                  | M.1A3E.32 Motorized equipment 4 stroke | 230100-230200         |
| TSP, PM <sub>10</sub> | 3.8                  | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 231300-231400, 236010 |
| TSP, PM <sub>10</sub> | 4.2                  | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 232640                |
| TSP, PM <sub>10</sub> | 5.3                  | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 234500                |
| TSP, PM1₀             | 5.4                  | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 247520                |
| PM <sub>2.5</sub>     | 6.75                 | V15     | Auto diesel                  | M.1A3E.32 Motorized equipment 4 stroke | 230100-230200         |
| PM <sub>2.5</sub>     | 3.61                 | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 231300-231400, 236010 |
| PM <sub>2.5</sub>     | 3.99                 | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 232640                |
| PM <sub>2.5</sub>     | 5.04                 | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 234500                |
| PM <sub>2.5</sub>     | 5.13                 | V15, 18 | Auto diesel, light fuel oils | M.1A3E.32 Motorized equipment 4 stroke | 247520                |

| Table B2 | Table B20.         Time series for NO <sub>x</sub> emission factors for use of auto diesel in motorized equipment 4t |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|----------|----------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Sector   | 1980                                                                                                                 | 1987 | 1989 | 1990 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| General  | 38.8                                                                                                                 | 39.4 | 39.9 | 40.2 | 43.4 | 43.9 | 44.3 | 44.5 | 43.6 | 42.6 | 41.2 | 39.7 | 37.7 | 35.7 | 34.0 | 32.2 |
| 230100   | 30.1                                                                                                                 | 31.2 | 32.2 | 32.7 | 36.6 | 38.3 | 39.3 | 40.0 | 40.7 | 41.3 | 41.8 | 40.8 | 39.3 | 37.9 | 36.3 | 34.4 |
| 230200   | 31.2                                                                                                                 | 34.0 | 36.2 | 37.2 | 43.7 | 44.5 | 45.4 | 46.0 | 45.7 | 45.4 | 44.8 | 42.3 | 38.7 | 35.5 | 32.0 | 28.1 |

Source: Winther and Nielsen (2006). Data for 2005 and later are extrapolations.

| Table B21.         Time series for variable emission factors for other mobile sources |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

| Fuel         | Component | 1980-1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997- |
|--------------|-----------|-----------|------|------|------|------|------|------|-------|
| V11 Gasoline | Dioxin    | 1.32      | 1.11 | 0.95 | 0.69 | 0.25 | 0.23 | 0.11 | 0.1   |

### CH<sub>4</sub> - Stationary combustion

#### Table B22. General emission factors, kg CH<sub>4</sub>/tonne fuel

| Source   | V01       | V02    |        |         | V42     |        |           | V45        |      | V31                | V33    |       |       | V35 V   |    | V13      |        | V18   | V19     | V20   | V51   | V52      |
|----------|-----------|--------|--------|---------|---------|--------|-----------|------------|------|--------------------|--------|-------|-------|---------|----|----------|--------|-------|---------|-------|-------|----------|
|          | Coal      | Coke   |        |         |         |        | Wood      |            |      | Natural            |        |       | _and- | FuelLF  | G  | Kero-    | Marine | Light | Heavy   | Heavy | Muni- | Special  |
|          |           |        | coke   | wood    | waste   | liquor | pellets b | oriquettes | coal | gas                | finery | fur-  | fill  | gas     |    | sene     | gas    | fuel  | dis-    | fuel  | cipal | waste    |
|          |           |        |        |         |         |        |           |            |      | (1000              | gas    | nace  | gas   | -       | (  | heating) | oil/   | oils  | tillate | oil   | waste |          |
|          |           |        |        |         |         |        |           |            |      | `Sm <sup>3</sup> ) | 0      | gas   | 0     |         |    | 0,       | diesel |       |         |       |       |          |
| S.01     |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| Direct-  |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| fired    |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| furnaces | 0.028     | 0      | 0      |         |         |        |           |            |      | 0.05               | 0.054  | 0.054 |       | 0.05    |    |          | 0.016  |       | 0.04    | 0.04  |       | 0.04     |
| S.02     |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| Gas      |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| turbines |           |        |        |         |         |        |           |            |      | 0.91               |        |       |       |         |    |          | 0      |       |         |       |       |          |
| S.03     |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| Boilers  | 0.28      | 0.28   | 0.28   |         | 0.25    | 0.25   | 0.25      | 0.25       |      | 0.2                | 0.24   | 0.24  | 0.24  | 0.24 0. | 17 | 0.17     | 0.4    | 0.4   | 0.4     | 0.4   | 0.23  | 0.4      |
| S.04     |           |        |        | -       |         |        |           |            | -    | •                  |        |       |       |         |    |          |        | ••••  |         |       |       |          |
| Small    |           |        |        |         |         |        |           |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |
| stoves   | 8.4       | 8.4    |        | 5.3     |         |        | 5.3       |            | 8.4  |                    |        |       |       | . 0.    | 24 | 0.3      |        | 0.4   | 0.4     |       |       |          |
| S.1B2C   | 0.1       | 0.1    | •      | 0.0     | •       |        | 0.0       | •          | 0.1  |                    |        | •     | •     |         |    | 0.0      | •      | 0.1   | 0.1     | •     | •     | •        |
| Flares   |           |        |        |         |         |        |           |            |      | 0 24               | 0.28   |       | 0.37  |         |    |          |        |       |         |       |       |          |
|          | in itali  | na haw |        | Intiono | for co  |        | atoro oo  | e Table B2 |      | 0.24               | 0.20   | •     | 0.07  | •       | •  |          |        | · ·   | •       | •     |       | <u> </u> |
| numbers  | in italio | Silav  | e exce | puons   | 101 501 | ne sec | JUIS, SE  |            |      |                    |        |       |       |         |    |          |        |       |         |       |       |          |

Source: IPCC (1997b), SFT (1996), SINTEF (1995) and OLF (1994).

#### Table B23. Exceptions from the general factors for CH<sub>4</sub>, stationary combustion (kg CH<sub>4</sub>/tonne fuel)

| Emission<br>factor | Fuel                |                                               | Source                     | Sectors                                          |
|--------------------|---------------------|-----------------------------------------------|----------------------------|--------------------------------------------------|
| 0                  | V31, 35             | Natural gas (1000 Sm <sup>3</sup> ), fuel gas | S.01 Direct fired furnaces | 232640-232650                                    |
| 0.085              | V31                 | Natural gas (1000 Sm <sup>3</sup> )           | S.01 Direct fired furnaces | 232416                                           |
| 0.03               | V01                 | Coal                                          | S.03 Boilers               | 231000, 231110, 232320, 232340,<br>234010-234040 |
| 0.1                | V17, 18, 19, 20, 52 | Fuel oils incl. spezial waste                 | S.03 Boilers               | 231000-234040 (Industry incl. power supply)      |
| 0.0425             | V31                 | Natural gas (1000 Sm <sup>3</sup> )           | S.03 Boilers               | 231000, 231110, 232320, 232340,<br>234010-234040 |
| 0                  | V34                 | Blast furnace gas                             | S.03 Boilers               | 232320                                           |

#### N<sub>2</sub>O - Stationary combustion

#### Table B24. General emission factors. kg $N_2O/tonne$ fuel

| Source        | V01  | V02  | V03    | V41   | V42              | V43              | V44              | V45     | V04   | V31               | V33    | V34      | V36   | V35 V    | 32 V1   | 3 V17    | ′ V18  | V19     | V20      | V51     | V52     |
|---------------|------|------|--------|-------|------------------|------------------|------------------|---------|-------|-------------------|--------|----------|-------|----------|---------|----------|--------|---------|----------|---------|---------|
|               | Coal | Coke | Petrol | Fuel  | Wood             | Black            | Wood             | Wood    | Char- | Natural           | Re-    | Blast I  | _and- | Fuel LF  | 'G Ker  | o-Marine | Light  | Heavy   | Heavy    | Munici- | Special |
|               |      |      | coke   | wood  | waste            | liquor           | pellets          | bri-    | coal  | gast              | finery | furn-    | fill  | gas      | ser     | ie gas   | s fuel | dis-    | fuel oil | pal     | waste   |
|               |      |      |        |       |                  |                  | (                | quettes |       | (1000             | gas    | ace      | gas   | -        | (heatin | g) oil   | / oils | tillate |          | waste   |         |
|               |      |      |        |       |                  |                  |                  |         |       | Sm <sup>3</sup> ) |        | gas      |       |          |         | diese    | I      |         |          |         |         |
| S.01          |      |      |        |       |                  |                  |                  |         |       |                   |        |          |       |          |         |          |        |         |          |         |         |
| Direct-       |      |      |        |       |                  |                  |                  |         |       |                   |        |          |       |          |         |          |        |         |          |         |         |
| fired         |      |      |        |       |                  |                  |                  |         |       |                   |        |          |       |          |         |          |        |         |          |         |         |
| furnaces      | 0    | 0    | 0      |       |                  |                  |                  | -       |       | 0.020             | 0.024  | 0.024 (  | 0.024 | 0.024    |         | . 0.03   | ι.     | 0.03    | 0.03     |         | 0.03    |
| S.02          |      |      |        |       |                  |                  |                  |         |       |                   |        |          |       |          |         |          |        |         |          |         |         |
| Gas           |      |      |        |       |                  |                  |                  |         |       |                   |        |          |       |          |         |          |        |         |          |         |         |
| turbines      | •    | •    |        | -     |                  |                  |                  |         | •     | 0.019             | •      | -        | •     |          | •       | . 0.024  | • •    |         |          |         |         |
| S.03          |      |      | 0.04   |       | o 0 <del>7</del> | 0 0 <del>7</del> | 0 0 <del>7</del> | o 07    |       | 0.004             |        | o oo = / |       |          | ~ ~ ~   |          |        | 0.00    | 0.00     | 0.005   | 0.00    |
| Boilers       | 0.04 | 0.04 | 0.04   | -     | 0,07             | 0,07             | 0.07             | 0.07    | •     | 0.004(            | 0.005  | 0.0050   | ).005 | 0.005 0. | 03 0.0  | 0.03     | 0.03   | 0.03    | 0.03     | 0.035   | 0.03    |
| S.04<br>Small |      |      |        |       |                  |                  |                  |         |       |                   |        |          |       |          |         |          |        |         |          |         |         |
| stoves        | 0.04 | 0.04 |        | 0.032 |                  |                  | 0.032            |         | 0.04  |                   |        |          |       | . 0.     | 03 0.0  | 12       | 0.03   | 0.03    |          |         |         |
| S.1B2C        | 0.04 | 0.04 | •      | 0.052 | •                | •                | 0.052            | •       | 0.04  | •                 | •      | •        | •     | . 0.     | 0.0     | 15       | 0.05   | 0.05    | •        | •       | •       |
| Flares        |      |      |        |       |                  |                  |                  |         |       | 0.020             | 024    | (        | 0.002 |          |         |          |        |         |          |         |         |

Numbers in italics have exceptions for some sectors, see Table B25. Source: IPCC (1997b), SFT (1996) and OLF (1994).

#### Table B25. Exceptions from the general factors for N<sub>2</sub>O. Stationary combustion (kg N<sub>2</sub>O/1000 Sm<sup>3</sup> natural gas)

| Emission factor | Fuel |             | Source                     | Sectors |  |
|-----------------|------|-------------|----------------------------|---------|--|
| 0.017           | V31  | Natural gas | S.01 Direct-fired furnaces | 232416  |  |
| 0.06            | V31  | Natural gas | S.1B2C Flares              | 231120  |  |

## NO<sub>x</sub> - Stationary combustion

#### Table B26. General emission factors. kg NO<sub>x</sub>/tonne fuel

| Source   | V01  | V02  | V03    | V41   | V42    | V43   | V44     | V45     | V04   | V31               | V33   | V34    | V36   | V35  | V32 | V13       | V17     | V18    | V19     | V20    | V51     | V52     |
|----------|------|------|--------|-------|--------|-------|---------|---------|-------|-------------------|-------|--------|-------|------|-----|-----------|---------|--------|---------|--------|---------|---------|
|          | Coal | Coke | Petrol | Fuel\ | Wood   | Black | Wood    | Wood    | Char- | Natural           | Re-l  | Blastl | _and- | Fuel | LPG | Kero-     | Marinel | Lightl | Heavy⊦  | leavyl | Munici- | Special |
|          |      |      | coke   | wood  | wastel | iquor | pellets | bri-    | coal  | gasf              | inery | furn-  | fill  | gas  |     | sene      | gas     | fuel   | dis-    | fuel   | pal     | waste   |
|          |      |      |        |       |        |       | (       | quettes |       | (1000             | gas   | ace    | gas   |      |     | (heating) | oil/    | oils   | tillate | oil    | waste   |         |
|          |      |      |        |       |        |       |         |         |       | Sm <sup>3</sup> ) |       | gas    |       |      |     |           | diesel  |        |         |        |         |         |
| S.01     |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| Direct-  |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| fired    |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| furnaces | i 16 | 20   | 20     | -     | -      |       |         |         |       | 5.95              | 5.4   | 5.4    |       | 5.4  |     |           | 70      |        | 5       | 5      |         | 5       |
| S.02     |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| Gas      |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| turbines |      |      | -      | -     | -      |       |         |         |       | 6.27              | •     | •      | •     |      |     |           | 16      |        | -       | •      |         |         |
| S.03     |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| Boilers  | 3    | 3    | 3.4    | -     | 0.9    | 0.9   | 1.3     | 1.3     |       | 2.55              | 3     | 3      | 0.01  | 3    | 2.3 | 3         | 2.5     | 2.5    | 2.5     | 4.2    | 1.365   | 4.2     |
| S.04     |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| Small    |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| stoves   | 3    | 3    | -      | 0.981 | -      |       | 1.1     | -       | 1.4   |                   |       | •      |       |      | 2.3 | 2.5       |         | 2.5    | 2.5     | -      |         |         |
| S.1B2C   |      |      |        |       |        |       |         |         |       |                   |       |        |       |      |     |           |         |        |         |        |         |         |
| Flares   |      |      |        |       |        |       |         |         |       | 1.4               | 7     |        | 0.17  |      |     |           |         |        |         |        |         |         |

Numbers in italics have exceptions for some sectors, see Table B27, and bold numbers are different for different years, see Table B28. Source: Rosland (1987).

| Emission<br>factor | Fuel        |                                                 | Source                     | Sectors                      |
|--------------------|-------------|-------------------------------------------------|----------------------------|------------------------------|
| 24                 | V19, 20, 52 | Heavy distillate, heavy fuel oil, special waste | S.01 Direct-fired furnaces | 231009, 232650               |
| 6.13               | V31         | Natural gas (1000 Sm <sup>3</sup> )             | S.01 Direct-fired furnaces | 232416                       |
| 9.5                | V19, 20     | Heavy distillate, heavy fuel oil                | S.01 Direct-fired furnaces | 232640                       |
| 8.68124            | V31         | Natural gas (1000 Sm <sup>3</sup> )             | S.02 Gas turbines          | 231110                       |
| 3                  | V17, 18, 19 | Fuel oils                                       | S.03 Boilers               | 231000-233720                |
| 4.5                | V01         | Coal                                            | S.03 Boilers               | 231000-233720                |
| 3.4                | V02         | Coke                                            | S.03 Boilers               | 231000-233720                |
| 5                  | V20, 52     | Heavy fuel oil, special waste                   | S.03 Boilers               | 231000-233720                |
| 2.9                | V35         | Fuel gas                                        | S.03 Boilers               | 232411-232470, 232710-232740 |
| 0.01               | V34         | Blast furnace gas                               | S.03 Boilers               | 234010-234040                |
| 1.4                | V01, 02     | Coal, coke                                      | S.04 Small stoves          | 330000                       |

#### Table B28. Time series for variable emission factors for NO<sub>x</sub>. Stationary combustion (kg NO<sub>x</sub> /tonne fuel)

| Sector  | Source | Fuel | 1980-<br>1990 | 1991    | 1992    | 1993    | 1994    | 1995    | 1996    | 1997    | 1998    | 1999   | 2000-   |
|---------|--------|------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|
| General | S.04   | V41  | 0.98241       | 0.981   | 0.98235 | 0.98236 | 0.98231 | 0.981   | 0.98239 | 0.98234 | 0.98213 | 0.981  | 0.981   |
| 231110  | S.02   | V31  | 8.22299       | 8.17156 | 8.23417 | 8.44355 | 8.61688 | 8.87385 | 9.12833 | 9.18543 | 9.52767 | 9.0867 | 8.68124 |

### **NMVOC - Stationary combustion**

#### Table B29. General emission factors. kg NMVOC/tonne fuel

| Source           | V01      | V02    | V03    | V41    | V42    | V43    | V44       | V45     | V04    | V31                        | V33      | V34          | V36   | V35    | V32   | V13      |        | V18  | V19     | V20     | V51       | V52      |
|------------------|----------|--------|--------|--------|--------|--------|-----------|---------|--------|----------------------------|----------|--------------|-------|--------|-------|----------|--------|------|---------|---------|-----------|----------|
|                  | Coal     | Coke   |        |        |        |        | Wood      | Wood    | Char-  | Natural                    | Re-      | BlastL       |       |        | _PG   |          |        |      |         |         | Munici- S | Special  |
|                  |          |        | coke   | wood   | wastel | liquor | pellets   |         | coal   |                            | finery f | urnace       | fill  | gas    |       | seneg    |        |      |         | uel oil | pal       | waste    |
|                  |          |        |        |        |        |        | (         | quettes |        | (1000<br>Sm <sup>3</sup> ) | gas      | gas          | gas   |        | (     | heating) | diesel | oils | tillate |         | waste     |          |
| S.01<br>Direct-  |          |        |        |        |        |        |           |         |        |                            |          |              |       |        |       |          |        |      |         |         |           |          |
| fired            |          |        |        |        |        |        |           |         |        |                            |          |              |       |        |       |          |        |      |         |         |           |          |
| furnaces         | 0        | 0      | 0      |        |        |        |           |         |        | 0                          | 0.1      | 0.           |       | 0.     |       | 5        |        |      | 0.3     | 0.3     |           | 0.3      |
| S.02             |          |        |        |        |        |        |           |         |        |                            |          |              |       |        |       |          |        |      |         |         |           |          |
| Gas              |          |        |        |        |        |        |           |         |        |                            |          |              |       |        |       |          |        |      |         |         |           |          |
| turbines<br>S.03 | ·        | •      | •      | •      | •      | ·      | •         | •       | ·      | 0.24                       | •        |              |       | •      | •     | •        | 0.03   | •    | •       | •       | ·         | •        |
| Boilers<br>S.04  | 1.1      | 0.6    | 0.6    |        | 1.30   | )      | 1.3       | 1.3     | •      | 0.085                      | 0.1      | <b>0.1</b> 0 |       | 0.1    | 0.1   | 0.4      | 0.4    | 0.4  | 0.4     | 0.3     | 0.7       | 0.3      |
| Small            |          |        |        |        |        |        |           |         |        |                            |          |              |       |        |       |          |        |      |         |         |           |          |
| stoves<br>S.1B2C | 1.1      | 0.6    |        | 7.0    |        |        | 6.501     |         | 10.    |                            |          |              |       |        | 0.1   | 0.4.     |        | 0.4  | 0.4     |         |           |          |
| Flares           |          |        |        |        |        |        |           |         |        | 0.06                       | 13.5.    |              | 0     |        |       |          |        |      |         |         |           | <u>.</u> |
| Numbers          | in itali | cs hav | e exce | ptions | for so | ne se  | ctors, se | e Table | B30. 5 | Source: F                  | Rosland  | (1987) a     | and S | FT (19 | 996). |          |        |      |         |         |           |          |

#### Table B30. Exceptions from the general factors for NMVOC. Stationary combustion (kg NMVOC/tonne fuel)

| Emission<br>factor | Fuel            |                                                 | Source                        | Sectors                                                 |
|--------------------|-----------------|-------------------------------------------------|-------------------------------|---------------------------------------------------------|
| 0                  | V 19, 20, 52    | Heavy distillate, heavy fuel oil, special waste | S.01 Direct-fired<br>furnaces | 231009, 232650                                          |
| 0.1                | V34             | Blast furnace gas                               | S.01 Direct-fired<br>furnaces | 231009                                                  |
| 0.085034           | V31             | Natural gas (1000 Sm³)                          | S.01 Direct-fired<br>furnaces | 232416                                                  |
| 0.9                | V19, 20         | Heavy distillate, heavy fuel oil                | S.01 Direct-fired<br>furnaces | 232640                                                  |
| 0.8                | V01             | Coal                                            | S.03 Boilers                  | 231000-233720                                           |
| 0                  | V32, 34, 35, 42 | LPG, blast furnace gas, fuel gas, wood waste    | S.03 Boilers                  | 231000-233720, 232110, 232411-<br>232470, 234010-234040 |
| 0.6                | V17, 18, 19     | Fuel oils                                       | S.03 Boilers                  | 330000                                                  |
| 10                 | V01             | Coal                                            | S.04 Small stoves             | 330000                                                  |
| 0.6                | V13             | Kerosene (heating)                              | S.04 Small stoves             | 330000                                                  |
| 0.02               | V31             | Natural gas (1000 Sm <sup>3</sup> )             | S.1B2C Flares                 | 231120                                                  |

### **CO** - Stationary combustion

#### Table B31. General emission factors. kg CO/tonne fuel

| Source   | V01  | V02  | V03    | V41   | V42   |        |         | V45     | V04  | V31               | V33    | V34   |      | V35 |     | V13       |        | V18   |         | V20   |         | V52     |
|----------|------|------|--------|-------|-------|--------|---------|---------|------|-------------------|--------|-------|------|-----|-----|-----------|--------|-------|---------|-------|---------|---------|
|          | Coal | Coke | Petrol |       |       |        | Wood    |         |      | Natural           | Re-    | Blast |      |     | LPG | Kero-     | Marine | Light | Heavy   | Heavy | Munici- | Special |
|          |      |      | coke   | wood  | waste | liquor | pellets | bri-    | coal | gas               | finery | furn- | fill | gas |     | sene      | gas    | fuel  | dis-    | fuel  | pal     | waste   |
|          |      |      |        |       |       |        |         | quettes |      | (1000             | gas    | ace   | gas  |     |     | (heating) | oil/   | oils  | tillate | oil   | waste   |         |
|          |      |      |        |       |       |        |         |         |      | Sm <sup>3</sup> ) |        | gas   |      |     |     |           | diesel |       |         |       |         |         |
| S.01     |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| Direct-  |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| fired    |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| furnaces | 0    | 0    | 0      |       |       |        |         |         |      | 0                 | 0      | 0     |      | 0   |     |           | 5      |       | 0.2     | 0.2   |         | 0.2     |
| S.02     |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| Gas      |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| turbines |      |      |        |       |       |        |         |         |      | 1.7               |        |       |      |     |     |           | 0.7    |       |         |       |         |         |
| S.03     |      | -    | -      | -     |       | -      | -       | -       | -    |                   |        | -     | -    | -   | -   | -         |        | -     | -       | -     | -       |         |
| Boilers  | 3    | 3    | 3      |       | 15    | 0      | 15      | 15      |      | 0                 | 0      | 0     | 0    | 0   | 0.5 | 2         | 2      | 2     | 2       | 0.4   | 2.8     | 0.4     |
| S.04     |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| Small    |      |      |        |       |       |        |         |         |      |                   |        |       |      |     |     |           |        |       |         |       |         |         |
| stoves   | 3    | 3    |        | 115.9 |       |        | 2.6     |         | 100  |                   |        |       |      |     | 0.5 | 2         |        | 2     | 2       |       |         |         |
| S.1B2C   | -    | -    | •      |       |       |        |         |         |      | •                 |        | •     |      | •   | 2.0 | -         | •      | -     | -       |       |         |         |
| Flares   |      |      |        |       |       |        |         |         |      | 1.5               | 0      |       | 0.04 |     |     |           |        |       |         |       |         |         |

Numbers in italics have exceptions for some sectors, see Table B32, and bold numbers are different for different years, see Table B33.

#### Table B32. Exceptions from the general factors for CO. Stationary combustion (kg CO/tonne fuel)

| Emission factor | Fuel         |                                                 | Source                     | Sectors                |
|-----------------|--------------|-------------------------------------------------|----------------------------|------------------------|
| 0               | V 19, 20, 52 | Heavy distillate, heavy fuel oil, special waste | S.01 Direct-fired furnaces | 231009, 232640, 232650 |
| 0.01            | V34          | Blast furnace gas                               | S.01 Direct-fired furnaces | 231009                 |
| 0.2             | V20. 52      | Heavy fuel oil, special waste                   | S.03 Boilers               | 231000-233720          |
| 0               | V32, 42      | LPG, wood waste                                 | S.03 Boilers               | 231000-233720, 232110  |
| 6.5             | V17, 18, 19  | Fuel oils                                       | S.03 Boilers               | 330000                 |
| 100             | V01, 02      | Coal, coke                                      | S.04 Small stoves          | 330000                 |
| 6.5             | V13          | Kerosene (heating)                              | S.04 Small stoves          | 330000                 |
| 1.7             | V31          | Natural gas (1000 Sm <sup>3</sup> )             | S.1B2C Flares              | 232320                 |

#### Table B33. Time series for variable emission factors for CO. Stationary combustion (kg CO/tonne fuel)

| Sector               | Source    | Fuel      | 1980-<br>1990 | 1991      | 1992-<br>1994 | 1995     | 1996    | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|----------------------|-----------|-----------|---------------|-----------|---------------|----------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| General              | S.04      | V41       | 149.1         | 149.2     | 149.1         | 149.2    | 149.1   | 149.1 | 145.5 | 142.1 | 138.5 | 135.0 | 131.4 | 127.4 | 123.5 | 115.5 | 111.9 |
| <sup>1</sup> Emissio | n factoos | for the y | oare 100      | 1 to 100/ | l can bo      | aivon on | roquest |       |       |       |       |       |       |       |       |       |       |

<sup>1</sup> Emission factoes for the years 1991 to 1994 can be given on request.

### NH<sub>3</sub> - Stationary combustion

#### Table B34. General emission factors. kg NH<sub>3</sub>/tonne fuel

| Source                                          | V01<br>Coal | V02<br>Coke | V03<br>Petrol<br>coke |       |   |   | Wood pellets | V45<br>Wood<br>bri-<br>quettes | V04<br>Char-<br>coal | Natural | V33<br>Re-<br>finery<br>gas | Blast<br>furn- | V36<br>Land-<br>fill gas |   | V32<br>LPG |   | V17<br>Marine<br>gas<br>oil/<br>diesel | V18<br>Light<br>fuel<br>oils |   | V20<br>Heavy<br>fuel oil | V51<br>Munici-<br>pal<br>waste | V52<br>Special<br>waste |
|-------------------------------------------------|-------------|-------------|-----------------------|-------|---|---|--------------|--------------------------------|----------------------|---------|-----------------------------|----------------|--------------------------|---|------------|---|----------------------------------------|------------------------------|---|--------------------------|--------------------------------|-------------------------|
| S.04<br>Small<br>stoves<br>All other<br>sources | 0           | 0           | 0                     | 0.066 | 0 | 0 | 0.066        | 0                              | 0                    | 0       | 0                           | 0              | 0                        | 0 | 0          | 0 | 0                                      | 0                            | 0 | 0                        | 0                              | 0                       |

#### Particulate matter - Stationary combustion

#### Table B35. General emission factors. kg particle component/tonne fuel

| Table               | 5 DJJ.                             | Gene        |             | 1113310                    | ni iaci | UI3. K | y part |              | ompon |                      | ine iu  | 51            |       |              |             |       |                         |       |               |    |      |         |       |
|---------------------|------------------------------------|-------------|-------------|----------------------------|---------|--------|--------|--------------|-------|----------------------|---------|---------------|-------|--------------|-------------|-------|-------------------------|-------|---------------|----|------|---------|-------|
| Com-<br>po-<br>nent | Source                             | V01<br>Coal | V02<br>Coke | V03<br>Pe-<br>trol<br>coke |         |        | Black  | Wood pellets | Wood  | V04<br>Char-<br>coal | Natural | Re-<br>finery | furn- | Landf<br>ill | Fuel<br>gas | LPG   | Kero-<br>sene<br>(heat- |       | Light<br>fuel |    | fuel | Munici- | ciall |
|                     | S.01<br>Direct-<br>fired           |             |             |                            |         |        |        |              |       |                      |         |               |       |              |             |       |                         |       |               |    |      |         |       |
| TSP                 | furnaces<br>S.02 Gas               | 1.6         | 1.6         | 1.6                        |         | -      |        |              | -     | •                    | 0.122   | 0.144         | 0.144 |              | 0.144       | •     | •                       |       | •             | *) | *)   | •       | 5.68  |
| TSP                 | turbines<br>S.03                   |             |             |                            |         |        | -      | -            |       |                      | 0.122   |               |       |              |             |       |                         | 0.286 |               |    |      |         |       |
| TSP                 | Boilers<br>S.04<br>Small           | 1.6         | 1.6         | 1.6                        |         | 0.22   | 0      | 0.216        | 0.216 |                      | 0.122   | 0.144         | 0.144 | 0.144        | 0.144       | 0.136 | 0.296                   | 0.286 | 0.286         | *) | *)   | 0.05    | 5.68  |
| TSP                 | stoves<br>S.1B2C                   | 4.2         | 2.85        | 3.5                        | 27.92   |        |        | 1.1          |       | 2.4                  |         |               |       |              |             | 0.136 | 0.3                     |       | 0.3           |    |      |         |       |
| TSP                 |                                    | •           |             |                            |         |        |        |              |       |                      | 0.002   | 0.144         | . (   | 0.144        |             |       |                         |       |               |    |      |         |       |
| $PM_{10}$           | furnaces<br>S.02 Gas               | 1.14        | 1.14        | 1.14                       |         |        |        |              |       |                      | 0.122   | 0.144         | 0.144 |              | 0.144       |       |                         | 0.143 |               | *) | *)   |         | 4.87  |
| PM <sub>10</sub>    | turbines<br>S.03                   |             |             | •                          |         | -      |        |              |       |                      | 0.122   |               |       |              |             |       | •                       | 0.143 |               | -  |      |         |       |
| PM <sub>10</sub>    | Boilers<br>S.04<br>Small           | 1.14        | 1.14        | 1.14                       |         | 0.22   | 0      | 0.216        | 0.216 |                      | 0.122   | 0.144         | 0.144 | 0.144        | 0.144       | 0.136 | 0.148                   | 0.143 | 0.15          | *) | *)   | 0.05    | 4.87  |
| $PM_{10}$           | stoves<br>S.1B2C                   | 2.8         | 1.71        | 2.1                        | 27.92   | •      |        | 1.1          |       | 2.4                  |         | •             |       | -            |             | 0.136 | 0.16                    | •     | 0.155         |    |      |         | •     |
| PM <sub>10</sub>    | Flares<br>S.01<br>Direct-<br>fired |             |             |                            |         |        |        |              |       |                      | 0.002   | 0.144         | . (   | 0.144        |             |       |                         |       |               |    |      |         |       |
| PM <sub>2.5</sub>   | furnaces<br>S.02 Gas               | 0.82        | 0.82        | 0.82                       |         | •      |        |              |       |                      | 0.122   | 0.144         | 0.144 |              | 0.144       | •     | •                       | 0.036 | •             | *) | *)   |         | 3.2   |
| PM <sub>2.5</sub>   | turbines<br>S.03                   |             |             |                            |         |        |        |              |       |                      | 0.122   |               |       |              |             |       |                         | 0.036 |               |    |      | -       |       |
| PM <sub>2.5</sub>   | Boilers<br>S.04<br>Small           | 0.82        | 0.82        | 0.82                       |         | 0.22   | 0      | 0.216        | 0.216 |                      | 0.122   | 0.144         | 0.144 | 0.144        | 0.144       | 0.136 | 0.037                   | 0.12  | 0.12          | *) | *)   | 0.05    | 3.2   |
|                     | stoves<br>S.1B2C                   |             |             |                            | 27.92   |        |        | 1.1          |       |                      |         |               |       |              |             |       | 0.12                    |       | 0.119         |    |      |         |       |
| F IVI2.5            | Flares                             |             |             |                            |         |        |        |              |       |                      | 0.002   | v. 144        |       | 0.144        |             |       |                         |       |               | •  | •    |         |       |

 PM2.5
 Flares
 0.002 0.144
 0.144

 Numbers in italics have exceptions for some sectors, see Table B37, and bold numbers are different for different years, see Table B38.
 \* General emission factors for all sources for heavy distillate and heavy fuel oil are given in Table B36 for all years.

Source: Finstad et al. (2003).

## Table B36. General particle emission factors for heavy distillate and heavy fuel oil for all sources. Factors dependent on sulphur content (kg particle component /tonne fuel)

|                   |         |         |         |           |         |         |         | ,       |         |           |         |           |         |         |         |                      |         |
|-------------------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|-----------|---------|-----------|---------|---------|---------|----------------------|---------|
| Fuel Com-         | 1980-   | 1982    | 1983    | 1984      | 1985-   |         | 1989    | 1990    | 1991    | 1992      | 1993    | 1994      | 1995    |         | 1998    | 1999                 | 2000-   |
| ponent            | 1981    |         |         |           | 1986    | 1988    |         |         |         |           |         |           |         | 1997    |         |                      | 2006    |
| V19 TSP           | 1.3761  | 1.05766 | 1.18504 | 1.05766   | 1.05766 | 0.99398 | 0.90481 | 0.80291 | 0.71375 | 0.701010  | ).70101 | 0.688280  | 0.71375 | 0.6628  | 0.68828 | 0.70101 (            | 0.71375 |
| PM <sub>10</sub>  | 1.18305 | 0.90929 | 1.01879 | 0.909290  | 0.90929 | 0.85453 | 0.77788 | 0.69028 | 0.61362 | 0.60267 0 | ).60267 | 0.59172 ( | 0.61362 | 0.56982 | 0.59172 | 0.60267 (            | 0.61362 |
| PM <sub>2.5</sub> | 0.77055 | 0.59224 | 0.66356 | 0.59224 ( | 0.59224 | 0.55658 | 0.50665 | 0.44959 | 0.39967 | 0.39253 0 | ).39253 | 0.3854 (  | ).39967 | 0.37114 | 0.3854  | 0.39253 (            | 0.39967 |
| V20 TSP           | 1.4644  | 1.4644  | 1.5216  | 1.3501    | 1.4873  | 1.4644  | 1.4187  | 1.3501  | 1.3386  | 1.3157    | 1.3043  | 1.1899    | 1.0527  | 1.0984  | 1.087   | 1.1099               | 1.2014  |
| PM <sub>10</sub>  | 1.25899 | 1.25899 | 1.30816 | 1.16066   | 1.27866 | 1.25899 | 1.21966 | 1.16066 | 1.15083 | 1.13116 1 | 1.12133 | 1.023     | 0.905   | 0.94433 | 0.9345  | 0.95417 <sup>·</sup> | 1.03283 |
| PM <sub>2.5</sub> | 0.82528 | 0.82528 | 0.85751 | 0.76082   | 0.83817 | 0.82528 | 0.7995  | 0.76082 | 0.75438 | 0.741490  | ).73504 | 0.67058 ( | ).59324 | 0.61902 | 0.61257 | 0.62546 (            | 0.67703 |

Numbers in italics have exceptions for some sectors, see Table B35, and bold numbers are different for different years, see Table B38. Source: Finstad et al. (2003).

#### Table B37. Exceptions from the general factors for particles. Stationary combustion

| Emission factor<br>(kg TSP/tonne) | Emission factor<br>(kg PM <sub>10</sub> /tonne) | Emission factor<br>(kg PM <sub>2.5</sub> /tonne) | Fuel    |                    | Source                     | Sectors       |
|-----------------------------------|-------------------------------------------------|--------------------------------------------------|---------|--------------------|----------------------------|---------------|
| 4.06                              | 2.4                                             | 1.4                                              | V52     | Special waste      | S.01 Direct-fired furnaces | 231000-233720 |
| 5.45                              | 3.54                                            | 1.45                                             | V01     | Coal               | S.01 Direct-fired furnaces | 234040        |
| 4.2                               | 2.8                                             | 0.86                                             | V01     | Coal               | S.03 Boilers               | 230100        |
|                                   | 0.143 (V18)                                     | 0.036 (V17, 18)                                  | V17, 18 | Light fuel oils    | S.03 Boilers               | 231000-233720 |
| 4.06                              | 2.4                                             | 1.4                                              | V52     | Special waste      | S.03 Boilers               | 231000-233720 |
| 5.45                              | 3.54                                            | 1.45                                             | V01     | Coal               | S.03 Boilers               | 234040        |
| 0.5                               | 0.5                                             | 0.5                                              | V51     | Municipal waste    | S.03 Boilers               | 259000        |
| 0.3                               | 0.155                                           | 0.119                                            | V13     | Kerosene (heating) | S.04 Small stoves          | 330000        |

| Table B | 38. Time se | ries for v | /ariable e | mission | factors | for partic | les <sup>1</sup> . Sta | tionary | combust | ion (kg p | article o | compone | ent /tonn | e fuel) |
|---------|-------------|------------|------------|---------|---------|------------|------------------------|---------|---------|-----------|-----------|---------|-----------|---------|
| Sector  | Source Fuel | 1980-      | 1995       | 1996    | 1997    | 1998       | 1999                   | 2000    | 2001    | 2002      | 2003      | 2004    | 2005      | 2006    |

| Secio   | Source | Fuel | 1980- | 1995  | 1990  | 1997  | 1990  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2000  |
|---------|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| General | S.04   | V41  | 38.86 | 39.24 | 38.89 | 38.90 | 37.74 | 36.83 | 35.62 | 34.41 | 33.20 | 31.85 | 30.50 | 27.50 | 26.35 |
| General | S.03   | V51  | 0.2   | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  |
|         |        |      |       |       |       |       |       |       |       |       |       |       |       |       |       |

1 Emission factoes for the years 1991 to 1994 can be given on request.

#### POPs (Persistent Organic Pollutants) - Stationary combustion

#### Table B39. General emission factors for PAH

| Compone                     | ntSource                     |       |       | Petrol | Fuel \      |        | Black | Wood pellets | Wood  | V04<br>Char-<br>coal |       | finery | Blast | Land- | V35<br>Fuel<br>gas | LPG   | Kero-<br>sene | Marine<br>gas oil/<br>diesel | fuel   | Heavy | /Heavy<br>-fuel oil | Munici- | V52<br>Special<br>waste |
|-----------------------------|------------------------------|-------|-------|--------|-------------|--------|-------|--------------|-------|----------------------|-------|--------|-------|-------|--------------------|-------|---------------|------------------------------|--------|-------|---------------------|---------|-------------------------|
| PAH                         | S.01<br>Direct-<br>fired     |       |       |        |             |        |       |              |       |                      |       |        |       |       |                    |       |               |                              |        |       |                     |         |                         |
| g/tonne                     | furnaces<br>S.02             | 0.17  | 0.17  | 0.17   | . (         | 0.0180 | 0.018 |              |       |                      | 0.015 | 0.018  | 0.018 |       | 0.018              |       |               | 1.6                          |        | 0.015 | 5 0.015             |         | 0.015                   |
| PAH<br>g/tonne<br>PAH       | Gas<br>turbines<br>S.03      |       |       |        |             |        |       |              |       |                      | 0.015 |        |       |       |                    |       |               | 1.6                          |        |       |                     |         |                         |
| g/tonne                     | Boilers<br>S.04              | 0.46  | 0.46  | 0.46   | . (         | 0.0180 | 0.018 | 0.16         | 0.16  |                      | 0.015 | 0.018  | 0     | 0.018 | 0.018              | 0.018 | 0.007         | 0.01                         | 0.01   | 0.015 | 5 0.015             | 2.5     | 0.015                   |
| PAH<br>g/tonne<br>PAH       | Small<br>stoves<br>S.1B2C    | 39.9  | 27.8  | 27.8   | 33.3        |        |       | 38.8         |       | 39.9                 |       |        |       |       |                    | 0.039 | 0.039         |                              | 1.01   |       |                     |         |                         |
| g/tonne                     | Flares<br>S.01               |       | •     |        | •           | •      |       |              |       |                      | 0.015 | 0.018  |       | 0.018 |                    |       |               | •                            |        |       |                     |         |                         |
| PAH-<br>OSPAR<br>g/tonne    | Direct-<br>fired<br>furnaces | 0.02  | 0.02  | 0.02   |             |        |       |              |       |                      | 9E-04 | 0.001  | 0.001 |       | 0.001              |       |               | 0.26                         |        | 0.004 | 0.004               |         | 0.004                   |
| PAH-<br>OSPAR<br>g/tonne    | S.02<br>Gas<br>turbines      |       |       |        |             |        |       |              |       |                      | 9E-04 |        |       |       |                    |       |               | 0.26                         |        |       |                     |         |                         |
| PAH-<br>OSPAR<br>g/tonne    | S.03<br>Boilers              | 0.16  | 0.16  | 0.16   |             | 0.0610 | 061   | 0.061        | 0.061 |                      | 9E-04 | 0 001  | 0 001 | 0     | 0 001              | 0 001 | 8E-04         | 0                            | 2      | 0.00/ | 0.004               | 07      | 0.004                   |
| PAH-<br>DSPAR               | S.04<br>Small                | 0.10  | 0.10  | 0.10   |             | 0.0010 |       | 0.001        | 0.001 |                      | 32-04 | 0.001  | 0.001 | 0     | 0.001              | 0.001 | 02-04         | 0 (                          | ,<br>, | 0.00- | r 0.004             | 0.7     | 0.00-                   |
| g/tonne<br>PAH-<br>OSPAR    | stoves<br>S.1B2C<br>Flares   | 18    | 13.4  | 13.4   | 5.9         |        | •     | 6.8          |       | 18                   |       |        | •     |       |                    | 0.007 | 0.007         |                              | 0.57   |       |                     |         |                         |
| g/tonne<br>PAH-4<br>g/tonne | S.01<br>Direct-              |       |       |        |             |        |       |              |       |                      | 9E-04 | 0.001  |       | 0     |                    |       |               |                              |        |       |                     |         |                         |
|                             | fired<br>furnaces<br>S.02    | 0     | 0     | 0      |             |        |       |              |       |                      | 0     | 0      | 0     |       | 0                  |       |               | 0.04                         |        | 4E-04 | 4E-04               |         | 4E-04                   |
| PAH-4<br>g/tonne            | Gas<br>turbines              |       |       |        |             |        |       |              |       |                      | 0     |        |       |       |                    |       |               | 0.04                         |        |       |                     |         |                         |
| PAH-4<br>g/tonne            | S.03<br>Boilers<br>S.04      | 0.024 | 0.024 | 0.024  | . (         | 0.0160 | 0.016 | 0.016        | 0.016 |                      | 0     | 0      | 0     | 0     | 0                  | 0     | 1E-04         | 1E-04                        | 1E-04  | 4E-04 | 4E-04               | 0.03    | 4E-04                   |
| PAH-4<br>g/tonne            | Small stoves                 | 2.6   | 0.4   | 0.4    | 1. <b>7</b> |        |       | 2.5          |       | 2.6                  |       |        |       |       |                    | 0     | 0             |                              | 0.003  |       |                     |         |                         |
| PAH-4<br>g/tonne            | S.1B2C<br>Flares             |       |       |        |             |        |       |              |       |                      | 0     | 0      |       | 0     |                    |       |               |                              |        |       |                     |         |                         |

Numbers in italics have exceptions for some sectors, see Table B41, and bold numbers are different for different years, see Table B42. Source: Finstad et al. (2001).

| Table B40.         Time series for variable emission factors for PAH <sup>1</sup> . Stationary combustion (g component /tonne fuel) |
|-------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------|

| Compo-<br>nent        | Source     | Fuel       | 1980-<br>1990 | 1995       | 1996       | 1997       | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  |
|-----------------------|------------|------------|---------------|------------|------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| PAH<br>PAH-           | S.04       | V41        | 50.69         | 50.85      | 50.70      | 50.70      | 48.85 | 47.13 | 45.27 | 43.41 | 41.55 | 39.47 | 37.39 | 32.94 | 31.33 |
| OSPAR                 | S.04       | V41        | 8.02          | 8.03       | 8.02       | 8.02       | 7.73  | 7.45  | 7.16  | 6.88  | 6.59  | 6.26  | 5.93  | 6.14  | 5.85  |
| PAH-4                 | S.04       | V41        | 2.71          | 2.71       | 2.71       | 2.71       | 2.61  | 2.52  | 2.42  | 2.32  | 2.23  | 2.12  | 2.01  | 1.81  | 1.71  |
| <sup>1</sup> Emission | factoes fo | r the year | rs 1991 to    | 1994 can l | be given o | on request | •     |       |       |       |       |       |       |       |       |

#### Table B41. General emission factors for dioxin

| Com-     | Source   | V01  | V02    | V03    | V41  | V42   | V43    | V44     | V45     |       |                   |       | V34     |        | V35 V32  |        |        | V18   | V19     | V20   | V51     | V52     |
|----------|----------|------|--------|--------|------|-------|--------|---------|---------|-------|-------------------|-------|---------|--------|----------|--------|--------|-------|---------|-------|---------|---------|
| ponent   |          | Coal | Coke I | Petrol | Fuel | Wood  | Black  | Wood    | Wood    | Char- | Natural           | Re-   | Blast I | _and-l | Fuel LPG | Kero-  | Marine | Light | Heavy H | leavy | Munici- | Special |
|          |          |      |        | coke   | wood | waste | liquor | pellets | bri-    | coal  | gas               | finer | furn-   | fill   | gas      | sene   | gas    | fuel  | dis-    | fuel  | pal     | waste   |
|          |          |      |        |        |      |       |        |         | quettes |       | (1000             |       | ace     | gas    |          | (heat- |        | oils  | tillate | oil   | waste   |         |
|          |          |      |        |        |      |       |        |         |         |       | Sm <sup>3</sup> ) | gas   | gas     |        |          | ing)   | diesel |       |         |       |         |         |
|          | S.01     |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
|          | Direct-  |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| Dioxin   | fired    |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| ug/tonne | furnaces | 1.6  | 1.6    | 1.6    |      |       |        |         |         |       | 0.05              | 0     | 0       |        | 0.       |        | 4      |       | 0.1     | 0.1   |         | 4       |
|          | S.02     |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| Dioxin   | Gas      |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| 0        | turbines |      |        | -      |      |       |        |         |         | -     | 0.05              |       | •       | -      |          |        | 4      |       |         |       |         |         |
|          | S.03     |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| ug/tonne |          | 1.6  | 1.6    | 1.6    |      | 1     | 1      | 1       | 1       | -     | 0.05              | 0     | 0       | 0      | 1 0.06   | 0.1    | 0.1    | 0.1   | 0.1     | 0.1   | 0.02    | 4       |
|          | S.04     |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| Dioxin   | Small    |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| ug/tonne |          | 10   | 10     | 10     | 5.9  |       |        | 5.9     |         | 10    |                   |       | -       |        | . 0.06   | 0.06   |        | 0.2   |         |       |         |         |
|          | S.1B2C   |      |        |        |      |       |        |         |         |       |                   |       |         |        |          |        |        |       |         |       |         |         |
| ug/tonne | Flares   | -    |        |        | -    |       |        |         |         |       | 0.05              | 0     |         | 0      |          |        |        |       |         |       |         |         |

Numbers in italics have exceptions for some sectors, see Table B41.

Source: Finstad et al. (2002a).

#### Table B42. Exceptions from the general factors for POPs. Stationary combustion

| Emission<br>factor (g<br>PAH/tonne) | Emission factor<br>(g PAH-<br>OSPAR/tonne) | Emission factor<br>(g PAH-4/tonne) | Emission factor<br>(ug<br>dioxin/tonne) | Fuel    |                                  | Source       | Sectors           |
|-------------------------------------|--------------------------------------------|------------------------------------|-----------------------------------------|---------|----------------------------------|--------------|-------------------|
| 0.0008                              | 0.0005                                     | •                                  |                                         | V17, 18 | Fuel oils                        | S.03 Boilers | 231000-<br>233720 |
|                                     |                                            |                                    | 0.2                                     | V18, 19 | Heavy distillate, heavy fuel oil | S.03 Boilers | 330000            |
| 0.75                                | 0.2                                        | 0.01                               |                                         | V51     | Municipal waste                  | S.03 Boilers | 234040            |

#### Table B43. Time series for variable emission factors for PAH. Stationary combustion

|           |        |         | 1980-1994                        |                                            |                                    | 1995-                            |                                            |                                    |
|-----------|--------|---------|----------------------------------|--------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------|------------------------------------|
| Sector    | Source | Fuel    | Emission factor<br>(g PAH/tonne) | Emission factor<br>(g PAH-<br>OSPAR/tonne) | Emission factor<br>(g PAH-4/tonne) | Emission factor<br>(g PAH/tonne) | Emission factor<br>(g PAH-<br>OSPAR/tonne) | Emission factor<br>(g PAH-4/tonne) |
| General   | S.03   | V51     | 2.5                              | 0.7                                        | 0.03                               | 0.75                             | 0.2                                        | 0.01                               |
| Courses N |        | (4005)/ | (anlesses at al. (1000)          |                                            |                                    |                                  |                                            |                                    |

Source: NILU/NIVA (1995)/ Karlsson et al. (1992).

### Appendix C

## Activity data and emission figures

StatBank Norway is a service operated by Statistics Norway where you may select scope and content of each table, and then may export the result in various formats to your own PC. For air emissions you find data for:

- Emissions to air, summary data (1973-2005).
- Emissions to air, by source and fuel (1980-2004).

The StatBank is found at:

http://statbank.ssb.no//statistikkbanken/default\_fr.asp?PLanguage=1

Reported air emission data for Norway, and the activity data used in the calculations, is given at the homepage to the European Environment Information and Observation Network (EIONET):

- Data for greenhouse gases reported to the UNFCCC: http://cdr.eionet.eu.int/no/un/UNFCCC/
- Data for long-range transboundary air pollutants reported to the ECE: http://cdr.eionet.eu.int/no/un/CLRTAP/

#### **Appendix D**

## Uncertainty estimates for single sources

#### **Greenhouse gases**

B. Hoem, K. Flugsrud and L-C. Zhang

When this uncertainty analysis was performed, the emission sources 1B1b and 2G were still not included in the emission inventory.

#### **Summary**

The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements. Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC Tier 2 method, as described in (IPCC 2001). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry).

This project has been an update of the uncertainty analysis *Uncertainties in the Norwegian Greenhouse Gas Emission Inventory*, documented in (Rypdal and Zhang 2000), which also include more detailed documentation of the analysis method used, and result discussions. In this note we mainly focus on the changes since (Rypdal and Zhang 2000). This includes new methodology for several source categories as well as revised uncertainty estimates.

During the project we have been in contact with the manufacturing industries, which contribute the main emission sources in the industry sector, and other experts, and have collected information about uncertainty from them.

The results show that the uncertainty in the calculated greenhouse gas emissions for 2004 is  $\pm 6$  per cent. The uncertainty estimate is lower now than earlier analyses have shown. This is partly due to a considerable work made to improve the calculation methodology. It is also partly the uncertainty estimates themselves that have been improved.

#### Level of the analysis

The uncertainty analysis is performed at the most detailed level of IPCC source categories (IPCC 2000). For some sources even a more detailed separation is made, e.g. where different pollutants from a source sector have to be connected to different activity measures, as for example for the source category 6B Waste water, or to be able to consider dependencies between only parts of the source groups, which for example is the case for the source categories 4D1 Direct soil emissions and 4D3 Indirect soil emissions. Energy carriers have been grouped into five main types; oil, gas, coal, waste and bio energy. In Table D7, source category level used in the study is listed.

For some emission sources a separation into activity and emission factors is not possible due to lack of information. Examples are estimates based on measurements, emissions reported by plants (in the cases when the plants have only reported emissions and not activity data and emission factor used), and emissions that are aggregated from sources with diverse methods (for example emissions from road traffic, which is calculated separately in a complex road traffic model). These emissions have been assigned activity equal to 1, and emission factor to be equal to the estimated value. This is possible since the total uncertainty estimate is independent of scale for activity and emission factor.7 Emissions from landfills, HFCs and some other sources have been transferred into the form of emission factor multiplied with activity rate, in spite of the fact that the estimates are based on more complex estimation models (e.g. taking time lag into account and using several activity data and emission factors).

#### Uncertainties in input parameters Emission estimates

In the analysis emission estimates for the different source categories (Table D7) for the years 1990 and 2004 are given from the Norwegian emission inventory. Data published 09.02.2006 is used for all categories, with an exception for LULUCF, where data from the UNFCCC reporting 2005 is used (NIJOS 2005). Because of lack of LULUCF data for 2004 we had to use emission data for 2003 instead. The emission estimates used in the analysis comes from the national GHG emission inventory and is based on Norwegian measurements, literature data or statistical surveys. Uncertainty estimates for some data are based on expert judgements. The uncertainty estimates for many LULUCF categories are not of the same quality as the rest of the inventory. More information about the uncertainty estimates for LULUCF is given in (NIJOS 2005).

#### Standard deviation and probability density

The probability densities used in this study have been divided into four types of model shapes:

- 1. Normal distribution
- 2. Truncated normal distribution
- 3. Lognormal distribution
- 4. Beta distribution

For low uncertainties all the distributions 2-4 above approach the normal distributions. For large uncertainties the normal distribution may lead to negative values. To avoid this, the distributions are when necessary truncated at 0, which means that there is a given probability of the value 0. The lognormal distribution and beta distribution are both asymmetrical distributions, giving a heavier tail of probabilities towards higher values. These two distributions are very similar in shape for low to medium size uncertainties. For higher uncertainties the beta distribution is more flat and the peak in the distribution is more close to the mean value. The beta distribution is, however, only defined for variables taking values between 0 and 1.

<sup>7</sup> We may state the activity in any given unit, as long as the emission factor is stated in the corresponding unit. Examples: tonnes and kg/tonne, Gg and kg/Gg, or, as in this case, unit value and total emissions in kg.

### Activity data

The assessed standard deviations and corresponding probability densities are summarised in Table D1.

| Table D1. | Summary of standard deviation and probability density of activity data |
|-----------|------------------------------------------------------------------------|
|-----------|------------------------------------------------------------------------|

| Table D1.                                  | Summary of standard deviation and pr                                                                                                                                              | obability density of                                 | activity data                                        |                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPCC Source<br>category                    | Pollutant source                                                                                                                                                                  | Standard<br>deviation (2σ). per<br>cent <sup>1</sup> | Density<br>shape                                     | Source/ comment                                                                                                                                                                                                                                                                                                |
| 1A1, 1A2                                   | Coal/coke - general                                                                                                                                                               | 5                                                    | Normal                                               | Expert judgement industry, Norcem (2006)                                                                                                                                                                                                                                                                       |
| 1A4B                                       | Coal/coke - residential                                                                                                                                                           | 20                                                   | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1A4C                                       | Coal/coke - agriculture                                                                                                                                                           | 30                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A1, 1A2,<br>1A4                           | Wood                                                                                                                                                                              | 30                                                   | Lognormal                                            | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1A1A, 1A1B,<br>1A2                         | Gas - general                                                                                                                                                                     | 4                                                    | Normal                                               | Norwegian Petroleum Directorate, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                       |
| 1A1C                                       | Gas - manufacture of solid fuels and other energy industries                                                                                                                      | 1.8                                                  | Normal                                               | Norwegian Petroleum Directorate, NPD (2006)                                                                                                                                                                                                                                                                    |
| 1A4A                                       | Gas - commercial/institutional                                                                                                                                                    | 10                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A4B, 1A4C                                 | Gas - residential,                                                                                                                                                                | 30                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A1, 1A2                                   | agriculture/forestry/fishing<br>Oil - general                                                                                                                                     | 3                                                    |                                                      |                                                                                                                                                                                                                                                                                                                |
| ,                                          |                                                                                                                                                                                   |                                                      | Normal                                               | Spread in data, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                        |
| 1A4A                                       | Oil - commercial/institutional                                                                                                                                                    | 20                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A4B, 1A4C                                 | Oil - residential, agriculture/forestry                                                                                                                                           | 10                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A1A                                       | Waste – general                                                                                                                                                                   | 5                                                    | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1A2F, 1A4A                                 | Waste - other manufacturing,<br>commercial/institutional                                                                                                                          | 30                                                   | Lognormal                                            | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1A3A, 1A3E                                 | Transport fuel - civil aviation, motorized equipment and pipeline                                                                                                                 | 20                                                   | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1A3C                                       | Transport fuel - railway                                                                                                                                                          | 5                                                    | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A3B, 1A3D                                 | Transport fuel - road, navigation                                                                                                                                                 | 10                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1A5A, 1A5B                                 | Military fuel - stationary and mobile                                                                                                                                             | 5                                                    | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 1B1A, 1B2B                                 | Coal mining, extraction of natural gas                                                                                                                                            | 3                                                    | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1B2A                                       | Extraction of oil - transport,<br>refining/storage                                                                                                                                | 3                                                    | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1B2A<br>1B2C                               | Extraction of oil - distribution gasoline                                                                                                                                         | 5                                                    | Normal                                               | Expert judgement, Rypdal and Zhang (2000)<br>See emission factor                                                                                                                                                                                                                                               |
|                                            |                                                                                                                                                                                   | -                                                    | -<br>Normal                                          |                                                                                                                                                                                                                                                                                                                |
| 1B2C                                       | Flaring                                                                                                                                                                           | 4                                                    | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 1B2C                                       | Well testing                                                                                                                                                                      | 30                                                   | Normal                                               | Expeert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                     |
| 2A1                                        | Cement production                                                                                                                                                                 | 0.3                                                  | Normal                                               | Expert judgement industry, Norcem (2006)                                                                                                                                                                                                                                                                       |
| 2A2, 2A3                                   | Lime production, limestone and dolomite use                                                                                                                                       | 3                                                    | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 2B1                                        | Ammonia production                                                                                                                                                                | 3                                                    | Normal                                               | Expert judgement industry, Yara (2006)                                                                                                                                                                                                                                                                         |
| 2B2                                        | Nitric acid production                                                                                                                                                            | -                                                    | -                                                    | See emission factor                                                                                                                                                                                                                                                                                            |
| 2B4                                        | Carbide production - SiC                                                                                                                                                          | 3                                                    | Normal                                               | Expert judgement industry, St. Gobain and<br>Orkla Exolon (2006)                                                                                                                                                                                                                                               |
| 2B4                                        | Carbide production - CaC                                                                                                                                                          | 3                                                    | Normal                                               | Expert judgement, Rypdal and Zhang (2000)                                                                                                                                                                                                                                                                      |
| 2B5                                        | Methanol and plastic production                                                                                                                                                   | 10                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 2C1                                        | Iron and steel production                                                                                                                                                         | 1.23                                                 | Normal                                               | Expert judgement industry, Tinfos (2006)                                                                                                                                                                                                                                                                       |
| 2C2                                        | Ferroalloys production                                                                                                                                                            | -                                                    | -                                                    | See emission factor                                                                                                                                                                                                                                                                                            |
| 2C3                                        | Aluminium production                                                                                                                                                              | 3                                                    | Normal                                               | Expert judgement industry, Norsk Hydro<br>(2006a)                                                                                                                                                                                                                                                              |
| 2C4                                        | SF <sub>6</sub> used in AI and Mg foundries                                                                                                                                       | _                                                    | _                                                    | See emission factor                                                                                                                                                                                                                                                                                            |
| 2C5                                        | Mg production                                                                                                                                                                     | 0.25                                                 | Normal                                               | Expert judgement industry, Norsk Hydro<br>(2006b)                                                                                                                                                                                                                                                              |
| 2C5                                        | Ni production, anodes                                                                                                                                                             | 10                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 203<br>2D2                                 | Carbonic acid, bio protein                                                                                                                                                        | 10                                                   | Normal                                               | Expert judgement, Statistics Norway                                                                                                                                                                                                                                                                            |
| 262<br>2F                                  | Consumption of halocarbons and $SF_6$                                                                                                                                             | -                                                    | -                                                    | See emission factor                                                                                                                                                                                                                                                                                            |
| 3A, 3B, 3C,                                | Solvent and other product use - $CO_2$                                                                                                                                            | -                                                    | -                                                    | See emission factor                                                                                                                                                                                                                                                                                            |
| 3D                                         |                                                                                                                                                                                   |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                |
| 3D                                         | Use of $N_2O$ in anasthesia and as propellant – $N_2O$                                                                                                                            | -                                                    | -                                                    | See emission factor                                                                                                                                                                                                                                                                                            |
| 4A                                         | Enteric fermentation                                                                                                                                                              | 5                                                    | Normal                                               | Expert judgement, Statistics Norway (2006a), Division for agricultural statistics                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                   |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                |
| 4B1-9, 4B13                                | Manure management - CH <sub>4</sub>                                                                                                                                               | 5                                                    | Normal                                               | Expert judgement, Statistics Norway (2006a), Division for agricultural statistics                                                                                                                                                                                                                              |
| 4B1-9, 4B13<br>4B11-12                     | Manure management - CH <sub>4</sub><br>Manure management - N <sub>2</sub> O                                                                                                       | 5<br>24                                              | Normal<br>Normal                                     | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)                                                                                                                                              |
|                                            | Manure management - N <sub>2</sub> O<br>Direct soil emission - fertilizer                                                                                                         | 24                                                   | Normal                                               | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)<br>SFT (1999a)                                                                                                                               |
| 4B11-12                                    | Manure management - N <sub>2</sub> O                                                                                                                                              | 24                                                   | Normal                                               | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)                                                                                                                                              |
| 4B11-12<br>4D1                             | Manure management - N <sub>2</sub> O<br>Direct soil emission - fertilizer                                                                                                         | 24                                                   | Normal                                               | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)<br>SFT (1999a)<br>Rypdal and Zhang (2000)<br>SFT (1999a)                                                                                     |
| 4B11-12<br>4D1<br>4D1                      | Manure management - N <sub>2</sub> O<br>Direct soil emission - fertilizer<br>Direct soil emission - manure                                                                        | 24<br>5<br>20                                        | Normal<br>Normal<br>Normal                           | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)<br>SFT (1999a)<br>Rypdal and Zhang (2000)<br>SFT (1999a)<br>Expert judgement <sup>3</sup> , Statistics Norway and                            |
| 4B11-12<br>4D1<br>4D1<br>4D1<br>4D1<br>4D1 | Manure management - N <sub>2</sub> O<br>Direct soil emission - fertilizer<br>Direct soil emission - manure<br>Direct soil emission - organic soil<br>Direct soil emission - other | 24<br>5<br>20<br>Fac3<br>64                          | Normal<br>Normal<br>Normal<br>Lognormal<br>Lognormal | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)<br>SFT (1999a)<br>Rypdal and Zhang (2000)<br>SFT (1999a)<br>Expert judgement <sup>3</sup> , Statistics Norway and<br>Rypdal and Zhang (2000) |
| 4B11-12<br>4D1<br>4D1<br>4D1               | Manure management - N <sub>2</sub> O<br>Direct soil emission - fertilizer<br>Direct soil emission - manure<br>Direct soil emission - organic soil                                 | 24<br>5<br>20<br>Fac3                                | Normal<br>Normal<br>Normal<br>Lognormal              | Division for agricultural statistics<br>Expert judgement <sup>2</sup> , Statistics Norway (2006a),<br>Statistics Norway (2006b), and Statistics<br>Norway (2006c)<br>SFT (1999a)<br>Rypdal and Zhang (2000)<br>SFT (1999a)<br>Expert judgement <sup>3</sup> , Statistics Norway and                            |

| IPCC Source<br>category | Pollutant source                                                  | Standard<br>deviation (2σ). per<br>cent <sup>1</sup> | Density<br>shape | Source/ comment                             |
|-------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------|---------------------------------------------|
| 4F1                     | Agricultural residue burning                                      | 10                                                   | Normal           | Expert judgement, Statistics Norway         |
| 5A                      | Forest remaining forest                                           | -                                                    | -                | See emission factor                         |
| 5B                      | Cropland remaining cropland, Forest<br>converted to cropland      | -                                                    | -                | See emission factor                         |
| 5C                      | Grassland remaining grassland,<br>Cropland converted to grassland | -                                                    | -                | See emission factor                         |
| 5D1                     | Wetland remaining wetland, peat extraction, soil                  | -                                                    | -                | See emission factor                         |
| 5E1                     | Forest converted to settlements, living biomass                   | -                                                    | -                | See emission factor                         |
| 5P1                     | Forest fertilizer                                                 | -                                                    | -                | See emission factor                         |
| 5Q1, 5Q2                | Forest drainage, Wetland drainage                                 | -                                                    | -                | See emission factor                         |
| 5S1                     | Cropland disturbance                                              | -                                                    | -                | See emission factor                         |
| 5T1, 5T2                | Cropland liming, Other liming (lakes and rivers)                  | 5                                                    | Normal           | Expert judgement, Statistics Norway         |
| 5U1                     | Forest fires                                                      | 20                                                   | Normal           | Expert judgement, Statistics Norway         |
| 6A                      | Solid waste disposal                                              | 20                                                   | Normal           | Statistics Norway (2006d) and SFT (2006a)   |
| 6B                      | Waste water treatment - CH <sub>4</sub>                           | 1                                                    | Normal           | Expert judgement, Statistics Norway         |
| 6B                      | Waste water treatment - N <sub>2</sub> O                          | 25                                                   | Normal           | Expert judgement, Statistics Norway (2006e) |
| 6C                      | Waste incineration                                                | 30                                                   | Normal           | Expert judgement, Statistics Norway         |

<sup>1</sup> Strongly skewed distributions are characterised as *fac3* etc, indicating that 2σ is a factor 3 below and above the mean.
 <sup>2</sup> Population 5% (Statistics Norway 2006a), Nex 15% (Statistics Norway 2006b), distribution AWMS 10% (Statistics Norway 2006c), distribution pasture/ storage 15% (Statistics Norway 2006b)
 <sup>3</sup> N fixation 40% and crop residues 50% (Rypdal and Zhang 2000)
 <sup>4</sup> Population 5% (Statistics Norway 2006a), Nex 15% (Statistics Norway 2006b, distribution pasture/ storage 15% (Statistics Norway 2006b)

|                                                          | / Source/<br>comment                |                                                                  |                                               |                                               |                                               |                                                                      |                                                                                 |                                               |                                                                       |                                              |                                        |
|----------------------------------------------------------|-------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|----------------------------------------|
|                                                          | Density<br>shape                    |                                                                  |                                               |                                               |                                               |                                                                      |                                                                                 |                                               |                                                                       |                                              |                                        |
|                                                          | $(2\sigma)$ . per cent <sup>1</sup> | HFK, PFK or<br>SF6 (specified<br>in<br>source/comment<br>column) |                                               |                                               |                                               |                                                                      |                                                                                 |                                               |                                                                       |                                              |                                        |
|                                                          | Source/ comment                     |                                                                  | Expert judgement,<br>Statistics Norway        |                                               | Expert judgement,<br>Statistics Norway        | Expert judgement,<br>Statistics Norway                               | Spread in data.<br>Expert judgement.<br>IPCC (1997), Rypdal<br>and Zhang (2000) | Expert judgement,<br>Statistics Norway        | Spread in data.<br>Expert judgement,<br>Rypdal and Zhang<br>(2000)    | Expert judgement,<br>Statistics Norway       |                                        |
|                                                          | Density<br>shape                    |                                                                  | Beta                                          |                                               | Beta                                          | Beta                                                                 | Beta                                                                            | Beta                                          | Beta                                                                  | Beta                                         |                                        |
|                                                          | (2ơ), per<br>cent <sup>1</sup>      | N2O                                                              | Fac3                                          |                                               | Fac3                                          | Fac3                                                                 | Fac3                                                                            | Fac3                                          | Fac3                                                                  | Fac3                                         |                                        |
|                                                          | Source/<br>comment                  |                                                                  | Spread in data,<br>Rypdal and<br>Zhang (2000) |                                               | Spread in data,<br>Rypdal and<br>Zhang (2000) | Expert<br>judgement,<br>Statistics<br>Norway                         | Spread in data,<br>Rypdal and<br>Zhang (2000)                                   | Spread in data,<br>Rypdal and<br>Zhang (2000) | Spread in data.<br>Expert<br>judgement,<br>Rypdal and<br>Zhang (2000) | Expert<br>judgement,<br>Statistics<br>Norway | Expert<br>judgement,<br>Rypdal and     |
| emission factors                                         | Density<br>shape                    |                                                                  | Lognormal                                     |                                               | Lognormal                                     | Lognormal                                                            | Truncated N                                                                     | Lognormal                                     | Lognormal                                                             | Lognormal                                    | Lognormal                              |
|                                                          | (2ơ), per<br>cent <sup>1</sup>      | CH4                                                              | Fac2                                          |                                               | Fac2                                          | Fac2                                                                 | Fac2                                                                            | Fac2                                          | Fac2                                                                  | Fac2                                         | Fac2                                   |
| bability density                                         | Source/<br>comment                  |                                                                  | Spread in data,<br>Rypdal and<br>Zhang (2000) | Spread in data,<br>Rypdal and<br>Zhang (2000) |                                               | Norwegian<br>Petroleum<br>Directorate,<br>Rypdal and<br>Zhang (2000) | Spread in data,<br>Rypdal and<br>Zhang (2000)                                   | Spread in data,<br>Rypdal and<br>Zhang (2000) | Spread in data,<br>Rypdal and<br>Zhang (2000)                         | Expert<br>judgement,<br>Statistics<br>Norway | Expert<br>judgement,<br>Statistics     |
| n and prol                                               | Density<br>shape                    |                                                                  | Normal                                        | Normal                                        |                                               | Normal                                                               | Normal                                                                          | Normal                                        | Normal                                                                | Normal                                       | Lognormal                              |
| rd deviatio                                              | (2σ), per<br>cent <sup>1</sup>      | C02                                                              | 2                                             | 7                                             |                                               | 2                                                                    | £                                                                               | 30                                            | ю                                                                     | 5                                            | Fac2                                   |
| Summary of standard deviation and probability density of | Pollutant source                    |                                                                  | Coal/coke - general                           | Coal/coke – iron and<br>steel                 | Wood                                          | Gas - general                                                        | Oil - general                                                                   | Waste - general                               | Transport fuel                                                        | Military fuel - stationary<br>and mobile     | Coal mining, extraction of natural gas |
| Table D2.                                                | IPCC<br>Source<br>category          |                                                                  | 1A1, 1A2B,<br>1A2D,<br>1A2E,<br>1A2E,         | 1A2A                                          | 1A1, 1A2,<br>1A4                              | 1A1, 1A2,<br>1A4                                                     | 1A1, 1A2,<br>1A4                                                                | 1A1, 1A2,<br>1A4                              | 1A3                                                                   | 1A5                                          | 1B1A, 1B2B                             |

**Emission factors** The assigned values and probability densities are shown in Table D2.

206

Γ

| -1                                   |                                                       |                                              |                                                    |                                                        |                                                    |                   |                                                   |                                                 |                                              |                                                                |                                               |                                              |                                                   |                                              |
|--------------------------------------|-------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------|
| Source/<br>comment                   |                                                       |                                              |                                                    |                                                        |                                                    |                   |                                                   |                                                 |                                              |                                                                |                                               |                                              |                                                   |                                              |
| Density<br>shape                     |                                                       |                                              |                                                    |                                                        |                                                    |                   |                                                   |                                                 |                                              |                                                                |                                               |                                              |                                                   |                                              |
| (2 $\sigma$ ). per cent <sup>1</sup> |                                                       |                                              |                                                    |                                                        |                                                    |                   |                                                   |                                                 |                                              |                                                                |                                               |                                              |                                                   |                                              |
| Source/ comment                      |                                                       |                                              |                                                    | As combustion of<br>gas, Rypdal and<br>Zhang (2000)    | Expert judgement,<br>Rypdal and Zhang<br>(2000)    |                   |                                                   |                                                 | Expert judgement<br>industry, Yara<br>(2006) |                                                                |                                               |                                              |                                                   |                                              |
| Density<br>shape                     |                                                       |                                              |                                                    | Beta                                                   | Beta                                               |                   |                                                   |                                                 | Normal                                       |                                                                |                                               |                                              |                                                   |                                              |
| (2σ), per<br>cent <sup>1</sup>       |                                                       |                                              |                                                    | Fac3                                                   | Fac3                                               |                   |                                                   |                                                 | 7                                            |                                                                |                                               |                                              |                                                   |                                              |
| Source/<br>comment                   | Expert<br>judgement,<br>Statistics<br>Norway          |                                              | Expert<br>judgement,<br>Rypdal and<br>Zhang (2000) | As combustion<br>of gas, Rypdal<br>and Zhang<br>(2000) | Expert<br>judgement,<br>Rypdal and<br>Zhang (2000) |                   |                                                   |                                                 |                                              | SFT (2006b)                                                    |                                               | Expert<br>judgement,<br>Statistics<br>Norway |                                                   | Expert<br>judgement,<br>Statistics<br>Norway |
| Density<br>shape                     | Lognormal                                             |                                              | Lognormal                                          | Truncated N                                            | Truncated N                                        |                   |                                                   |                                                 |                                              | Normal                                                         |                                               | Lognormal                                    |                                                   | Lognormal                                    |
| (2σ), per<br>cent <sup>1</sup>       | 40                                                    |                                              | Fac2                                               | Fac2                                                   | Fac2                                               |                   |                                                   |                                                 |                                              | 10                                                             |                                               | Fac2                                         |                                                   | Fac2                                         |
| Source/<br>comment                   | Expert<br>judgement,<br>Statistics<br>Norway          | Expert<br>judgement,<br>Statistics<br>Norway | Expert<br>judgement,<br>Rypdal and<br>Zhang (2000) | As combustion<br>of gas, Rypdal<br>and Zhang<br>(2000) | Expert<br>judgement,<br>Rypdal and<br>Zhang (2000) | IPCC (1997)       | Expert<br>judgement,<br>Statistics<br>Norway      | Expert<br>judgement<br>industry, Yara<br>(2006) |                                              | Expert<br>judgement<br>industry, St.<br>Orkla Exolon<br>(2006) | Spread in data,<br>Rypdal and<br>Zhang (2000) | Expert<br>judgement,<br>Statistics<br>Norway | Expert<br>judgement<br>industry, Tinfos<br>(2006) | Expert<br>judgement,<br>Sintef (2006)        |
| Density<br>shape                     | Lognormal                                             | Lognormal                                    | Lognormal                                          | Normal                                                 | Normal                                             | Normal            | Normal                                            | Normal                                          |                                              | Normal                                                         | Normal                                        | Normal                                       | Normal                                            | Normal                                       |
| (2ơ), per<br>cent <sup>1</sup>       | 40                                                    | 40                                           | Fac2                                               | 10                                                     | 7                                                  | 7                 | 7                                                 | 2                                               |                                              | 10                                                             | 10                                            | 10                                           | 1.4                                               | ε                                            |
| Pollutant source                     | Extraction of oil -<br>transport,<br>refining/storage | Extraction of oil -<br>distribution gasoline | Venting                                            | Flaring                                                | Well testing                                       | Cement production | Lime production,<br>limestone and dolomite<br>use | Ammonia production                              | Nitric acid production                       | Carbide production - SiC                                       | Carbide production - CaC                      | Methanol and plastic<br>production           | Iron and steel production                         | Ferroalloys production                       |
| e<br>Dry                             |                                                       | 1B2A                                         | 1B2C                                               | 1B2C                                                   | o                                                  | 2A1               | , 2A3                                             | 2B1                                             | 2B2                                          | 2B4                                                            | 2B4                                           |                                              |                                                   | 2C2                                          |

#### The Norwegian Emission Inventory 2008

| IPCC<br>Source<br>category | Pollutant source                                                              | (2σ), per<br>cent <sup>1</sup> | Density<br>shape | Source/<br>comment                                                       | (2σ), per<br>cent <sup>1</sup> | Density<br>shape | Source/<br>comment                           | (2ơ), per<br>cent <sup>1</sup> | Density<br>shape | Source/ comment                        | (2σ). per cent <sup>1</sup> | Density<br>shape | Source/<br>comment                                                                       |
|----------------------------|-------------------------------------------------------------------------------|--------------------------------|------------------|--------------------------------------------------------------------------|--------------------------------|------------------|----------------------------------------------|--------------------------------|------------------|----------------------------------------|-----------------------------|------------------|------------------------------------------------------------------------------------------|
| 2C3                        | Aluminium production                                                          | 10                             | Normal           | International<br>Aluminium<br>Institute (IAI),<br>Norsk Hydro<br>(2006ª) |                                |                  |                                              |                                |                  |                                        | 20                          | Normal           | Apply to PFK.<br>Expert<br>judgement<br>industry,<br>Norsk Hydro<br>(2006a)              |
| 2C4                        | SF6 used in Al and Mg<br>foundries                                            |                                |                  |                                                                          |                                |                  |                                              |                                |                  |                                        | 0.25                        | Normal           | Apply to SF <sub>6</sub> .<br>Expert<br>judgement<br>industry,<br>Norsk Hydro<br>(2006b) |
| 2C5                        | Mg production, Ni<br>production, anodes                                       | 10                             |                  | Expert<br>judgement,<br>Statistics<br>Norway                             |                                |                  |                                              |                                |                  |                                        |                             |                  |                                                                                          |
| 2D2                        | Carbonic acid, bio protein                                                    | 10                             | Normal           | Expert<br>judgement,<br>Statistics<br>Norway                             |                                |                  |                                              |                                |                  |                                        |                             |                  |                                                                                          |
| 2F                         | Consumption of HFK                                                            |                                |                  |                                                                          |                                |                  |                                              |                                |                  |                                        | 50                          | Lognormal        | Apply to HFK.<br>Expert<br>judgement,<br>Statistics<br>Norway                            |
| 2F                         | Consumption of PFK                                                            |                                |                  |                                                                          |                                |                  |                                              |                                |                  |                                        | 20                          |                  | Apply to PFK.<br>Expert<br>judgement,<br>Statistics<br>Norway                            |
| 2F                         | Consumption of SF <sub>6</sub>                                                |                                |                  |                                                                          |                                |                  |                                              |                                |                  |                                        | 60                          | Lognormal        | Apply to SF6.<br>Expert<br>judgement,<br>Statistics<br>Norway                            |
| 3A, 3B,3C,<br>3D           | Solvent and other product use - CO <sub>2</sub>                               | 30                             | Normal           | Rypdal and<br>Zhang (2001)                                               |                                |                  |                                              |                                |                  |                                        |                             |                  |                                                                                          |
| 3D                         | Use of N <sub>2</sub> O in anasthesia<br>and as propellant – N <sub>2</sub> O |                                |                  |                                                                          |                                |                  |                                              | 10                             | Normal           | Expert judgement,<br>Statistics Norway |                             |                  |                                                                                          |
| 4A1, 4A3                   | Enteric fermentation -<br>cattle and sheep                                    |                                |                  |                                                                          | 25                             | Normal           | Expert<br>judgement,<br>UMB (2006)           |                                |                  |                                        |                             |                  |                                                                                          |
| 4A4-10                     | Enteric fermentation -<br>other animal                                        |                                |                  |                                                                          | 25                             | Normal           | IPCC (1997)                                  |                                |                  |                                        |                             |                  |                                                                                          |
| 4B1-9,<br>4B13             | Manure management -<br>CH₄                                                    |                                |                  |                                                                          | 25                             | Normal           | IPCC (1997)                                  |                                |                  |                                        |                             |                  |                                                                                          |
| 4B11-12                    | Manure management -<br>N <sub>2</sub> O                                       |                                |                  |                                                                          |                                |                  |                                              | Fac2                           | Lognormal        | IPCC (1997)                            |                             |                  |                                                                                          |
| 4D1<br>4D2                 | Direct soil emission<br>Animal production                                     |                                |                  |                                                                          |                                |                  |                                              | Fac5<br>Fac2                   | Lognormal        | IPCC (2001)<br>IPCC (2001)             |                             |                  |                                                                                          |
| 4D3                        | Indirect soil emission                                                        |                                |                  |                                                                          |                                |                  |                                              |                                |                  | IPCC (1997)                            |                             |                  |                                                                                          |
| 4F1                        | Agricultural residue<br>burning                                               |                                |                  |                                                                          | Fac2                           | Lognormal        | Expert<br>judgement,<br>Statistics<br>Norway | Fac3                           | Beta             | Expert judgement,<br>Statistics Norway |                             |                  |                                                                                          |
| 5A1                        | Forest remaining forest,<br>living biomass                                    | 15                             | Normal           | NIJOS (2005)                                                             |                                |                  |                                              |                                |                  |                                        |                             |                  |                                                                                          |

| Source/<br>comment             |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       |                   |                                   |                      |                                                     |              |
|--------------------------------|---------------------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------|-----------------------------------|----------------------|-----------------------------------------------------|--------------|
| Density<br>shape               |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       |                   |                                   |                      |                                                     |              |
| (2σ). per cent <sup>1</sup>    |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       |                   |                                   |                      |                                                     |              |
| Source/ comment                |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       | NIJOS (2005)      | NIJOS (2005)                      | NIJOS (2005)         |                                                     | NIJOS (2005) |
| Density<br>shape               |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       | Lognormal         | Lognormal                         | Lognormal            |                                                     | Lognormal    |
| (2σ), per<br>cent <sup>1</sup> |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       | Fac5              | Fac10                             | Fac10                |                                                     | 75           |
| Source/<br>comment             |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       |                   |                                   |                      |                                                     | NJJOS (2005) |
| Density<br>shape               |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       |                   |                                   |                      |                                                     | Lognormal    |
| (2σ), per<br>cent <sup>1</sup> |                                                         |                                          |                                         |                                                                                                                                                                                                             |                                                          |                                                 |                                                   |                                          |                                                                               |                                                        |                                                       |                   |                                   |                      |                                                     | 75           |
| Source/<br>comment             | NIJOS (2005)                                            | NIJOS (2005)                             | NIJOS (2005)                            | NIJOS (2005)                                                                                                                                                                                                | NIJOS (2005)                                             | NIJOS (2005)                                    | NIJOS (2005)                                      | NIJOS (2005)                             | NIJOS (2005)                                                                  | NIJOS (2005)                                           | NIJOS (2005)                                          |                   |                                   |                      | NIJOS (2005)                                        |              |
| Density<br>shape               | Lognormal                                               | Lognormal                                | Normal                                  | Normal                                                                                                                                                                                                      | Lognormal                                                | Lognormal                                       | Lognormal                                         | Lognormal                                | Normal                                                                        | Lognormal                                              | Lognormal                                             |                   |                                   |                      | Normal                                              |              |
| (20). per<br>cent <sup>1</sup> | Fac10                                                   | 50                                       | 25                                      | 25                                                                                                                                                                                                          | Fac2                                                     | Fac3                                            | Fac3                                              | Fac2                                     | 25                                                                            | Fac3                                                   | 50                                                    |                   |                                   |                      | 10                                                  |              |
| Pollutant source               | Forest remaining forest,<br>soil, drained organic soils | Forest remaining forest,<br>dead biomass | Forest remaining forest,<br>soil, other | Cropland remaining<br>cropland, horticulture,<br>living biomass, increase.<br>Cropland remaining<br>cropland, horticulture,<br>living biomass, decrease.<br>Forest converted to<br>cropland, living biomass | Cropland remaining<br>cropland, reduced tillage,<br>soil | Cropland remaining<br>cropland, histosols, soil | Grassland remaining<br>grassland, histosols, soil | Cropland converted to<br>grassland, soil | Cropland converted to<br>grassland, horticulture,<br>living biomass, decrease | Wetland remaining<br>wetland, peat extraction,<br>soil | Forest converted to<br>settlements, living<br>biomass | Forest fertilizer | Forest drainage, Wetland drainage | Cropland disturbance | Cropland liming, Other<br>liming (lakes and rivers) | Forest fires |
| IPCC<br>Source<br>category     | 5A2                                                     | 5A3                                      | 5A4                                     | 581, 582,<br>583                                                                                                                                                                                            | 5B4                                                      | 5B5                                             | 5C1                                               | 5C2                                      | 5C3                                                                           | 5D1                                                    | 5E1                                                   | 5P1               | 5Q1, 5Q2                          | 5S1                  | 5T1, 5T2                                            | 5U1          |

| IPCC                      | Pollutant source                                                                                                                                                    | (2a); per       | Density        |                                              | (2σ), per        | Density          | Source/                                                                      | (2σ); per    | Density       | Source/ comment                                 | $(2\sigma)$ . per cent <sup>1</sup> | Density | Source/ |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------------------------------|------------------|------------------|------------------------------------------------------------------------------|--------------|---------------|-------------------------------------------------|-------------------------------------|---------|---------|
| Source<br>category        |                                                                                                                                                                     | cent            | shape          | comment                                      | cent             | shape            | comment                                                                      | cent         | shape         |                                                 |                                     | shape   | comment |
| 6A                        | Solid waste disposal                                                                                                                                                |                 |                |                                              | 30               | Lognormal        | SFT (2006a)                                                                  |              |               |                                                 |                                     |         |         |
| 68                        | Waste water treatment -<br>CH <sub>4</sub>                                                                                                                          |                 |                |                                              | 70               | Lognormal        | IPCC (2001)<br>and expert<br>judgement,<br>Statistics<br>Norway <sup>2</sup> |              |               |                                                 |                                     |         |         |
| 6B                        | Waste water treatment -<br>N <sub>2</sub> O                                                                                                                         |                 |                |                                              |                  |                  |                                                                              | 70           | Lognormal     | Expert judgement,<br>Rypdal and Zhang<br>(2000) |                                     |         |         |
| 90                        | Waste incineration                                                                                                                                                  | 30              | Normal         | Expert<br>judgement,<br>Statistics<br>Norway | Fac2             | Lognormal        | Expert<br>judgement,<br>Statistics<br>Norway                                 | Fac3         | Lognormal     | Expert judgement,<br>Statistics Norway          |                                     |         |         |
| <sup>1</sup> Strongly ske | Strongly skewed distributions are characterised as fac2, fac3, fac5 and fac10, indicating that 20 is respectively a factor 2, 3, 5 and 10 below and above the mean. | acterised as fa | c2, fac3, fact | 5 and fac 10, indicati                       | ng that 20 is re | espectively a fa | ictor 2, 3, 5 and 10                                                         | below and ab | ove the mean. |                                                 |                                     |         |         |

2

<sup>2</sup> BOD/ person 30%, Bo 30% (IPCC 2001) and fraction anaerobic treated 55%

#### **Dependencies between parameters**

Some of the input parameters (emission factors and activity data) are for various reasons not independent, that means that their values are dependent (or correlated). The problem of dependencies may be solved by appropriate aggregation of the data or explicitly by modelling. In this work we have partly designed the dataset to reduce the problem with dependencies as well as introduced a number of dependence assumptions into the model. The determination of dependencies is sometimes a difficult task and requires some understanding of the data set and the assumptions it is based on. Initial estimates with variable assumptions have shown that the assumptions on dependencies generally have little effect on the final conclusions on uncertainties. The assumptions of dependencies of data between years are, however, crucial for the determination of trend uncertainty (Rypdal and Zhang 2000).

#### Dependencies between activity data

The activity data are in principle independent. However, the same activity data may be used to estimate more than one source category (e.g. in the agriculture sector). Also the same activity data are used for estimating emissions of more than one pollutant (especially in the case of energy emissions). For the energy sector we are aware of the dependencies between the activity data used, but we have not found a way to handle this in the statistical modelling.

The cases when activity data are assumed dependent in the statistical modelling are:

- Where the same activity data are used to estimate emissions of more than one pollutant.
- The number of domestic animals. The same population data are used for estimation of a) methane from enteric fermentation, b) methane and nitrous oxide from manure management and c) nitrous oxide from agricultural soils
- For estimation of N<sub>2</sub>O from manure management, N<sub>2</sub>O from manure spreading and N<sub>2</sub>O from animal production (pasture) the following dependency estimation has been used for the activity data:
  - > 70 % of emissions dependent on cattle population
  - > 30 % of emissions dependent on cattle population
- For estimation of N<sub>2</sub>O from indirect soil emissions the following dependency estimation has been used for the activity data:
  - ➤ 23 % of emissions dependent on cattle population
  - > 10 % of emissions dependent on cattle population
  - ▶ 67 % of emissions dependent on amount of synthetic fertilizer used

#### Dependencies between emission factors

Where emission factors have been assumed equal, we have treated them as dependent in the analysis.

The following assumptions have been made:

- The CO<sub>2</sub> emission factors for each fuel type are dependent
- The methane and nitrous oxide emission factors from combustion are dependent where they have been assumed equal in the emission inventory model
- In a few cases the emission factors of different pollutants are correlated. That is in cases when CO<sub>2</sub> is oxidised from methane (oil extraction, loading and coal mining).
- For all direct emissions of N<sub>2</sub>O from agricultural soils, except for N<sub>2</sub>O from cultivation of organic soil, the same emission factor is being used, and the sources are dependent.
- There is a dependency between the emission factor used for calculating emissions from cropland liming and other liming.

We know that it also exists dependencies between other sources in LULUCF, e.g. between the activity data in the sources 5A2 Forest remaining forest and 5Q1

*Forest drainage*. But we have no estimates for the uncertainty in activity data, and anyhow the uncertainty in the emission factors is so big that even if the activity data is given an uncertainty it will have a minimal effect on the total uncertainty estimate for the source.

### Dependencies between data in base year and end year

The estimates made for 1990 and 2004 will to a large extent be based on the same data and assumptions.

#### Activity data

The activity data are determined independently in the two years and are in principle not dependent. Correlation could be considered in cases where activity data can not be updated annually or where updates are based on extrapolations or interpolations of data for another year

This implies that we have assumed that errors in activity data are random, hence that systematic method errors are insignificant. It is, however, likely that there is a certain correlation between the activity data as they have been determined using the same methods.

#### Emission factors

Most of the emission factors are assumed unchanged from 1990 and 2004. Those that are not are all based on the same assumptions. This implies that all the emission factors are fully correlated between the two years.

This means that we have assumed that the emission factors assumed unchanged actually are unchanged from the base to end year. In reality it is expected that most emission factors are changing, but the degree of change is usually not known.

#### The statistical modelling

Uncertainty analysis based on probabilistic analysis implies that uncertainties in model inputs are used to propagate uncertainties in model outputs. The result of the uncertainty estimation gives us the range and likelihood of various output values (Cullen and Frey 1999).

Having generated a data set according to the specified parametric simultaneous distribution of the data described in Table D1 and Table D2, we may calculate any desired output defined as a function of the data. This gives us one simulated random realisation of this output, according to its marginal distribution derived from the underlying simultaneous distribution of the data. Independent repetition of the simulation gives an independent sample of the desired output according to its marginal distribution. The size of the sample is given by the number of repeated simulations, and has nothing to do with the size of the original data set. Based on such an independent and identically distributed sample, we may use the sample mean as an estimate of the mean of the output; we may also use the sample standard deviation as an estimate of the standard deviation of the output.

#### **Results of the Tier 2 Uncertainty analysis**

Table D3 to D6 give the results for the uncertainties in the total emissions and trends for the GHG inventory, excluding and including the LULUCF sector.

#### Uncertainties in emission level

The estimated uncertainties of the level of total emissions and in each gas are shown in Table D3 and D4.

| Table D3. Uncertainties in emission level. | Each gas and total GWP weighted emissions. |
|--------------------------------------------|--------------------------------------------|
| Excluding the LULUCF sec                   | tor                                        |

| ity 2σ (per cent of mean)             |
|---------------------------------------|
| · · · · · · · · · · · · · · · · · · · |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
| ty $2\sigma$ (per cent of mean)       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
| - 1                                   |

| Table D4. Uncertainties in emission level. Each gas and total GWP weighted emissions. |  |
|---------------------------------------------------------------------------------------|--|
| Including the LULUCF sector                                                           |  |

| 1990                                                                   | μ (mean)                                                                                  | Fraction of total emissions       | Uncertainty $2\sigma$ (per cent of mean)    |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|
| Total                                                                  | 35 mill. Tonnes                                                                           | 1                                 | 14                                          |
|                                                                        |                                                                                           |                                   |                                             |
| $CO_2$                                                                 | 20 mill. Tonnes                                                                           | 0.56                              | 20                                          |
| CH₄                                                                    | 4.9 mill. Tonnes                                                                          | 0.14                              | 16                                          |
| N <sub>2</sub> O                                                       | 5.0 mill. Tonnes                                                                          | 0.14                              | 59                                          |
| HFC                                                                    | 18 tonnes                                                                                 | 0.00                              | 51                                          |
| PFC                                                                    | 3.4 mill. Tonnes                                                                          | 0.10                              | 20                                          |
| $SF_6$                                                                 | 2.2 mill. Tonnes                                                                          | 0.06                              | 2                                           |
|                                                                        |                                                                                           |                                   |                                             |
|                                                                        |                                                                                           |                                   |                                             |
| 2004                                                                   | μ (mean)                                                                                  | Fraction of total emissions       | Uncertainty $2\sigma$ (per cent of mean)    |
| 2004<br>Total                                                          | μ (mean)<br>34 mill. Tonnes                                                               | Fraction of total emissions       | Uncertainty $2\sigma$ (per cent of mean) 14 |
|                                                                        | • • •                                                                                     |                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     |
|                                                                        | • • •                                                                                     |                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     |
| Total                                                                  | 34 mill. Tonnes                                                                           | 1                                 | 14                                          |
| Total<br>CO <sub>2</sub>                                               | 34 mill. Tonnes<br>23 mill. Tonnes                                                        | 1<br>0.67                         | 14<br>18                                    |
| Total<br>CO <sub>2</sub><br>CH <sub>4</sub>                            | 34 mill. Tonnes<br>23 mill. Tonnes<br>4.8 mill. Tonnes                                    | 1<br>0.67<br>0.14                 | 14<br>18<br>14                              |
| Total<br>CO <sub>2</sub><br>CH <sub>4</sub><br>N <sub>2</sub> O        | 34 mill. Tonnes<br>23 mill. Tonnes<br>4.8 mill. Tonnes<br>4.9 mill. Tonnes                | 1<br>0.67<br>0.14<br>0.14         | 14<br>18<br>14<br>53                        |
| Total<br>CO <sub>2</sub><br>CH <sub>4</sub><br>N <sub>2</sub> O<br>HFC | 34 mill. Tonnes<br>23 mill. Tonnes<br>4.8 mill. Tonnes<br>4.9 mill. Tonnes<br>401 ktonnes | 1<br>0.67<br>0.14<br>0.14<br>0.01 | 14<br>18<br>14<br>53<br>52                  |

The total national emissions of GHG in Norway in 1990 are estimated with an uncertainty of 7 per cent of the mean. The main emission component  $CO_2$  is known with an uncertainty of 3 per cent of the mean. In 2004, the total uncertainty has decreased to 6 per cent of the mean. The highest uncertainty change between 1990 and 2004 is in the uncertainty estimates for the SF<sub>6</sub> emissions, which has increased from 2 to 15 per cent of the mean. However, the SF<sub>6</sub> emissions are strongly reduced. For N<sub>2</sub>O and HFC there are a minor increase in the uncertainty between the years, for CH<sub>4</sub> and PFC a minor decrease, while the uncertainty for CO<sub>2</sub> remained constant.

By including the LULUCF sector the results from the analysis show a total uncertainty of 14 per cent of the mean both in 1990 and in 2004. The doubling of uncertainty is caused mainly by forest biomass and grassland histosoils.

In the uncertainty analysis carried out in the year 2000 (Rypdal and Zhang 2000), the uncertainty for the total national emissions of GHG (LULUCF sector excluded) in 1990 was estimated to be 21 per cent of the mean. In the new analysis the uncertainty estimate is reduced to one third. There are several reasons for the new lower estimate. One reason is that Statistics Norway and the Norwegian Pollution Control Authorities have increased the inventory quality by using higher tiers for some key categories and also improved methodologies for other sources. But the main reason for the reduced uncertainty is that Statistics Norway has collected new and lower uncertainty estimates for some activity data and emission factors that contributed substantially to the total uncertainty in the emission estimate. This means that the total uncertainty of the inventory have not been reduced as much as

the estimates indicates, since it is partly the uncertainty estimates themselves that have been improved. The main reduction lies is in the estimate of the uncertainty for the N<sub>2</sub>O emissions. In 2000 the uncertainty in this components estimate was estimated to 200 per cent of the mean. In this years' analysis the uncertainty estimate is reduced to 57 per cent of the mean, see explanation to this reduction in the paragraph below. For CO<sub>2</sub> the uncertainty estimate is unchanged between the two analyses (3 per cent), while all the other emission components show a decrease in the uncertainty estimates in the new analysis compared to the analysis from 2000.

The main reason for the high uncertainty estimate for the  $N_2O$  emissions in the 2000 analysis was the high uncertainty estimate used for the emission factor used for estimating  $N_2O$  from agricultural soils (2 orders of magnitude). This uncertainty is in the new analysis reduced to an uncertainty of factor 5 for direct soil emission, factor 2 for animal production and factor 3 for indirect soil emission. These new uncertainty estimates are collected from the guidelines IPCC (2001) and IPCC (1997b), where also the emission factor used is collected.

As mentioned above, another reason for the reduced uncertainty is that in the years between the two analyses important inventory improvement work has been carried through. New emission sources have also been included to make the greenhouse gas inventory for Norway more complete, and the inventory is today even more in line with the IPCC Guidelines than the case was in 2000.

#### Uncertainties in emission trend

The estimated uncertainties of the trend of total emissions and each gas are shown in Table D5 and D6.

|                  | ,                                                                                | 5                                        |
|------------------|----------------------------------------------------------------------------------|------------------------------------------|
|                  | Per cent change ((µ <sub>2004</sub> -µ <sub>1990</sub> )*100/µ <sub>1990</sub> ) | Uncertainty (2*σ*100/μ <sub>1990</sub> ) |
| Total            | 10                                                                               | 4                                        |
| CO <sub>2</sub>  | 26                                                                               | 4                                        |
| CH <sub>4</sub>  | -1                                                                               | 11                                       |
| N <sub>2</sub> O | -2                                                                               | 18                                       |
| HFC              | -                                                                                | -                                        |
| PFC              | -74                                                                              | 15                                       |
| SF <sub>6</sub>  | -88                                                                              | 0                                        |
|                  |                                                                                  |                                          |

 Table D5.
 Uncertainty of emission trend. 1990-2004. Excluding the LULUCF sector

| Table D6. | Uncertainty | y of emis | sion tre | nd. 1990-2004 | . Including | g the LUL | UCF sector |  |
|-----------|-------------|-----------|----------|---------------|-------------|-----------|------------|--|
|           | _           |           |          |               |             |           |            |  |

|                  | Per cent change ((µ <sub>2004</sub> -µ <sub>1990</sub> )*100/µ <sub>1990</sub> ) | Uncertainty (2*σ*100/μ <sub>1990</sub> ) |
|------------------|----------------------------------------------------------------------------------|------------------------------------------|
| Total            | -2.1                                                                             | 7                                        |
| CO <sub>2</sub>  | 18                                                                               | 11                                       |
| CH₄              | -1                                                                               | 12                                       |
| N <sub>2</sub> O | -2                                                                               | 20                                       |
| HFC              | -                                                                                | -                                        |
| PFC              | -74                                                                              | 15                                       |
| SF <sub>6</sub>  | -88                                                                              | 0                                        |

The result shows that the increase in the total GHG emissions from 1990 to 2004 is  $10 \pm 4$  per cent when the LULUCF sector is not included. Norway has by the ratification of the Kyoto Protocol obliged to limit the emissions of greenhouse gases in the period 2008-2012 to 1 per cent over the emissions in 1990 after trading with CO<sub>2</sub> quotas and the other Kyoto mechanisms is taken into account. It is important to keep in mind that the emission figures reported in connection to the Kyoto Protocol has an uncertainty connected to the reported values.

In (Rypdal and Zhang 2000) the increase from 1990 to 2010 (in a given projection scenario) was  $21 \pm 4$  per cent. It is reasonable that the emission increase was higher in the 2000 analysis, since it was estimated for a longer period.

With the sector LULUCF included in the calculations there has been a decrease in the total trend uncertainty with  $-2 \pm 7$  per cent.

**Source category level used in the analysis** Source category level used in the analysis is listed in Table D7.

| Table D7. | Source category level used in the analysis |
|-----------|--------------------------------------------|
|-----------|--------------------------------------------|

| IPCC              | Source Category                                               | Pollutant source                              |
|-------------------|---------------------------------------------------------------|-----------------------------------------------|
| 1A1A              | Public electricity and heat prod                              | General fuel combustion- Coal/coke            |
| 1A1A              | Public electricity and heat prod                              | General fuel combustion- Wood                 |
| 1A1A              | Public electricity and heat prod                              | General fuel combustion- Gas                  |
| 1A1A              | Public electricity and heat prod                              | General fuel combustion- Oil                  |
| 1A1A              | Public electricity and heat prod                              | General fuel combustion- Waste                |
| 1A1B              | Petroleum refining                                            | General fuel combustion- Gas                  |
| 1A1B              | Petroleum refining                                            | General fuel combustion- Oil                  |
| 1A1C              | Manufacture of solid fuels and other energy                   | General fuel combustion- Gas                  |
| 1A1C              | Manufacture of solid fuels and other energy                   | General fuel combustion- Oil                  |
| 1A2A              | Iron and steel                                                | General fuel combustion- Coal/coke            |
| 1A2A              | Iron and steel                                                | General fuel combustion- Wood                 |
| 1A2A              | Iron and steel                                                | General fuel combustion- Gas                  |
| 1A2A              | Iron and steel                                                | General fuel combustion- Oil                  |
| 1A2A              | Non-ferrous metal                                             | General fuel combustion- Coal/coke            |
| 1A2B              | Non-ferrous metal                                             | General fuel combustion- Wood                 |
|                   |                                                               |                                               |
| 1A2B              | Non-ferrous metal                                             | General fuel combustion- Gas                  |
| 1A2B              | Non-ferrous metal                                             | General fuel combustion- Oil                  |
| 1A2C              | Chemicals                                                     | General fuel combustion- Wood                 |
| 1A2C              | Chemicals                                                     | General fuel combustion- Gas                  |
| 1A2C              | Chemicals                                                     | General fuel combustion- Oil                  |
| 1A2D              | Pulp, paper, print                                            | General fuel combustion- Coal/coke            |
| 1A2D              | Pulp, paper, print                                            | General fuel combustion- Wood                 |
| 1A2D              | Pulp, paper, print                                            | General fuel combustion- Gas                  |
| 1A2D              | Pulp, paper, print                                            | General fuel combustion- Oil                  |
| 1A2E              | Food processing, beverages, tobacco                           | General fuel combustion- Coal/coke            |
| 1A2E              | Food processing, beverages, tobacco                           | General fuel combustion- Wood                 |
| 1A2E              | Food processing, beverages, tobacco                           | General fuel combustion- Gas                  |
| 1A2E              | Food processing, beverages, tobacco                           | General fuel combustion- Oil                  |
| 1A2F              | Other                                                         | General fuel combustion- Coal/coke            |
| 1A2F              | Other                                                         | General fuel combustion- Wood                 |
| 1A2F              | Other                                                         | General fuel combustion- Gas                  |
| 1A2F              | Other                                                         | General fuel combustion- Oil                  |
| 1A2F              | Other                                                         | Waste combustion- other manufacturing         |
| 1A3A              | Transport fuel - civil aviation                               | ······g                                       |
| 1A3B              | Transport fuel - road transportation                          |                                               |
| 1A3C              | Transport fuel - railway                                      |                                               |
| 1A3D              | Transport fuel - navigation                                   |                                               |
| 1A3E              | Transport fuel - motorized equipment and pipeline             |                                               |
| 1A4A              | Commercial/institutional                                      | General fuel combustion- Wood                 |
| 1A4A              | Commercial/institutional                                      | Gas combustion- commercial/institutional      |
|                   |                                                               |                                               |
| 1A4A              | Commercial/institutional                                      | General fuel combustion- Oil                  |
| 1A4A              | Commercial/institutional                                      | Waste combustion - commercial/institutional   |
| 1A4B              | Residential                                                   | Coal/coke combustion- residential             |
| 1A4B              | Residential                                                   | General fuel combustion- Wood                 |
| 1A4B              | Residential                                                   | Gas - residential                             |
| 1A4B              | Residential                                                   | General fuel combustion- Oil                  |
| 1A4C              | Agriculture/forestry/fishing                                  | Coal/coke combustion- agriculture             |
| 1A4C              | Agriculture/forestry/fishing                                  | General fuel combustion- Wood                 |
| 1A4C              | Agriculture/forestry/fishing                                  | Gas combustion - agriculture/forestry/fishing |
| 1A4C              | Agriculture/forestry/fishing                                  | General fuel combustion- Oil                  |
| 1A5A              | Military                                                      | Military fuel - stationary                    |
| 1A5B              | Military                                                      | Military fuel - mobile                        |
| 1B1A              | Coal mining, Extraction of natural gas                        |                                               |
| 1B2A              | Extraction of oil - transport                                 |                                               |
| 1B2A              | Extraction of oil - refining/storage                          |                                               |
| 1B2A              | Extraction of oil - distribution gasoline                     |                                               |
| 1B2B              | Coal mining, Extraction of natural gas                        |                                               |
| 1B2C              | Venting                                                       |                                               |
| 1B2C              | Flaring                                                       |                                               |
| 1B2C              | Well testing                                                  |                                               |
| 2A1               | Cement production                                             |                                               |
| 2A2               | Lime production                                               |                                               |
| 2A2<br>2A3        | Lime production                                               |                                               |
| 2A3<br>2B1        | Ammonia production                                            |                                               |
| 2B1<br>2B2        | •                                                             |                                               |
| 282<br>284        | Nitric acid production                                        |                                               |
|                   | Silicium carbide production                                   |                                               |
|                   | Calaium aarhida production                                    |                                               |
| 2B4<br>2B4<br>2B5 | Calcium carbide production<br>Methanol and plastic production |                                               |

| 2C1      | Iron and steel production                                                    |
|----------|------------------------------------------------------------------------------|
| 2C2      | Ferroalloys production                                                       |
| 2C3      | Aluminium production                                                         |
| 2C4      | SF6 used in AI and Mg foundries                                              |
| 2C5      | Mg production                                                                |
| 2C5      | Ni production, anodes                                                        |
| 2D2      | Carbonic acid, bio protein                                                   |
| 2F       | consumption of halocarbons and SF6                                           |
| ЗA       | Paint application                                                            |
| 3B       | Degreasing and dry cleaning                                                  |
| 3C       | Chemical products, Manufacture and processing                                |
| 3D       | Other                                                                        |
| 4A1      | Enteric fermentation - cattle                                                |
| 4A10     | Enteric fermentation - other animal                                          |
| 4A3      | Enteric fermentation - sheep                                                 |
| 4A4      | Enteric fermentation - goat                                                  |
| 4A6      | Enteric fermentation - horse                                                 |
| 4A8      | Enteric fermentation - swine                                                 |
| 4A9      | Enteric fermentation - poultry                                               |
| 4B1      | Manure management - CH4 -cattle                                              |
| 4B11     | Manure management - N2O - Liquid storage                                     |
| 4B12     | Manure management - N2O - solid storage                                      |
| 4B13     | Manure management - CH4 - other animal                                       |
| 4B3      | Manure management - CH4 - sheep                                              |
| 4B4      | Manure management - CH4 -goat                                                |
| 4B6      | Manure management - CH4- horse                                               |
| 4B8      | Manure management - CH4- swine                                               |
| 4B9      | Manure management - CH4- poultry                                             |
| 4D1      | Direct soil emission - Fertilizer                                            |
| 4D1      | Direct soil emission - Manure                                                |
| 4D1      | Direct soil emission- Organic soil                                           |
| 4D1      | Direct soil emission- Other                                                  |
| 4D2      | Animal production                                                            |
| 4D3      | Indirect soil emission- Deposition                                           |
| 4D3      | Indirect soil emission - Leaching, other                                     |
| 4F1      | Burning of straw                                                             |
| 5A1      | Forest remaining Forest, Living biomass                                      |
| 5A2      | Forest remaining Forest, Soil, Drained organic soils                         |
| 5A3      | Forest remaining Forest, Dead biomass                                        |
| 5A4      | Forest remaining Forest, Soil, Other                                         |
| 5B1      | Cropland remaining Cropland, Horticulture, Living biomass, increase          |
| 5B2      | Cropland remaining Cropland, Horticulture, Living biomass, decrease          |
| 5B3      | Forest converted to Cropland, Living biomass                                 |
| 5B4      | Cropland remaining Cropland, Reduced tillage, Soil                           |
| 5B5      | Cropland remaining Cropland, Histosols, Soil                                 |
| 5B6      | Cropland remaining Cropland Erosion of new agriculture land Soil, net change |
| 5C1      | Grassland remaining Grassland, Histosols, Soil                               |
| 5C2      | Cropland converted to Grassland, Soil                                        |
| 5C3      | Cropland converted to Grassland, Horticulture, Living biomass, decrease      |
| 5D1      | Wetland remaining Wetland, Peat extraction, Soil                             |
| 5E1      | Forest converted to Settlements, Living biomass                              |
| 5P1      | Forest Fertilizer                                                            |
| 5Q1      | Forest Drainage                                                              |
| 5Q2      | Wetland Drainage                                                             |
| 5S1      | Cropland Disturbance                                                         |
| 5T1      | Cropland Liming                                                              |
| 5T2      | Other Liming (Lakes and rivers)                                              |
| 5U1      | Forest Fires                                                                 |
| 6A       | Managed waste disposal on land                                               |
| 6B       | Waste water -CH4                                                             |
| 6B<br>6B | Waste water - N2O pipeline                                                   |
| 6B<br>6C | Waste water - N2O plant                                                      |
| 00       | Waste incineration                                                           |

# Reference list for the uncertainty analysis for greenhouse gases performed in 2006

Cullen, A.C, and H.C. Frey (1999): Probabilistic Techniqies in Exposure Assessment. A Handbook for Delaing with Variability and Uncertainty in Models and Inputs. ISBN 0-306-45957-4.

IPCC (1997b): Greenhouse Gas Inventory. Reference Manual. Revised 1996. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3, London: Intergovernmental Panel on Climate Change.

IPCC (2001): Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. J. Penman et. al. (eds.), Hayama, Japan: IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit.

IPCC (2006): Draft 2006 IPCC Guidelines for National Greenhouse Gas Inventories. To be published in spring 2006.

Risk and Policy Analysis. Cambridge University Press. ISBN 0-521-42744-4.

NIJOS (2005): Emissions and removals of greenhouse gases from land use, landuse change and forestry in Norway, NIJOS Report 11/2005, Ås/Oslo: CICERO, Statistics Norway and NIJOS.

Norcem (2006): Email from Lars André Tokheim, January 24 2006

Norsk Hydro (2006a): Email from Halvor Kvande, January 18 2006

Norsk Hydro (2006b): Email from Vidar Ersnes, January 18 2006

NPD (2006): Email from Marta Melhus, January 26 2006

Rypdal, K. and L-C. Zhang (2000): *Uncertainties in the Norwegian Greenhouse Gas Emission Inventory*, Report 2000/13, Statistics Norway.

Rypdal, K. and L-C. Zhang (2001): Uncertainties in Emissions of Long-Range Air Pollutants, Report 2001/37, Statistics Norway.

SFT (1999a): *Evaluation of uncertainty in the Norwegian emission inventory*, Report 99:01 (Author: K. Rypdal), Oslo: Norwegian Pollution Control Authority.

SFT (1999b): Beregninsgmodell for utslipp av metangass fra norske deponier. Historiske og framtidige utslippsmengder. (J.E. Frøyland Jensen, T. Williksen and J. Bartnes). Rapport 99:16. Norwegian Pollution Control Authority.

SFT (2006a): Email from Per Svardal, the Norwegian Pollution Control Authority, January 27 2006

SFT (2006b): Email from Eilev Gjerald, the Norwegian Pollution Control Authority, January 20 2006

Sintef (2006): Email from Bodil Monsen, February 3 2006

Statistics Norway (2006a): Email from Berit Bjørlo, Division for agricultural statistics, January 26 2006

Statistics Norway (2006b): Personal communication with Henning Høie, Division for environmental statistics, Februar 2006

Statistics Norway (2006c): Personal communication with Ole Rognstad, Division for agricultural statistics, Februar 2006

Statistics Norway (2006d): Email from Håkon Skullerud, Division for environmental statistics, January 20 2006

Statistics Norway (2006e): Email from Svein Erik Stave, Division for environmental statistics, February 2 2006

St. Gobain and Orkla Exolon (2006): Email from Svein Haarsaker (Orkla Exolon), January 20 2006

Tinfos (2006): Email from Helga Gustavson, Tinfos Titan & Iron KS, January 26 2006

UMB (2006) : Email from Harald Volden, the Norwegian University of Life Sciences, January 27 2006

Yara (2006): Email from Tore Jensen, January 19 2006

#### Long-range transboundary air pollutants

Source for the uncertainty estimates for long-range transboundary air pollutants is Rypdal and Zhang (2001).

| Table D8.                                       | Summary of expert judgements of uncertainties in point sources |                 |                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| Production type                                 | Number of<br>plants                                            | Pollutant       | Emission determination method and uncertainty evaluation                                                                                                                                                                                                                                                 | Assessment (average) |  |  |  |  |
| Pulp and paper                                  | 6                                                              | SO <sub>2</sub> | Continuous emission measurements and estimations from sulphur<br>content of fuel. Diffuse emissions of sulphur compounds when<br>producing sulphite pulp. The latter has a higher uncertainty than<br>both the measured and estimated stack emissions.                                                   | ±4 %                 |  |  |  |  |
| Oil refineries                                  | 2 (3)                                                          | SO <sub>2</sub> | Continuous emission measurements and estimations from sulphur content of fuel.                                                                                                                                                                                                                           | ± 5 %                |  |  |  |  |
|                                                 |                                                                | NOx             | Based on measurements and calculations.                                                                                                                                                                                                                                                                  | ± 10 %               |  |  |  |  |
|                                                 |                                                                | NMVOC           | Combination of point measurements and calculations. Emissions<br>are variable with possibilities of systematic errors. Emissions from<br>loading of products have lower uncertainty than the fugitive.<br>Differences between the refineries due to different technology,<br>products and operations.    | ± 45 %               |  |  |  |  |
| Petrochemical<br>industries and<br>gas terminal | 4                                                              | NO <sub>x</sub> | Annual measurements and/or calculations                                                                                                                                                                                                                                                                  | ±7%                  |  |  |  |  |
| 0                                               |                                                                | NMVOC           | Several emission points. Difficult to measure properly and high variability. Uncertainty is in any case lower than for the refineries as mostly gas is handled (high demand for security).                                                                                                               | ± 25 %               |  |  |  |  |
| Cement                                          | 2                                                              | SO <sub>2</sub> | Continuous measurements and annual<br>measurements/calculations. High variability as cement plants<br>incinerates special waste.                                                                                                                                                                         | ± 12 %               |  |  |  |  |
|                                                 |                                                                | NO <sub>x</sub> | Continuous measurements and annual<br>measurements/calculations. High variability as cement plants<br>incinerates special waste.                                                                                                                                                                         | ± 12 %               |  |  |  |  |
| Ammonia and fertiliser                          | 2                                                              | NOx             | Continuous/weekly measurements.                                                                                                                                                                                                                                                                          | ±7 %                 |  |  |  |  |
|                                                 |                                                                | $NH_3$          | Several emission points. Several measurements performed each year. Low variability.                                                                                                                                                                                                                      | ± 10 %               |  |  |  |  |
| Silicon carbide<br>(SiC)                        | 3                                                              | SO <sub>2</sub> | Emissions are estimates based on consumption and sulphur<br>content of coke. The sulphur content is measured independently<br>for every delivery. There is, however, uncertainty connected to the<br>end products and degree of oxidation and definition applied, so<br>reporting can seem inconsistent. | ± 20 %               |  |  |  |  |
| Ferroalloys                                     | 16                                                             | SO <sub>2</sub> | Emissions are estimates based on consumption and sulphur<br>content of coke and the sulphur in products. The sulphur content is<br>measured independently for every delivery. The sulphur content of<br>products are measured regularly, but shows small variability.                                    | ±2 %                 |  |  |  |  |
|                                                 |                                                                | NO <sub>x</sub> | Estimates using emission factors. Emission factors are based on measurements. Emission factors are, however, only available for some types of ferroalloys and emissions are not estimated for the others.                                                                                                | ± 10-20 %*           |  |  |  |  |
| Aluminium                                       | 8                                                              | SO <sub>2</sub> | Monthly measurements (covering emissions from stack and ceiling)                                                                                                                                                                                                                                         | ±7%                  |  |  |  |  |
|                                                 |                                                                | NOx             | Emissions are estimated based on emission factors (see Table 4).                                                                                                                                                                                                                                         | -                    |  |  |  |  |
| Waste<br>incineration                           | 8                                                              | SO <sub>2</sub> | Annual representative measurements. Variable emissions due to the waste fraction incinerated.                                                                                                                                                                                                            | ±7 %                 |  |  |  |  |
|                                                 |                                                                | NO <sub>x</sub> | Annual representative measurements.                                                                                                                                                                                                                                                                      | ± 10 %               |  |  |  |  |

\* Additional uncertainty due to possible incomplete reporting.

# Table D9. Summary of standard deviation and probability density of activity data

| SNAP category         | Pollutant source                               | Important for                                                 | Standard deviation (2σ). % | Density<br>shape | Source/Comment         |
|-----------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------|------------------|------------------------|
| 01, 02, 03            | Gas combustion                                 | NO <sub>x</sub>                                               | ± 4                        | Normal           | Directorate of oil and |
| 01, 02, 03, 07,<br>08 | Oil combustion (total)                         | SO <sub>2</sub> , NO <sub>x</sub>                             | ± 3                        | Normal           | gas<br>Spread in data. |
| 0102                  | Waste combustion - Energy<br>industries        | SO <sub>2</sub> , NO <sub>x,</sub> NMVOC                      | ± 5                        | Normal           | Expert judgement       |
| 0202                  | Coal and coke combustion -<br>Residential      | SO <sub>2</sub> , NO <sub>x,</sub> NMVOC                      | ± 20                       | Normal           | Expert judgement       |
| 090201                | Waste combustion - Other sectors               | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC                     | ± 30                       | Lognormal        | Expert judgement       |
| 01, 02, 03            | Wood combustion - All sectors                  | SO <sub>2</sub> , NO <sub>x</sub> NMVOC                       | ± 30                       | Lognormal        | Expert judgement       |
| 01, 03                | Coal and coke combustion-<br>Industry          | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC                     | ± 5                        | Normal           | Spread in data         |
| 07, 08                | Oil, road/off-road/catalytic/non-<br>catalytic | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC,<br>NH <sub>3</sub> | ± 20                       | Normal           | Comparisons of data    |
| 0805                  | Oil combustion - Aviation                      | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC                     | ± 20                       | Normal           | Expert judgement       |
| 0804                  | Oil combustion - Shipping                      | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC                     | ± 10                       | Normal           | Comparisons of data    |
| 0401                  | Refineries (throughput)                        | NMVOC                                                         | ± 3                        | Normal           | Expert judgement       |
| 040301                | Aluminium production                           | NO <sub>x</sub>                                               | ± 3                        | Normal           | Expert judgement       |
| 040302                | Ferroalloy production                          | NO <sub>x</sub>                                               | ± 3                        | Normal           | Expert judgement       |
| 040605                | Bread production                               | NMVOC                                                         | ± 30                       | Normal           | Expert judgement       |
| 040607                | Beer production                                | NMVOC                                                         | ± 10                       | Normal           | Expert judgement       |
| 050202                | Loading of crude oil                           | NMVOC                                                         | ± 3                        | Normal           | Expert judgement       |
| 0505                  | Gasoline distribution                          | NMVOC                                                         | ± 3                        | Normal           | Expert judgement       |
| 0601                  | Solvent use                                    | NMVOC                                                         |                            |                  | See emission factor    |
| 09                    | Waste combustion in small scale                | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC                     | ± 50                       | Lognormal        | Expert judgement       |
| 090201                | Methane incineration (landfills)               | NO <sub>x</sub> , NMVOC                                       | ± 5                        | Normal           | Expert judgement       |
| 090204                | Flaring of natural gas                         | NO <sub>x</sub> , NMVOC                                       | ± 4                        | Normal           | As combustion of ga    |
| 090204                | "Flaring" of crude oil                         | SO <sub>2</sub> , NO <sub>x</sub> , NMVOC                     | ± 10                       | Normal           | Expert judgement       |
| 090203/4              | Other flaring                                  | NO <sub>x</sub> , NMVOC                                       | ± 5                        | Normal           | Expert judgement       |
| 090207                | Incineration of hospital waste                 | NO <sub>x</sub> , NMVOC                                       | ± 20                       | Normal           | Expert judgement       |
| 090901                | Cremation                                      | SO <sub>2</sub> , NO <sub>x</sub> NMVOC                       | ± 20                       | Normal           | Expert judgement       |
| 10                    | Animal population                              | NH <sub>3</sub>                                               | ± 5-10                     | Normal           | Expert judgement       |
| 10                    | Agricultural soils - Treatment of straw        | NH <sub>3</sub>                                               |                            |                  | See emission factor    |
| 1001                  | Agricultural soils - Fertiliser use            | NH <sub>3</sub>                                               | ± 5                        | Normal           | Agriculture authoritie |
| 1009                  | Agricultural soils - Manure use                | NH <sub>3</sub>                                               | ± 20                       | Normal           | Expert judgement       |

| SNAP source category | Pollutant source                                                         | Standard deviation ( $2\sigma$ ). | Density<br>shape | Source/Comment                   |
|----------------------|--------------------------------------------------------------------------|-----------------------------------|------------------|----------------------------------|
| 01, 02, 03           | SO <sub>2</sub> - Oil combustion, general                                | ±1                                | Normal           | Expert judgement. Oil companies  |
| 01, 02, 03           | $SO_2$ - Oil combustion, general $SO_2$ - Oil combustion, heavy fuel oil | ± 1<br>-50 - +100                 | Normal           | Expert judgement. Oil companies  |
| 01, 02, 03           | $SO_2$ - Coal combustion                                                 | -50 - +100                        | Lognormal        | Spread in data                   |
| 01, 03               | $SO_2$ - Wood combustion                                                 | -50 - +100                        | Lognormal        | Spread in data                   |
| 0804                 | $SO_2$ - Oil combustion, domestic                                        | ± 25                              | Normal           | Expert judgement. Oil companies  |
|                      | shipping                                                                 |                                   |                  |                                  |
| 01, 02 (+03)         | NO <sub>x</sub> - Combustion in area sources                             | ± 40-50                           | Normal           | Spread in data                   |
| 0105                 | NO <sub>x</sub> - Combustion off-shore                                   | ± 40                              | Lognormal        | Expert judgement                 |
| 040301               | NO <sub>x</sub> - Aluminium production                                   | -50 - +100                        | Lognormal        | Expert judgement                 |
| 07                   | NO <sub>x</sub> - Road traffic                                           | ± 25-30                           | Normal           | Expert judgement, spread in data |
| 0704/0705            | NO <sub>x</sub> - Motorcycles                                            | ± 40                              | Normal           | Expert judgement, spread in data |
| 0801-02, 0806-09     | NO <sub>x</sub> - Equipment and railways                                 | ± 40                              | Normal           | Spread in data                   |
| 0804                 | NO <sub>x</sub> - Shipping                                               | ± 15                              | Normal           | Spread in data                   |
| 0805                 | NO <sub>x</sub> - Aircraft                                               | ± 20                              | Normal           | EEA (2000)                       |
| 0902                 | NO <sub>x</sub> - Flaring                                                | ± 40                              | Lognormal        | Expert judgement                 |
| 01, 02 (+03)         | NMVOC - Combustion in area sources                                       | ± 40-50                           | Normal           | Spread in data                   |
| 0105                 | NMVOC - Combustion offshore                                              | ± 50                              | Lognormal        | Expert judgement                 |
| 040605/07            | NMVOC- Beer and bread production                                         | -50 - +100                        | Lognormal        | EEA (2000)                       |
| 050201               | NMVOC- Oil loading onshore                                               | ± 30                              | Normal           | Rypdal (1999), Expert judgement  |
| 050202               | NMVOC- Oil loading offshore                                              | ± 40                              | Normal           | Rypdal (1999), Expert judgement  |
| 0505                 | NMVOC - Gasoline distribution                                            | ± 50                              | Lognormal        | EEA (2000)                       |
| 0601                 | NMVOC - Solvent use                                                      | ± 30                              | Normal           | Rypdal (1995a)                   |
| 0701                 | NMVOC - Road traffic (gasoline                                           | ± 40-50                           | Normal           | Expert judgement, spread in data |
|                      | vehicles)                                                                |                                   |                  |                                  |
| 0703                 | NMVOC - Road traffic (diesel                                             | ± 20-30                           | Normal           | Expert judgement, spread in data |
| 0704/0705            | vehicles)<br>NMVOC - Motorcycles                                         | 1.10                              | Normal           | Expert judgement, spread in data |
| 0801-02, 0806-09     | NMVOC - Equipment and railways                                           | ± 40                              | Normal           | Spread in data                   |
| 0804                 | NMVOC - Shipping                                                         | ± 40                              | Normal           | Spread in data                   |
| 0805                 | NMVOC - Shipping<br>NMVOC - Aircraft                                     | ± 50                              | Normal           | EEA (2000)                       |
| 0902                 | NMVOC - Flaring                                                          | ± 25                              |                  | Expert judgement                 |
| 0302                 |                                                                          | ± 50                              | Lognormal        |                                  |
| 07                   | NH <sub>3</sub> - Road traffic                                           | Factor 3                          | Lognormal        | Expert judgement, spread in data |
| 1001                 | NH <sub>3</sub> -Agriculture, fertiliser                                 | ± 20                              | Normal           | Expert judgement                 |
| 1005                 | NH <sub>3</sub> -Agriculture, animal manure                              | ± 30                              | Normal           | Expert judgement                 |
| 10                   | NH <sub>3</sub> -Agriculture, treatment of straw                         | ± 5                               | Normal           | Expert judgement                 |

#### Table D10. Summary of standard deviation and probability density of emission factors

#### Table D11. Uncertainty in emission level of pollutants. 1990, 1998 and 2010

| 1990            | μ (mean) | Relative standard deviation ( $\sigma/\mu$ ) | Uncertainty           | Uncertainty  |
|-----------------|----------|----------------------------------------------|-----------------------|--------------|
|                 | ktonnes  |                                              | $2\sigma$ (% of mean) | 2σ (ktonnes) |
| $SO_2$          | 52.7     | 0.02                                         | 4.0                   | 2            |
| NO <sub>x</sub> | 219.0    | 0.062                                        | 12                    | 27           |
| NMVOC           | 298.4    | 0.09                                         | 18                    | 54           |
| NH₃             | 22.9     | 0.104                                        | 21                    | 5            |
| 1998            | μ (mean) | Relative standard deviation ( $\sigma/\mu$ ) | Uncertainty           | Uncertainty  |
|                 | ktonnes  |                                              | $2\sigma$ (% of mean) | 2σ (ktonnes) |
| SO <sub>2</sub> | 29.8     | 0.021                                        | 4.2                   | 1            |
| NOx             | 224.0    | 0.062                                        | 12                    | 42           |
| NMVOC           | 344.5    | 0.105                                        | 21                    | 72           |
| NH₃             | 27.0     | 0.091                                        | 18                    | 5            |
| 2010*           | μ (mean) | Relative standard deviation ( $\sigma/\mu$ ) | Uncertainty           | Uncertainty  |
|                 | ktonnes  |                                              | $2\sigma$ (% of mean) | 2σ (ktonnes) |
| SO2             | 22.0     | 0.025                                        | 5.0                   | 1            |
| NOx             | 156.0    | 0.062                                        | 12                    | 19           |
| NMVOC           | 194.0    | 0.074                                        | 15                    | 29           |
| NH₃             | 23.0     | 0.105                                        | 21                    | 5            |

\* Projected data with uncertainties as if they were historical.

#### Table D12. Uncertainties in emission trends 1990-1998 and 1990-2010

|                 | Absolute change                         | % change                                                         | Relative standard                           | Uncertainty 2o    | Uncertainty                   |
|-----------------|-----------------------------------------|------------------------------------------------------------------|---------------------------------------------|-------------------|-------------------------------|
|                 | (µ <sub>2010</sub> -µ <sub>1990</sub> ) | ((µ <sub>2010</sub> -µ <sub>1990</sub> )*100/µ <sub>1990</sub> ) | deviation                                   | (absolute change) | $2\sigma$ (%-point of change) |
|                 | (i)                                     |                                                                  | (σ/(µ <sub>2010</sub> -µ <sub>1990</sub> )) |                   |                               |
| 1990-1998       |                                         |                                                                  |                                             |                   |                               |
| SO <sub>2</sub> | -23.0                                   | -43                                                              | -0.04                                       | 1.7               | 3.2                           |
| NO <sub>x</sub> | +4.8                                    | +2                                                               | +3.00                                       | 28                | 13                            |
| NMVOC           | +43.8                                   | +15                                                              | +0.40                                       | 35                | 12                            |
| NH <sub>3</sub> | +4.1                                    | +18                                                              | +0.22                                       | 1.8               | 8.0                           |
| 1990-2010       |                                         |                                                                  |                                             |                   |                               |
| SO <sub>2</sub> | -30.7                                   | -58                                                              | -0.03                                       | 1.8               | 3.4                           |
| NOx             | -62.8                                   | -29                                                              | -0.21                                       | 26.9              | 12                            |
| NMVOC           | -104.9                                  | -35                                                              | -0.18                                       | 38                | 13                            |
| NH <sub>3</sub> | +0.0                                    | 0                                                                | 61.3                                        | 3.1               | 13                            |

\* Projected values with uncertainties as if they were historical.

#### **Appendix E**

### Key category analysis for GHG

This chapter outlines the Tier 2 methodologies used to find which sources are key categories in the Norwegian greenhouse gas emission inventory.

Two different methods are used for the key category analysis. First, the standard method as described in IPCC Good Practice Guidance (IPCC 2001) is used, both at the Tier 1 level and at the Tier 2 level with uncertainties. Second, a sensitivity analysis is performed using the specification of the model for the uncertainty analysis, as described in Rypdal and Zhang 2000). The uncertainty model is presented in Annex II. The discussion focuses primarily on the standard method. The sensitivity analysis is presented as supporting data.

Key categories are identified as the emission sources that add up to 90 per cent of total uncertainty in level and/or trend. This definition of a key category is according to (IPCC 2001). A Tier 2 analysis for the LULUCF sector has also been performed. However, key categories for non-LULUCF sources are based on the analysis without LULUCF.

The key category analysis is performed at the level of IPCC source categories and each GHG from each source category is considered separately with respect to total GWP weighted emissions. The advantage in using a Tier 2 rather than the Tier 1 methodology is that uncertainties are taken into account so the ranking shows where uncertainties can be reduced.

The steps taken to find key categories with respect to level and trend were the determination of uncertainties in input parameters (AD = activity data and EF = emission factors). Uncertainties of activity data and emissions factors were combined to source uncertainty by the error propagation rule

 $U_{source} = \sqrt{U_{AD}^2 + U_{EF}^2}$  (IPCC 2001, equation 6.4).

The next step was the use of sensitivity analysis to identify which parameters in the inventory influence most the total GHG emissions in level and in trend. The standard method does not take correlations into account. This has partly been handled by aggregating sources with the same emission factors. However, sources with similar emission factors in stationary combustion, categories 1A1, 1A2, and 1A4, were treated separately as suggested in the proposed 2006 guidelines. However, correlations due to common activity data for several pollutants have not been taken into account. This may lead to an underestimation of the uncertainty importance for such sources. In the sensitivity analysis, such correlations may be specified in the model. The sensitivity analysis also allows separate treatment of activity data and emission factors.

Compilations of the uncertainty importance elasticity lead to the estimation of uncertainty importance of each input parameter with respect to total level and trend uncertainty. Out of this we get a ranked list of parameters which add up to 90 per cent of total uncertainty in level and trend. The LULUCF key categories come in addition to this.

A summary of the key categories are given in Table E3 for the emissions categories, and a summary for removal key categories are given in Table E4. The results in level and trend from the Tier 1 analysis for emissions sources is in Table E5.

The new uncertainty analysis has caused several changes in the key categories. Several different effects can be distinguished:

- Improved methodology and reduced uncertainty estimates for 4D N<sub>2</sub>O from agriculture has reduced the dominance of this source. Thus, more sources need to be included in order to reach the 90 per cent threshold.
- The energy use sectors (1A) have been treated at a more disaggregated level. The result is that some of the major sources have a lower assessment value. They are still assigned as key, but the reduced dominance has the same effect as the previous point in increasing the total number of key categories.
- Some sources have reduced uncertainty estimates, and their ranks in the analyses are lowered.
- Some sources have increased emissions due to revised methods, and their ranks are higher.

Only one source that was identified as key in the 2005 NIR is absent from the new Tier 2 analysis. The uncertainty estimate for 2C4  $SF_6$  used in Aluminum and Magnesium Foundries is significantly reduced. However, the source is still identified in the Tier 1 analysis.

Several new sources were assigned as key categories. In the Tier 2 analysis, the new sources shown in Table E1 were included.

| 1A1 Energy Industries, Waste                | CO <sub>2</sub>  | level               |
|---------------------------------------------|------------------|---------------------|
| 1A3e Other (snow scooters, boats, motorized | CO <sub>2</sub>  | level (trend at T1) |
| 1A4 Other Sectors, Wood etc.                | CH <sub>4</sub>  | level, trend        |
| 1B2b Natural Gas                            | CH <sub>4</sub>  | trend               |
| 2B4 Carbide Production                      | CO <sub>2</sub>  | trend (level at T1) |
| 2D2 Food and Drink                          | CO <sub>2</sub>  | trend (level at T1) |
| 4B Manure Management                        | CH <sub>4</sub>  | level               |
| 4B Manure Management                        | $N_2O$           | level               |
| 6B Wastewater Handling                      | N <sub>2</sub> O | level               |

Table E1. Summary of new identified emission key categories in the Tier 2 analysis

According to IPCC (2001) it is good practice to give the results at the Tier 2 level if available. However, in the proposed 2006 guidelines it is suggested that good practice reporting should include key categories from both the Tier 1 and Tier 2 analyses. The Tier 1 analysis includes the following sources which were not assigned as key at Tier 2:

| Table E2. | Summary of new identified key categories in the Tier 1 analysis   |
|-----------|-------------------------------------------------------------------|
|           | outliniary of new identified key categories in the rier ranarysis |

| 1A1 Energy Industries, Coal/coke                         | CO <sub>2</sub> | level, trend |
|----------------------------------------------------------|-----------------|--------------|
| 1A1 Energy Industries, Oil                               | CO <sub>2</sub> | level, trend |
| 1A2 Manufacturing Industries and Construction, Coal/coke | CO <sub>2</sub> | level, trend |
| 1A4 Other Sectors, Gas                                   | CO <sub>2</sub> | trend        |
| 1A5b Military - Mobile                                   | CO <sub>2</sub> | level, trend |
| 2A1 Cement Production                                    | CO <sub>2</sub> | level        |
| 2B1 Ammonia Production                                   | CO <sub>2</sub> | level        |
| 2C1 Iron and Steel Production                            | CO <sub>2</sub> | level, trend |
| 2C4 $SF_6$ used in Aluminium and Magnesium Foundries     | $SF_6$          | level, trend |

The other differences between the current analysis and Rypdal and Zhang (2000) have no bearings on the conclusions on key categories. There are some differences in ranking and in whether the sources are identified by the level, trend or both analyses.

 $CH_4$  from coal mining - 1B1a - has been designated key in the previous National Inventory Reports. This source is not identified by the quantitative method. It is included because the national emission factor we use is in an order of magnitude less than IPCC's default factors (not shown in the tables).

The sensitivity analysis generally supports the results from the standard key category analysis. Using thresholds for the uncertainty importance at 0.002 for level and 0.01 for trend (Rypdal and Zhang 2000), no sources were identified that were not identified in the standard method. The sensitivity to changes in activity data and emission factors were assessed separately. In general, the uncertainty importance of activity data is lower than that of emission factors.

The analyses have been performed for 1990 and 2004 GHG emission data. The main conclusion is that there are few differences in the result for 1990 compared with 2004.

#### Land-use, Land-use Change and Forestry (LULUCF)

Table E1-E4 shows the results of the Tier 2 key category analysis performed as described in GPG2004<sup>8</sup>. Uncertainties were not determined by a rigid analysis. There are some differences between the two tiers. Tier 1 level analysis does not identify forest drained organic soil, cropland histosoils and forest converted for settlements. The reason is that these categories have large uncertainties. For the trend analysis there are small differences between the two tiers with respect to the LULUCF categories identified, and the trend analysis does not identify any additional LULUCF categories to those identified in the level analysis. Including LULUCF also influences other key categories identified. However, according to GPG2004 the LULUCF key categories are additional to those identified analyzing the inventory excluding LULUCF. In both analyses, forest remaining forest (all three pools) are among the top key categories.

<sup>8</sup> Tier 1 is based on only the size of emissions/removals and estimate their contribution to the level and trend. In the Tier 2 method the contribution is also multiplied with the relative uncertainty (two standard deviations).

| I able   | able E3. Summary of identified emission key categories. Excluding LULUC |                  |                           | . вою numpers are кеу     |                      |   |                       |
|----------|-------------------------------------------------------------------------|------------------|---------------------------|---------------------------|----------------------|---|-----------------------|
|          |                                                                         |                  | Level                     | Level                     | Trend<br>assessment  |   | N-41 - 1              |
|          | Source category                                                         | Gas              | assessment<br>Tier 2 1990 | assessment<br>Tier 2 2004 | Tier 2 1990-<br>2004 |   | Method<br>(Tier) 2004 |
| 4D1      | Direct soil emissions                                                   | N <sub>2</sub> O | 25.80                     | 22.94                     | 11.18                |   | Tier 1a               |
| 1A3b     | Road Transportation                                                     | CO <sub>2</sub>  | 8.34                      | 9.82                      | 4.35                 |   | Tier 2                |
| 1A1      | Energy Industries, Gas                                                  | CO <sub>2</sub>  | 4.53                      | 7.98                      | 11.14                |   | Tier 2                |
| 4D3      | Indirect emissions                                                      | N <sub>2</sub> O | 5.77                      | 5.24                      | 2.15                 |   | Tier 1a               |
| 1B2a     | Oil (incl. oil refineries, gasoline dist                                | CO <sub>2</sub>  | 4.58                      | 4.98                      | 1.03                 |   | Tier 2                |
| 6A       | Solid Waste Disposal on Land                                            | CH <sub>4</sub>  | 6.70                      | 4.94                      | 6.26                 |   | Tier 2                |
| 4A       | Enteric Fermentation                                                    | CH <sub>4</sub>  | 5.05                      | 4.54                      | 1.99                 |   | Tier 1/2***           |
| 1A4      | Other Sectors, Oil                                                      | CO <sub>2</sub>  | 4.33                      | 3.41                      | 3.35                 |   | Tier 2                |
| 1B2c     | Venting and Flaring                                                     | CH <sub>4</sub>  | 1.58                      | 3.20                      | 5.25                 |   | Tier 2                |
| 1A3d     | Navigation                                                              | CO <sub>2</sub>  | 2.05                      | 2.35                      | 0.88                 |   | Tier 2                |
| 2C3      | Aluminium Production                                                    | CO <sub>2</sub>  | 1.51                      | 2.05                      | 1.69                 |   | Tier 2                |
| 2F       | Consumption of Halocarbons and Sulphur Hexafluoride                     | HFCs             | 0.00                      | 1.89                      | 6.25                 |   | Tier 2                |
| 1A3a     | Civil Aviation                                                          | CO <sub>2</sub>  | 1.40                      | 1.80                      | 1.23                 |   | Tier 2                |
| 2C3      | Aluminium Production                                                    | PFCs             | 6.93                      | 1.67                      | 17.88                |   | Tier 2                |
| 1A3b     | Road Transportation                                                     | N <sub>2</sub> O | 0.50                      | 1.65                      | 3.76                 |   | Tier 2                |
| 4D2      | Animal production                                                       | N <sub>2</sub> O | 1.70                      | 1.58                      | 0.52                 |   | Tier 1a               |
| 1A2      | Manufacturing Industries and Construction, Gas                          | CO <sub>2</sub>  | 0.92                      | 1.48                      | 1.82                 |   | Tier 2                |
| 1B2c     | Venting and Flaring                                                     | CO <sub>2</sub>  | 1.64                      | 1.32                      | 1.17                 |   | Tier 2                |
| 1B2a     | Oil (incl. oil refineries, gasoline dist                                | CH <sub>4</sub>  | 0.67                      | 1.32                      | 2.12                 |   | Tier 2                |
| 1A3e     | Other (snow scooters, boats, motorized e                                |                  | 1.12                      | 1.31                      | 0.57                 |   | Tier 2                |
| 2B2      | Nitric Acid Production                                                  | N <sub>2</sub> O | 1.47                      | 1.21                      | 0.94                 |   | Tier 2                |
| 1A4      | Other Sectors, Wood etc.                                                | CH₄              | 0.88                      | 1.12                      | 0.75                 |   | Tier 2                |
| 4B       | Manure Management                                                       | N <sub>2</sub> O | 1.03                      | 0.87                      | 0.59                 |   | Tier 1                |
| 6B       | Wastewater Handling                                                     | N <sub>2</sub> O | 0.69                      | 0.77                      | 0.21                 |   | Tier 1                |
| 2C2      | Ferroalloys Production                                                  |                  | 0.78                      | 0.76                      | 0.09                 |   | Tier 2                |
| 4B       | Manure Management                                                       | CH₄              | 0.77                      | 0.74                      | 0.15                 |   | Tier 2                |
| 1A2      | Manufacturing Industries and Construction, Oil                          | CO <sub>2</sub>  | 0.89                      | 0.61                      | 0.97                 |   | Tier 2                |
| 1A4      | Other Sectors, Oil                                                      | N <sub>2</sub> O | 0.76                      | 0.56                      | 0.69                 |   | Tier 1                |
| 1A1      | Energy Industries, Waste                                                |                  | 0.30                      | 0.51                      | 0.69                 |   | Tier 2                |
| 2D2      | Food and Drink                                                          | CO <sub>2</sub>  | 0.10                      | 0.31                      | 0.70                 |   | Tier 1/2              |
| 1B2b     | Natural Gas                                                             | CH <sub>4</sub>  | 0.02                      | 0.24                      | 0.72                 |   | Tier 2                |
| 2B4      | Carbide Production                                                      |                  | 0.02                      | 0.10                      | 1.10                 | ╞ | Tier 2                |
| 2A1      | Cement *                                                                |                  | 0.42                      | 0.10                      | 1.10                 | - | Tier 2                |
| 2B1      | Ammonia Production *                                                    |                  |                           |                           |                      | - | Tier 2                |
| 1B1a     | Coal Mining and Handling **                                             | CH <sub>4</sub>  |                           |                           |                      | - | Tier 2                |
|          | Capture and storage **                                                  |                  |                           |                           |                      | ╞ | CS (Tier 2)           |
| * Identi | fied as key category because of large contribution to the total emi     |                  | ier 1).                   | 1                         |                      | L | 30 (1012)             |

#### Table E3. Summary of identified emission key categories. Excluding LULUCF. Bold numbers are key

\* Identified as key category because of large contribution to the total emissions (Tier 1). \*\* Defined as key category from qualitative criteria \*\*\* Tier 2 used for the significant animal groups

#### Table E4. Summary of identified LULUCF key categories Tier 2. Bold numbers are key

| IPCC C | IPCC Category                                                   |                 | Gas Level assessment |       | Trend                   | Method      |
|--------|-----------------------------------------------------------------|-----------------|----------------------|-------|-------------------------|-------------|
|        |                                                                 |                 | 1990                 | 2004  | assessment<br>1990-2004 | (Tier) 2004 |
| 5A1    | Forest land remaining forest land, living biomass, other        | CO <sub>2</sub> | 11.53                | 19.27 | 32.48                   | Tier 3      |
| 5C1    | Grassland remaining grassland, soils, histosols                 | CO <sub>2</sub> | 13.51                | 11.66 | 6.26                    | Tier 2*     |
| 5A1    | Forest land remaining forest land, soils                        | CO <sub>2</sub> | 6.34                 | 5.09  | 1.81                    | Tier 3      |
| 5A1    | Forest land remaining forest land, dead biomass, other          | CO <sub>2</sub> | 2.52                 | 2.28  | 1.46                    | Tier 3      |
| 5A1    | Forest land remaining forest land, soils, drained organic soils | CO <sub>2</sub> | 2.38                 | 2.17  | 1.44                    | Tier 1      |
| 5B1    | Cropland remaining cropland, histosols, soils                   | CO <sub>2</sub> | 1.50                 | 1.30  | 0.70                    | Tier 2      |
| 5E2    | Forest converted to Settlements, Living biomass                 | CO <sub>2</sub> | 0.68                 | 0.47  | 0.05                    | Tier 3      |

#### Table E5. Summary of identified key categories Tier 1. Excluding LULUCF

|      | Source category                                      | Gas              | Level<br>assess-<br>ment tier<br>1 1990 | Level<br>assess-<br>ment tier<br>1 2004 | Cumulative<br>assess-<br>ment 2004 | Key<br>cat.<br>tier 1<br>any<br>year | Key<br>cat.<br>tier 1<br>1990 | Key<br>cat.<br>tier 1<br>2004 |
|------|------------------------------------------------------|------------------|-----------------------------------------|-----------------------------------------|------------------------------------|--------------------------------------|-------------------------------|-------------------------------|
| 1A1  | Energy Industries, Gas                               | CO <sub>2</sub>  | 12.28                                   | 21.22                                   | 21.22                              | 1                                    | 1                             | 1                             |
| 1A3b | Road Transportation                                  | CO <sub>2</sub>  | 15.77                                   | 18.21                                   | 39.43                              | 1                                    | 1                             | 1                             |
| 1A4  | Other Sectors, Oil                                   | CO <sub>2</sub>  | 8.20                                    | 6.32                                    | 45.75                              | 1                                    | 1                             | 1                             |
| 2C2  | Ferroalloys Production                               | CO <sub>2</sub>  | 5.12                                    | 4.94                                    | 50.69                              | 1                                    | 1                             | 1                             |
| 1A3d | Navigation                                           | CO <sub>2</sub>  | 3.87                                    | 4.37                                    | 55.05                              | 1                                    | 1                             | 1                             |
| 2C3  | Aluminium Production                                 | CO <sub>2</sub>  | 2.85                                    | 3.79                                    | 58.85                              | 1                                    | 1                             | 1                             |
| 1A2  | Manufacturing Industries and Construction, Gas       | CO <sub>2</sub>  | 2.24                                    | 3.56                                    | 62.41                              | 1                                    | 1                             | 1                             |
| 4A   | Enteric Fermentation                                 | $CH_4$           | 3.91                                    | 3.45                                    | 65.86                              | 1                                    | 1                             | 1                             |
| 2B2  | Nitric Acid Production                               | N <sub>2</sub> O | 4.14                                    | 3.36                                    | 69.22                              | 1                                    | 1                             | 1                             |
| 1A2  | Manufacturing Industries and Construction, Oil       | CO <sub>2</sub>  | 4.14                                    | 2.80                                    | 72.02                              | 1                                    | 1                             | 1                             |
| 6A   | Solid Waste Disposal on Land                         | CH <sub>4</sub>  | 3.67                                    | 2.65                                    | 74.67                              | 1                                    | 1                             | 1                             |
| 4D1  | Direct soil emissions                                | N <sub>2</sub> O | 2.80                                    | 2.44                                    | 77.12                              | 1                                    | 1                             | 1                             |
| 1B2a | Oil (incl. oil refineries, gasoline dist             | CO <sub>2</sub>  | 2.25                                    | 2.40                                    | 79.52                              | 1                                    | 1                             | 1                             |
| 1B2c | Venting and Flaring                                  | CO <sub>2</sub>  | 3.01                                    | 2.38                                    | 81.90                              | 1                                    | 1                             | 1                             |
| 1A3a | Civil Aviation                                       | CO <sub>2</sub>  | 1.36                                    | 1.72                                    | 83.62                              | 1                                    | 1                             | 1                             |
| 2C3  | Aluminium Production                                 | PFCs             | 6.77                                    | 1.60                                    | 85.22                              | 1                                    | 1                             | 1                             |
| 2A1  | Cement Production                                    | CO <sub>2</sub>  | 1.30                                    | 1.32                                    | 86.54                              | 1                                    | 1                             | 1                             |
| 1A3e | Other (snow scooters, boats, motorized e             | CO <sub>2</sub>  | 1.09                                    | 1.26                                    | 87.80                              | 1                                    | 1                             | 1                             |
| 2B1  | Ammonia Production                                   | CO <sub>2</sub>  | 1.00                                    | 0.90                                    | 88.70                              | 1                                    | 1                             | 1                             |
| 1A1  | Energy Industries, Oil                               | CO <sub>2</sub>  | 0.47                                    | 0.81                                    | 89.51                              | 1                                    | 1                             | 1                             |
| 4D3  | Indirect emissions                                   | N <sub>2</sub> O | 0.84                                    | 0.75                                    | 90.26                              | 1                                    | 1                             | 1                             |
| 2F   | Consumption of Halocarbons and Sulphur Hexafluoride  | HFCs             | 0.00                                    | 0.73                                    | 90.99                              | 1                                    |                               | 1                             |
| 1A2  | Manufacturing Industries and Construction, Coal/coke | CO <sub>2</sub>  | 0.93                                    | 0.70                                    | 91.69                              | 1                                    | 1                             | 1                             |
| 1B2a | Oil (incl. oil refineries, gasoline dist             | $CH_4$           | 0.33                                    | 0.64                                    | 92.32                              | 1                                    |                               | 1                             |
| 2C1  | Iron and Steel Production                            | CO <sub>2</sub>  | 0.40                                    | 0.62                                    | 92.95                              | 1                                    |                               | 1                             |
| 1B2c | Venting and Flaring                                  | CH <sub>4</sub>  | 0.31                                    | 0.61                                    | 93.56                              | 1                                    |                               | 1                             |
| 4B   | Manure Management                                    | CH <sub>4</sub>  | 0.60                                    | 0.56                                    | 94.12                              | 1                                    | 1                             | 1                             |
| 1A5b | Military - Mobile                                    | CO <sub>2</sub>  | 0.79                                    | 0.52                                    | 94.64                              | 1                                    | 1                             | 1                             |
| 2D2  | Food and Drink                                       | CO <sub>2</sub>  | 0.13                                    | 0.42                                    | 95.06                              | 1                                    |                               | 1                             |
| 4D2  | Animal production                                    | N <sub>2</sub> O | 0.45                                    | 0.41                                    | 95.47                              | 1                                    | 1                             |                               |
| 2C4  | SF6 Used in Aluminium and Magnesium Foundries        | SF <sub>6</sub>  | 4.31                                    | 0.37                                    | 95.84                              | 1                                    | 1                             |                               |
|      |                                                      | CO <sub>2</sub>  | 0.41                                    | 0.23                                    | 97.22                              | 1                                    | 1                             |                               |
|      |                                                      | CO <sub>2</sub>  | 0.80                                    | 0.18                                    | 97.83                              | 1                                    | 1                             |                               |

#### Appendix F

# Economic sectors in the Norwegian emission model

The classification is almost identical to that used in the National Accounts. To make the standard sectors more appropriate for emission calculation a few changes have been made, e.g. "Private households" is defined as a sector. The classification is aggregated from the Norwegian *Standard Industrial Classification*, SIC2002 (Statistics Norway 2003). The SIC is identical to the European NACE (rev. 1.1) classification up to the four-digit level. A national level has been introduced at the five-digit level.

All sector numbers in the model have six digits. The first two digits refer to the main sectors of the economy: 23 = private sector, 24 = central government, 25 = local government, 33 = private households, and 66 = foreign activity. For clarity, the two first digits are only included for the first sector listed in each main sector in the table below.

The last four digits are approximate SIC codes. The first two of these always correspond to SIC at the two-digit level. (Exceptions: sectors 235000 and 236500 are aggregates of several SIC divisions). For around two thirds of the sectors, all non-zero digits correspond to SIC. The detailed relationship is shown in the following table, where the sectors are listed with the corresponding SIC codes.

| Sector                | SIC codo                    | Sector name                                                                             |
|-----------------------|-----------------------------|-----------------------------------------------------------------------------------------|
| number                | SIC code                    | Sector name                                                                             |
|                       |                             |                                                                                         |
| Agriculture<br>230100 | and forestry<br>01.1-3      | Agriculture                                                                             |
| 0140                  | 01.4-5                      | Services related to agriculture and forestry                                            |
| 0200                  | 02                          | Forestry and logging                                                                    |
|                       |                             |                                                                                         |
| Fishing               |                             |                                                                                         |
| 0510                  | 05.01                       | Fishing                                                                                 |
| 0520                  | 05.02                       | Operation of fish farms                                                                 |
|                       |                             |                                                                                         |
| Energy sec            |                             |                                                                                         |
| 1000                  | 10.1-2                      | Coal mining                                                                             |
| 1110                  | 11.1<br>12                  | Extraction of crude petroleum and natural gas                                           |
| 1200<br>2320          |                             | Mining of uranium and thorium ores                                                      |
| 2320                  | 23.2 part<br>23.3           | Manufacture of refined petroleum products Processing of nuclear fuel                    |
| 2330                  | 11.1                        | Gas terminal                                                                            |
| 2340<br>4010          | 40.110                      | Production of electricity                                                               |
| 4010                  | 40.110                      | Distribution of electricity                                                             |
| 4020                  | 40.2                        | Manufacture and distribution of gas                                                     |
| 4040                  | 40.3                        | Steam and hot water supply                                                              |
|                       |                             |                                                                                         |
| Mining/mar            | nufacturing                 |                                                                                         |
| 1120                  | 11.2                        | Oil drilling                                                                            |
| 1300                  | 13                          | Mining of metal ores                                                                    |
| 1400                  | 14, 10.3                    | Other mining and quarrying                                                              |
| 1510                  | 15.1                        | Production, processing and preserving of meat and meat products                         |
| 1520                  | 15.2                        | Processing and preserving of fish and fish products                                     |
| 1530                  | 15.3                        | Processing and preserving of fruit and vegetables                                       |
| 1540                  | 15.4                        | Manufacture of vegetable and animal oils and fats                                       |
| 1550                  | 15.5                        | Manufacture of dairy products                                                           |
| 1560                  | 15.6                        | Manufacture of grain mill products, starches and starch products                        |
| 1570                  | 15.7                        | Manufacture of prepared animal feeds                                                    |
| 1580                  | 15.8                        | Manufacture of other food products                                                      |
| 1590                  | 15.9                        | Manufacture of beverages                                                                |
| 1600                  | 16                          | Manufacture of tobacco products                                                         |
| 1700                  | 17                          | Manufacture of textiles and textile products                                            |
| Mining/mar<br>1810    | nufacturing (cont.)<br>18.1 | Manufacture of leather clothes                                                          |
| 1820                  | 18.2                        | Manufacture of other wearing apparel and accessories                                    |
| 1830                  | 18.3                        | Dressing and dyeing of fur, manufacture of articles of fur                              |
| 1910                  | 19.1-2                      | Tanning and dressing of leather, manufacture of luggage, handbags, saddlery and harness |
| 1930                  | 19.3                        | Manufacture of footwear                                                                 |
| 2010                  | 20.1                        | Sawmilling and planing of wood, impregnation of wood                                    |
| 2020                  | 20.2                        | Manufacture of particle board, fibre board and other panels and boards                  |
| 2030                  | 20.3                        | Manufacture of builders' carpentry and joinery                                          |
| 2040                  | 20.4-5                      | Manufacture of other products of wood                                                   |
| 2110                  | 21.11                       | Manufacture of pulp                                                                     |
| 2120                  | 21.12                       | Manufacture of paper and paperboard                                                     |
| 2130                  | 21.2                        | Manufacture of articles of paper and paperboard                                         |
| 2210                  | 22.1                        | Publishing                                                                              |
| 2220                  | 22.2                        | Printing and service activities related to printing                                     |
| 2230                  | 22.3                        | Reproduction of recorded media                                                          |
| 2310                  | 23.1                        | Manufacture of coke oven products                                                       |
| 2322                  | 23.2 part                   | Manufacture of asphalt                                                                  |
| 2411                  | 24.11                       | Manufacture of industrial gases                                                         |
| 2412                  | 24.12-13                    | Manufacture of dyes and pigments and other inorganic basic chemicals                    |
| 2415                  | 24.15, 24.2                 | Manufacture of fertilisers, nitrogen compounds and pesticides                           |
|                       |                             |                                                                                         |

| Sector<br>number     | SIC code            | Sector name                                                                                                                   |
|----------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 2416                 | 24.14, 24.16-17     | Manufacture of plastics and synthetic rubber in primary forms, manufacture of other organic basic<br>chemicals                |
| 2430                 | 24.3                | Manufacture of paints and varnishes, printing ink and mastics                                                                 |
| 2440                 | 24.4                | Manufacture of basic pharmaceutical products and pharmaceutical preparations                                                  |
| 2450                 | 24.5                | Manufacture of soap and detergents and toilet preparations                                                                    |
| 2460                 | 24.6                | Manufacture of other chemical products                                                                                        |
| 2470                 | 24.7                | Manufacture of man-made fibres                                                                                                |
| 2500                 | 25                  | Manufacture of rubber and plastic products                                                                                    |
| 2610                 | 26.1                | Manufacture of glass and glass products                                                                                       |
| 2620                 | 26.2-3              | Manufacture of ceramic goods                                                                                                  |
| 2640                 | 26.4,6-8            | Manufacture of other mineral products                                                                                         |
| 2650                 | 26.5                | Manufacture of cement, lime and plaster                                                                                       |
| 2710                 | 27.1-3 except 27.35 | Manufacture of basic iron and steel                                                                                           |
| 2720                 | 27.35               | Manufacture of ferro-alloys                                                                                                   |
| 2730                 | 27.42               | Aluminium production                                                                                                          |
| 2740                 | 27.4 except 27.42   | Other non-ferrous metal production                                                                                            |
| 2750                 | 27.5                | Casting of metals                                                                                                             |
| 2810                 | 28.1-5              | Manufacture of fabricated metal products, except machinery and equipment                                                      |
| 2860                 | 28.6                | Manufacture of cutlery, tools and general hardware                                                                            |
| 2870                 | 28.7                | Manufacture of other metal products                                                                                           |
| 2910                 | 29.1-2              | Manufacture of general purpose machinery                                                                                      |
| 2930                 | 29.3-5              | Manufacture of special purpose machinery                                                                                      |
| 2960                 | 29.6                | Manufacture of weapons and ammunition                                                                                         |
| 2970                 | 29.7                | Manufacture of domestic appliances                                                                                            |
| 3000                 | 30                  | Manufacture of office machinery and computers                                                                                 |
| 3110                 | 31.1-2              | Manufacture of electric motors, generators and transformers, manufacture of electricity<br>distribution and control apparatus |
| 3130                 | 31.3                | Manufacture of insulated wire and cable                                                                                       |
| 3140                 | 31.4-6              | Manufacture of other electrical apparatus and equipment                                                                       |
| 3210                 | 32.1-2              | Manufacture of electronic components and television and radio transmitters                                                    |
| 3230                 | 32.3                | Manufacture of television and radio receivers, sound or video recording apparatus                                             |
| 3310                 | 33.1-3              | Manufacture of medical and precision instruments                                                                              |
| 3340                 | 33.4-5              | Manufacture of optical instruments, photographic equipment, watches and clocks                                                |
| 3400                 | 34                  | Manufacture of motor vehicles and parts and accessories for motor vehicles                                                    |
| 3510                 | 35.1 except 35.114  | Building and repair of ships and boats                                                                                        |
| 3520                 | 35.114              | Building and repair of oil platforms                                                                                          |
|                      | facturing (cont.)   |                                                                                                                               |
| 3530                 | 35.2                | Manufacture and repair of railway and tramway locomotives and rolling stock                                                   |
| 3540                 | 35.3                | Manufacture and repair of aircraft and spacecraft                                                                             |
| 3550                 | 35.4-5              | Manufacture of other transport equipment                                                                                      |
| 3610                 | 36.1                | Manufacture of furniture                                                                                                      |
| 3620                 | 36.2                | Manufacture of jewellery and related articles                                                                                 |
| 3630                 | 36.3-6              | Other manufacturing                                                                                                           |
| 3710                 | 37.1                | Recycling of metal waste and scrap                                                                                            |
| 3720                 | 37.2                | Recycling of non-metal waste and scrap                                                                                        |
| Water supply<br>4100 | <b>/</b> 41         | Collection, purification and distribution of water                                                                            |
| 100                  | 11                  | concerton, purification and distribution of water                                                                             |
| Construction 4500    | 45                  | Construction                                                                                                                  |

| Sector<br>number           | SIC code                       | Sector name                                                                           |
|----------------------------|--------------------------------|---------------------------------------------------------------------------------------|
| Nholesale a                | and retail trade/hotels and re | estaurants                                                                            |
| 5000                       | 50-52                          | Wholesale and retail trade, repair of motor vehicles and personal and household goods |
| 5500                       | 55                             | Hotels and restaurants                                                                |
| _                          |                                |                                                                                       |
| <b>Fransport e</b><br>6010 | <b>tc.</b> 60.1                | Transport via railways                                                                |
| 6020                       | 60.21                          | Tramway and suburban transport, other scheduled passenger land transport              |
| 6030                       | 60.22                          | Taxi operation                                                                        |
| 6040                       | 60.23-24                       | Other land passenger transport, freight transport by road                             |
| 6080                       | 60.3                           | Transport via pipelines                                                               |
| 6110                       | 61.101                         | Ocean transport                                                                       |
|                            |                                |                                                                                       |
| 6130                       | 61.103-109, 61.2               | Inland and coastal water transport                                                    |
| 6202                       | 62 part                        | Domestic air transport                                                                |
| 6203<br>6200               | 62 part                        | International air transport                                                           |
| 6300                       | 63                             | Supporting and auxiliary transport activities                                         |
| 6400                       | 64                             | Post, telecommunications                                                              |
| Financing, i               | nsurance, real estate and bu   | usiness services                                                                      |
| 6500                       | 65-67                          | Financial intermediation, insurance                                                   |
| 7000                       | 70                             | Real estate activities                                                                |
| 7100                       | 71                             | Renting of machinery and equipment                                                    |
| 7200                       | 72                             | Computer and related activities                                                       |
| 7300                       | 73                             | Research and development                                                              |
| 7400                       | 74                             | Other business activities                                                             |
| 8000                       | 80                             | Education                                                                             |
| 8500                       | 85                             | Health and social work                                                                |
| 9000                       | 90                             | Sewage and refuse disposal, sanitation and similar activities                         |
| 9100                       | 91                             | Activities of membership organisations                                                |
| 9200                       | 92                             | Recreational, cultural and sporting activities                                        |
| 9300                       | 93                             | Other service activities                                                              |
| 9500                       | 95                             | Private households with employed persons                                              |
| Control act                |                                |                                                                                       |
| Central gov<br>246300      | 63                             | Supporting and auxiliary transport activities                                         |
| 7300                       | 73                             | Supporting and auxiliary transport activities<br>Research and development             |
| 7400                       | 74                             | Other business activities                                                             |
| 7510                       | 75.1, 75.21, 23, 24, 75.3      | Public administration                                                                 |
| 7520                       | 75.22                          | Defence                                                                               |
| 8000                       | 80                             | Education                                                                             |
| 8500                       | 85                             | Health and social work                                                                |
| 9200                       | 92                             | Other service activities                                                              |
| Local gover                |                                |                                                                                       |
| 257510                     | 75.1, 75.25                    | Public administration                                                                 |
| 8000                       | 80                             | Education                                                                             |
| 8500                       | 85                             | Health and social work                                                                |
| 9000                       | 90                             | Sewage and refuse disposal, sanitation and similar activities                         |
| 9200                       | 92, 93.03                      | Other service activities                                                              |
| Private hou                | seholds                        |                                                                                       |
| 330000                     | n.a.                           | Private household                                                                     |
| -                          | vities in Norway               |                                                                                       |
| 660000                     | n.a.                           | Foreign activities in Norway                                                          |

#### Appendix G

# Source classifications used in the Norwegian emission inventory

| Stationamy compared in                 | -                               |                                        |
|----------------------------------------|---------------------------------|----------------------------------------|
| Stationary combustion                  |                                 |                                        |
| Oil and gas extraction                 | Natural gas                     |                                        |
|                                        | Natural gas<br>Flaring          |                                        |
|                                        | Diesel combustion               |                                        |
|                                        | Gas terminals                   |                                        |
| Manufacturing and mining               | Cas terriniais                  |                                        |
|                                        | Refining                        |                                        |
|                                        | Manufacture of pulp and paper   |                                        |
|                                        | Manufacture of mineral products |                                        |
|                                        | Manufacture of chemicals        |                                        |
|                                        | Manufacture of metals           |                                        |
|                                        | Other manufacturing             |                                        |
| Other industries                       |                                 |                                        |
| Dwellings                              |                                 |                                        |
| Incineration of waste and landfill gas |                                 |                                        |
| Process emissions                      |                                 |                                        |
| Oil and gas extraction                 |                                 |                                        |
|                                        | Venting, leaks, etc.            |                                        |
|                                        | Oil loading at sea              |                                        |
|                                        | Oil loading, on shore           |                                        |
| Monufacturing and mining               | Gas terminals                   |                                        |
| Manufacturing and mining               | Refining                        |                                        |
|                                        | Manufacture of pulp and paper   |                                        |
|                                        | Manufacture of chemicals        |                                        |
|                                        | Manufacture of mineral products |                                        |
|                                        | Manufacture of metals           |                                        |
|                                        |                                 | Iron, steel and ferroalloys            |
|                                        |                                 | Aluminium                              |
|                                        |                                 | Other metals                           |
|                                        | Other manufacturing             |                                        |
| Petrol distribution                    |                                 |                                        |
| Agriculture                            |                                 |                                        |
| Landfill gas                           |                                 |                                        |
| Solvents                               |                                 |                                        |
| Road dust                              |                                 |                                        |
| Other process emissions                |                                 |                                        |
| Mobile combustion                      |                                 |                                        |
| Road traffic                           | Detrolonging                    |                                        |
|                                        | Petrol engines                  | Dessenger sore                         |
|                                        |                                 | Passenger cars<br>Other light vehicles |
|                                        |                                 | Heavy vehicles                         |
|                                        | Diesel engines                  | Theavy vehicles                        |
|                                        |                                 | Passenger cars                         |
|                                        |                                 | Other light vehicles                   |
|                                        |                                 | Heavy vehicles                         |
|                                        | Motorcycles, mopeds             | ,                                      |
|                                        |                                 | Motorcycles                            |
|                                        |                                 | Mopeds                                 |
| Snow scooters                          |                                 |                                        |
| Small boats                            |                                 |                                        |
| Motorized equipment                    |                                 |                                        |
| Railways                               |                                 |                                        |
| Air traffic                            |                                 |                                        |
|                                        | Domestic < 1000 m               |                                        |
| Shinning                               | Domestic > 1000 m               |                                        |
| Shipping                               | Coastal traffic, etc.           |                                        |
|                                        | Fishing vessels                 |                                        |
|                                        | Mobile oil rigs, etc.           |                                        |

| Table G2.                                                            | UNFCCC/CRF and EMEP/NFR source sector categor                             | ies          |                                                                 |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|-----------------------------------------------------------------|
| CRF                                                                  |                                                                           | NFR          |                                                                 |
|                                                                      |                                                                           |              |                                                                 |
| 1A1a                                                                 | Public Electricity and Heat Production                                    | 1A1a         | Public Electricity and Heat Production                          |
| 1A1b                                                                 | Petroleum Refining                                                        | 1A1b         | Petroleum refining                                              |
| 1A1c                                                                 | Manufacture of Solid Fuels and Other Energy                               | 1A1c         | Manufacture of Solid Fuels and Other Energy                     |
| 140-                                                                 | lange and Ota al                                                          | 110-         | Industries                                                      |
| 1A2a                                                                 | Iron and Steel                                                            | 1A2a         | Iron and Steel                                                  |
| 1A2b                                                                 | Non-Ferrous Metals                                                        | 1A2b         | Non-ferrous Metals                                              |
| 1A2c<br>1A2d                                                         | Chemicals                                                                 | 1A2c<br>1A2d | Chemicals                                                       |
| 1A2u<br>1A2e                                                         | Pulp, Paper and Print<br>Food Processing, Beverages and Tobacco           | 1A20<br>1A2e | Pulp, Paper and Print<br>Food Processing, Beverages and Tobacco |
| 1A2e<br>1A2f                                                         | Other (oil drilling, construction, all other manufacturing                | 1A26         | Other                                                           |
|                                                                      | industries)                                                               | 1721         | Other                                                           |
| 1A3a                                                                 | Civil Aviation                                                            |              |                                                                 |
| in tota                                                              |                                                                           | 1A3aii(i)    | Civil Aviation (Domestic, LTO)                                  |
|                                                                      |                                                                           | 1A3aii(ii)   | Civil Aviation (Domestic, Cruise)                               |
| 1A3b                                                                 | Road Transportation                                                       |              |                                                                 |
|                                                                      |                                                                           | 1A3bi        | R.T., Passenger cars                                            |
|                                                                      |                                                                           | 1A3bii       | R.T., Light duty vehicles                                       |
|                                                                      |                                                                           | 1A3biii      | R.T., Heavy duty vehicles                                       |
|                                                                      |                                                                           | 1A3biv       | R.T., Mopeds & Motorcycles                                      |
|                                                                      |                                                                           | 1A3bvi       | R.T., Automobile tyre and brake wear                            |
|                                                                      |                                                                           | 1A3bvii      | R.T., Automobile road abrasion                                  |
| 1A3c                                                                 | Railways                                                                  | 1A3c         | Railways                                                        |
| 1A3d                                                                 | Navigation                                                                | 1A3dii       | National Navigation                                             |
| 1A3e                                                                 | Other (snow scooters, boats, motorized equipment)                         |              |                                                                 |
|                                                                      |                                                                           | 1A3ei        | Pipeline compressors                                            |
|                                                                      |                                                                           | 1A3eii       | Other mobile sources and machinery                              |
| 1A4a                                                                 | Commercial/Institutional                                                  | 1A4a         | Commercial / Institutional                                      |
| 1A4b                                                                 | Residential                                                               |              |                                                                 |
|                                                                      |                                                                           | 1A4bi        | Residential plants                                              |
|                                                                      |                                                                           | 1A4bii       | Household and gardening (mobile)                                |
| 1A4c                                                                 | Agriculture/Forestry/Fishing                                              |              |                                                                 |
|                                                                      |                                                                           | 1A4ci        | Stationary                                                      |
|                                                                      |                                                                           | 1A4cii       | Off-road Vehicles and Other Machinery                           |
|                                                                      |                                                                           | 1A4ciii      | National Fishing                                                |
| 1A5a                                                                 | Military - Stationary                                                     | 1A5a         | Other, Stationary (including Military)                          |
| 1A5b                                                                 | Military - Mobile                                                         | 1A5b         | Other, Mobile (Including military)                              |
| 1B1a                                                                 | Coal Mining                                                               | 1B1a         | Coal Mining and Handling                                        |
| 1B1b                                                                 | Solid Fuel Transformation                                                 | 1B1b         | Solid fuel transformation                                       |
| 1B2aiii                                                              | Transport                                                                 | 1B2ai        | Exploration Production, Transport                               |
| 1B2aiv                                                               | Refining/storage                                                          | 1B2aiv       | Refining / Storage                                              |
| 1B2av                                                                | Distribution of oil products                                              | 1B2av        | Distribution of oil products                                    |
| 1B2b                                                                 | Natural Gas                                                               | 1B2b         | Natural gas                                                     |
|                                                                      |                                                                           | 1B2c         | Venting and flaring                                             |
| 1B2c1iii                                                             | Venting combined                                                          |              |                                                                 |
| 1B2c2i                                                               | Flaring oil                                                               |              |                                                                 |
| 1B2c2ii                                                              | Flaring gas                                                               | 0.1.1        | O and a set Decide attack                                       |
| 2A1<br>2A2                                                           | Cement Production                                                         | 2A1<br>2A2   | Cement Production<br>Lime Production                            |
| 2A2<br>2A3                                                           | Lime Production                                                           | 2A2<br>2A3   | Limestone and Dolomite Use                                      |
| ZAS                                                                  | Limestone and Dolonnie Ose                                                | 2A3<br>2A7   | Other including Non Fuel Mining & Construction                  |
| 2A7.1                                                                | Leca                                                                      | 271          |                                                                 |
| 2A7.1<br>2A7.2                                                       | Rock wool                                                                 |              |                                                                 |
| 2A7.2<br>2A7.41                                                      | Ore                                                                       |              |                                                                 |
| 2B1                                                                  | Ammonia Production                                                        | 2B1          | Ammonia Production                                              |
| 2B2                                                                  | Nitric Acid Production                                                    | 2B2          | Nitric Acid Production                                          |
|                                                                      |                                                                           | 2B4          | Carbide Production                                              |
| 2B4.1                                                                | Silicon carbide                                                           |              |                                                                 |
| 2B4.2                                                                | Calcium carbide                                                           |              |                                                                 |
|                                                                      |                                                                           | 2B5          | Other                                                           |
| 2B5.1                                                                | Methanol                                                                  |              |                                                                 |
| 2B5.2                                                                | Titanium dioxide                                                          |              |                                                                 |
| 2B5.3                                                                | Sulphuric acid                                                            |              |                                                                 |
| 2B5.4                                                                | Plastic                                                                   |              |                                                                 |
| 2B5.5                                                                | Explosives                                                                |              |                                                                 |
|                                                                      |                                                                           | 2C           | Metal Production                                                |
| 2C1                                                                  | Iron and Steel Production                                                 | 1            |                                                                 |
| 2C2                                                                  | Ferroalloys Production                                                    | 1            |                                                                 |
|                                                                      |                                                                           | 1            |                                                                 |
|                                                                      | Aluminium Production                                                      |              |                                                                 |
| 2C3                                                                  | Aluminium Production<br>Magnesium                                         |              |                                                                 |
| 2C3<br>2C5.11                                                        |                                                                           |              |                                                                 |
| 2C3<br>2C5.11<br>2C5.12                                              | Magnesium                                                                 |              |                                                                 |
| 2C3<br>2C5.11<br>2C5.12<br>2C5.13                                    | Magnesium<br>Nickel                                                       |              |                                                                 |
| 2C3<br>2C5.11<br>2C5.12<br>2C5.13<br>2C5.2                           | Magnesium<br>Nickel<br>Zinc                                               | 2D1          | Pulp and Paper                                                  |
| 2C3<br>2C5.11<br>2C5.12<br>2C5.13<br>2C5.2<br>2D1                    | Magnesium<br>Nickel<br>Zinc<br>Anodes                                     | 2D1<br>2D2   | Pulp and Paper<br>Food and Drink                                |
| 2C3<br>2C5.11<br>2C5.12<br>2C5.13<br>2C5.2<br>2D1<br>2D2             | Magnesium<br>Nickel<br>Zinc<br>Anodes<br>Pulp and Paper                   |              |                                                                 |
| 2C3<br>2C5.11<br>2C5.12<br>2C5.13<br>2C5.2<br>2D1<br>2D2<br>2G<br>3A | Magnesium<br>Nickel<br>Zinc<br>Anodes<br>Pulp and Paper<br>Food and Drink |              |                                                                 |

| 3C     | Chemical Products, Manufacture and Processing | 3C   | Chemical Products, Manufacture and Processing     |
|--------|-----------------------------------------------|------|---------------------------------------------------|
| 3D     | Other                                         | 3D   | Other, including products containing HMs and POPs |
| 4A1.1  | Dairy cattle                                  |      |                                                   |
| 4A1.2  | Non-dairy cattle                              |      |                                                   |
| 4A3    | Sheep                                         |      |                                                   |
| 4A4    | Goats                                         |      |                                                   |
| 4A6    | Horses                                        |      |                                                   |
| 4A8    | Swine                                         |      |                                                   |
| 4A9    | Poultry                                       |      |                                                   |
| 4A10.1 | Ostrich                                       |      |                                                   |
| 4A10.2 | Deer                                          |      |                                                   |
| 4A10.3 | Reindeer                                      |      |                                                   |
| 4A10.4 | Fur-bearing animals                           |      |                                                   |
|        | Ū                                             | 4B   | Manure management                                 |
| 4B1.1  | Dairy cattle                                  | 4B1a | Dairy cattle                                      |
| 4B1.2  | Non-dairy cattle                              | 4B1b | Non-dairy cattle                                  |
| 4B3    | Sheep                                         | 4B3  | Sheep                                             |
| 4B4    | Goats                                         | 4B4  | Goats                                             |
| 4B6    | Horses                                        | 4B6  | Horses                                            |
| 4B8    | Swine                                         | 4B8  | Swine                                             |
| 4B9    | Poultry                                       | 4B9  | Poultry                                           |
| 4B10   | Anaerobic                                     | -    | · · · · <b>·</b>                                  |
| 4B11   | Liquid Systems                                |      |                                                   |
| 4B12   | Solid Storage and Dry Lot                     |      |                                                   |
| 4B13   | Other                                         | 4B13 | Other                                             |
| 4D1    | Direct soil emissions                         | 4D1  | Direct soil emissions                             |
| 4D2    | Animal production                             |      |                                                   |
| 4D3    | Indirect emissions                            |      |                                                   |
|        |                                               | 4F   | Field burning of agricultural wastes              |
| 4F1    | Cereals                                       |      | <b>3 · · 3 · · · · · ·</b> · · · ·                |
| 4G     | Other                                         | 4G   | Other                                             |
| 5A     | Changes in forest and woody biomass           | _    |                                                   |
| 5D     | $CO_2$ emissions and removals from soil       |      |                                                   |
| 5E     | Other                                         |      |                                                   |
| 6A     | Solid Waste Disposal on Land                  | 6A   | Solid Waste Disposal on Land                      |
| 6B     | Wastewater Handling                           | 6B   | Wastewater Handling                               |
| 6C     | Waste Incineration                            | 6C   | Waste Incineration                                |
| 6D     | Other                                         | 6D   | Other Waste                                       |

#### Appendix H

# Methane emissions from enteric fermentation in Norwegian's cattle and sheep population. Method description

*By Harald Volden and Silje K. Nes, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences.* 

#### Introduction

An important end product from the ruminal fermentation is methane (CH<sub>4</sub>), and it is well known that the ruminants are important contributors to global warming through CH<sub>4</sub> production. The Norwegian calculation of CH<sub>4</sub> emission from livestock has been based on the Tier 1 method proposed by the Intergovernmental Panel on Climate Change (IPCC). However, the amount of CH<sub>4</sub> produced from enteric fermentation is dependent on several factors, like animal species, production level, quantity and quality of feed ingested and environmental conditions. Therefore, IPCC (IPCC, 2001) has recommended to using more advanced methods when estimating CH<sub>4</sub> gas emission, which take into consideration the influencing factors described above. According to IPCC (IPCC, 2001) the method for estimating CH<sub>4</sub> emission from enteric fermentation requires three basic items:

- No. 1 The livestock population must be divided into animal subgroups, which describe animal type and production level.
- No 2. Estimate the emission factors for each subgroup in terms of kilograms of CH<sub>4</sub> per animal per year.
- No 3. Multiply the subgroup emission factors by the subgroup populations to estimate subgroup emission, and sum across the subgroups to estimate total emission.

Earlier the Tier 1 method, which is a simplified approach based on default emission factors from the literature, has been used. However, according to IPCC (IPCC, 2001) the Tier 2 approach should be used if livestock enteric fermentation represents a large proportion of the country's total emissions or important animal subgroups data is available for more correct estimation CH4 emission. In Norway detailed information of the cattle production is available from the Cow recording System (TINE BA), which gives information of dairy cow production level and feeding. The system also gives information on beef production which includes age at slaughter, carcass weight, and average daily gain. This information will give additional country-specific information of diet composition, feed quality and animal production level and intensity.

The objective of this manuscript is to describe the methods used to estimate the CH4 emissions from enteric fermentation in Norwegian's cattle and sheep production.

#### General emission factor development and animal subgroups

In all animal subgroups the following basic equation are used to calculate the CH<sub>4</sub> emission factor:

 $EF = (GE \cdot Ym \cdot 365 \text{ days/yr}) / 55.65 \text{ MJ/kg CH}_4$ 

Where: EF = emission factor, kg CH<sub>4</sub>/head/yr GE = gross energy intake, MJ/head/day  $Y_m = CH_4$  conversion rate, which is the fraction of gross energy in feed converted to  $CH_4$ .

This equation assumes an emission factor for an entire year (365 days). In some circumstances the animal category may be defined for a shorter period or a period longer than one year and in this case the emission factor will be estimated for the specific period (e.g., lambs living for only 143 days and for beef cattle which are slaughtered after 540 days).

The new methods of calculation require subdividing the cattle and sheep populations by animal type, physiological status (dry, lactating or pregnant) live weight and age, and Table H1 describe the animal categories used in the calculations.

In dairy cows additional information from the Cow Recording System concerning annual milk production and proportion of concentrate in the diet are used. The Cow Recording System also supply information about slaughter age, slaughter weight and average daily weight gain (ADG) for growing cattle, which are utilized in the calculations for growing cattle.

 
 Table H1.
 Categories of cattle and sheep used in the Norwegian calculations of methane emission from enteric fermentation. Animal numbers from 2004

| Categories of cattle and sheep        | Number of animal by year 2004 |  |  |  |  |
|---------------------------------------|-------------------------------|--|--|--|--|
| Dairy cows                            | 315224                        |  |  |  |  |
| Beef cows                             | 51802                         |  |  |  |  |
| Replacement heifers, < one year       | 156712                        |  |  |  |  |
| Replacement heifers, > one year       | 174568                        |  |  |  |  |
| Finisher heifers, < one year          | 3263                          |  |  |  |  |
| Finisher heifers, > one year          | 18410                         |  |  |  |  |
| Finisher bulls, < one year            | 13114                         |  |  |  |  |
| Finisher bulls, > one year            | 106308                        |  |  |  |  |
| Breeding sheep, > one year            | 878405                        |  |  |  |  |
| Breeding sheep, < one year            | 387860                        |  |  |  |  |
| Slaughter lamb, < one year. Jan- May  | 86554                         |  |  |  |  |
| Slaughter lamb, < one year. Jun- Sept | 1010461                       |  |  |  |  |

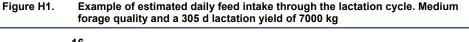
The number of animals in each category is based on the official register of production subsidies. The register covers 90-100 % of the animal populations.

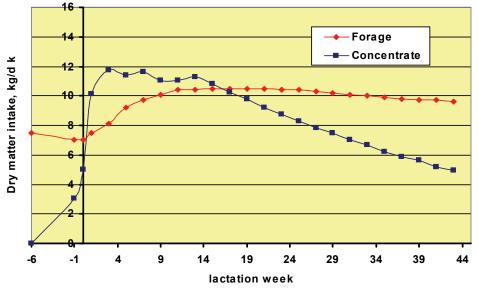
Calculation of methane emission from enteric fermentation in dairy cows and beef cows

To develop equations to calculate CH<sub>4</sub> emission from enteric fermentation in dairy cows the following set of equations were needed:

- In the estimation of CH<sub>4</sub> emission we wanted to take into account the production level and diet composition. Therefore, we used 1.16 million observations from the Cow Recording System to develop standard lactation curves, which were used for calculation of standard feeding rations. The lactation curves were used to predict animal requirement for milk production through the whole lactation cycle. The lactation curve was estimated using a gamma distribution model as described by Wood et al. (1967). Length of the lactation period was standardised to 305 days, which gives a dry period of 60 days. The lactation curves were estimated in 500 kg intervals from 4500 to 9500 kg of milk (305 day lactation yields).
- 2. To calculate feed energy value (gross energy, metabolizable energy and net energy content), animal energy requirement and energy supplementation the Dutch net energy lactation system (NEL) was used (Van Es, 1975). This system has been used as the official energy system in Norway since 1992. Standard feed rations at different lactation yields (500 kg intervals) were calculated using three different forage qualities representing low, medium and high energy content (5.7, 6.1 and 6.6 MJ NEL per kg dry matter, respectively). These qualities represent a normal range in forage qualities found in the Norwegian cattle production. Four different concentrate mixtures were used in

the diet formulation to complement the animal energy requirement at different production levels. The concentrate mixtures are representative of what is used in practical diet formulation in Norway.


3. To estimate total feed intake and ration forage:concentrate ratio in the dry period and trough the lactation period a NDF (Neutral Detergent Fibre) intake system was used (Volden and Kjos, 2003). In the system, effect of daily milk yield and stage of lactation are taken into account when estimating the animal NDF intake capacity (g NDF per kg live weight). Daily feed intake is calculated from the following equation:


| NDFIC                          | ARNEL               |
|--------------------------------|---------------------|
| Intake = $(P)NDFF + (1-P)NDFC$ | (P)NELF + (1-P)NELC |

Where:

NDFIC = NDF intake capacity, g/kg body weight ARNEL =Animal energy requirement, NEL per day P = proportion of forage in the total ration NDFF = forage NDF content, g/kg DM NDFC = concentrate NDF content, g/kg DM NELF = forage NEL content, per kg DM NELC = concentrate NEL content, per kg DM

The point where the animal NDF intake capacity and the animal requirement intersect there is a unique solution, which represent the maximum intake and where the animal requirement is met. Consequently this equation can be used to maximize forage intake and at the same time fulfill the animal requirement at a chosen production level. In the equation the lactation curve information is used to define the animal requirement at different stages of lactation and different 305 d lactation yields. Figure H1 presents an example of estimated feed intake trough the lactation cycle for a lactation yield of 7000 kg. The estimates are based on the medium forage quality.





4. In Norway grass silage is the dominating winter forage, approx. 40 % of the total fed ration calculated on energy basis, and the dairy cows are normally fed indoors for a period of six to eight months. Therefore, when estimating the CH<sub>4</sub> production from enteric fermentation we wanted to use equations are based on grass silage measurements, and that take into account the effect of diet composition on CH<sub>4</sub> production. This is in accordance with the recommendations of IPCC (IPCC, 2001), which suggest to use a Tier 2 or a Tier 3 approach when estimation CH<sub>4</sub> emissions. After evaluating the literature we decided to use two equations published by Mills et al. (2003) and Kirchgessner et al. (1995). In the Mills et al. (2003) equation the effect of feed intake and dietary ADF and starch content are taken into account when predicting daily CH<sub>4</sub> production. The following non linear model is used:

Methane (MJ/d) =  $45.98 - 45.98 \cdot e^{(-(-0.0011 \cdot starch/ADF+0.0045) \cdot ME)}$ 

Where:

Starch = diet starch content, g/kg dry matter' ADF = diet ADF content, g/kg dry matter ME = daily intake of metabolizable energy, MJ

The advantage of this equation is that it takes into account that both the feed intake level (expressed as metabolizable energy) and the ratio between rumen easily degradable carbohydrates and fibre which has shown to affect  $CH_4$  production. Test of this equation has shown that it is robust and it covers both dry cows and cows at different production levels. The second equation we used was the one described by Kirchgessner et al. (1995). The advantage of this equation is that it covers a wide range of cattle production (growing cattle and lactating cattle) and that it includes information about diet composition. This equation also takes into account that  $CH_4$  production is affected by dietary crude fat content:

Methane  $(MJ/d) = (63+79 \cdot CF + 10 \cdot NFE + 26 \cdot CP - 212 \cdot CFat) \cdot 55.65$ 

Where:

CF = crude fibre, kg/d NFE = nitrogen free extracts, kg/d CP = crude protein, kg/d CFat = Crude fat, kg/d

In development of the CH<sub>4</sub> emission equations we used average values of the two equations.

The information from the four points described above were used to calculate daily total feed intake, GE intake, ME intake and  $Y_m$ . Daily feed intake was calculated in 14 d intervals for the different 305 d milk yields and the three different forage qualities. From this data set we developed two multiple regression equations, which were used to calculate average daily GE intake, across stage of lactation, at different 305 d lactation yields and different concentrate proportion in the diet. The reason why we used this approach is that both these variables are available from the Cow Recording System. In the statistical analysis a Proc Mixed procedure was used with stage of lactation as a repeated measurement. GE was predicted from the following equation:

 $GE = 150.8 + 0.0205 \cdot Milk_{305} + 0.3651 \cdot Concentrate prop$ 

Where:

GE = gross energy intake, MJ/day

 $Milk_{305} = 305 d$  lactation yield,

Concentrate\_proportion = proportion of concentrate in the total diet. Calculated on net energy basis. The extent to which feed energy is converted to  $CH_4$  depends on several feeding and animal factors. From the dataset described above it is directly or indirectly possible to take into account several of these factors. The following equation was developed to predict  $Y_m$  for dairy cows:

 $Y_m = 10.0 - 0.0002807 \cdot Milk_{305} - 0.02304 \cdot Concentrate_prop$ 

Where:

 $Y_m$  = methane conversion rate, %

Milk305 = 305 d lactation yield,

Concentrate\_proportion = proportion of concentrate in the total diet. Calculated on net energy basis.

From this equation it can be seen that the proportion of GE converted to  $CH_4$  decrease with increased milk yield and the proportion of concentrate in the diet. Table H2 present examples of GE and  $Y_m$  at different production levels and different proportions of concentrate in the diet.

| Table H2. | Daily intakes of gross energy (GE) and methane conversion rate (Ym) at different |
|-----------|----------------------------------------------------------------------------------|
|           | milk yields (305 d yield) and concentrate proportions in the diet                |

| Milk yield, 305 d | Concentrate proportion, % | GE, MJ/d <sup>1</sup> | Y <sub>m</sub> , % |  |
|-------------------|---------------------------|-----------------------|--------------------|--|
| 5000              | 20                        | 261                   | 8.1                |  |
| 5000              | 50                        | 272                   | 7.4                |  |
| 7000              | 20                        | 302                   | 7.6                |  |
| 7000              | 50                        | 313                   | 6.9                |  |
| 9000              | 20                        | 342                   | 7.0                |  |
| 9000              | 50                        | 354                   | 6.3                |  |
|                   |                           |                       |                    |  |

<sup>1</sup>Feeding in the non lactating period included.

The  $Y_m$  values presented in Table H2 are higher than the standard value suggested in IPCC Tier 2 (IPCC 2001), which is 6.5% for dairy cows. The discrepancies can probably be explained by differences in diet composition, which has a high proportion of forage in Norway, and the relative moderate milk yield compared to other western European countries and North America. Another reason can be differences in the scientific basis for prediction of CH<sub>4</sub> from enteric fermentation.

The same approach was used when predicting  $CH_4$  production from beef cows. However, variable milk yield was not used. The lactation yield was fixed to 2500 kg and the concentrate proportion to 15%.

# Calculation of methane emission from enteric fermentation in growing and finishing cattle

In the Norwegian Cow recording System growing and slaughter information is available for different categories of growing and finishing cattle. Approximately 90% of the growing cattle are attended to the recording system. Information about age at slaughter, carcass weight and ADG are available. When developing equations for predicting  $CH_4$  emission in growing cattle we wanted to utilize this information. Therefore, the same approach as for dairy cows was used, including development of standard feed rations, which used the same forage qualities as for the dairy cows. Beef production in Norway comes mainly from one breed (Norwegian Red Cattle), which is described as an early-maturing breed. The feed rations used in practise contain an high proportion forage, with grass silage as the dominating forage, even during the finishing period. The carcasses required by the Norwegian market are normally heavy and average weight is approximately 300 kg.

To develop equations to calculate CH<sub>4</sub> emission from enteric fermentation in growing cattle the following set of basic equations were needed:

1. To describe changes in live weight and ADG over time a Gompertz growth equation based on Norwegian slaughter data was used (F. Walland, personal communication). From the Gompertz equation (Figure H2) it is possible to estimate animal live weight (LW) and ADG. This information are further used to calculate animal energy requirement for maintenance and growth.

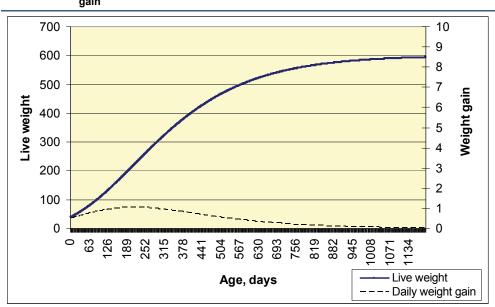



Figure H2. Gompertz growth function for prediction of live weight change and daily weight gain

Animal energy requirement was estimated based on an adjusted version of the Dutch Net energy lactation system (Van Es, 1975). The following equation was used to predict daily total energy requirement (NE MJ/d) for early-maturing bulls and heifers (Berg and Matre, 2001):

 $NE = 0.2926 \cdot LW^{0,75} + 0,020 \cdot LW + 17.3 \cdot ADG - 6.57$ 

Where:

NE = net energy requirement for maintenance and growth LW = live weight, kg ADG = average daily weight gain, kg

2. To calculate feed energy value and energy supplementation the same system as for dairy cows, the Dutch net energy lactation system (NEL), was used (Van Es, 1975). Standard feed rations at different carcass weights and slaughter ages were calculated using the three different forage qualities. The French fill unit system (INRA, 1989) was used to estimate feed intake. Tests of this system have shown good agreements to what have been observed in Norwegian growing cattle experiments (J. Berg, personal communication). Animal feed intake capacity (IC) is dependent on LWt and age at maturing. In Norway, the forage is fed ad libitum, since a maximum forage intake is generally sought, and then the minimum allowance of concentrate necessary to meet energy requirement related to the production goal provided. Therefore, the same approach as for dairy cows was used to formulate feed rations:

|            | IC                | <br>ARNEL           |
|------------|-------------------|---------------------|
| Intake = = | (P)FVF + (1-P)FVC | (P)NELF + (1-P)NELC |

Where:

IC = animal intake, intake capacity, kg per day ARNEL =Animal energy requirement, NEL per day P = proportion of forage in the total ration FVF = forage fill value, g/kg DM FVC = concentrate fill value, g/kg DM NELF = forage NEL content, per kg DM NELC = concentrate NEL content, per kg DM In this formula information from the growth curve (Figure H1) is used to define the animal energy requirement at different age, LW and ADG. The growth curve is also used to predict IC from the relationship between age and LW. Standard rations were calculated for slaughter ages of 14, 18 and 22 months. Within slaughter age three different carcass weights were used; 290, 320 and 350 kg. This data matrix is a representative variation of what is observed in practise in Norway. Feed rations were calculated in 30 day intervals from day 150 to slaughter.

Since the most commonly used feeding strategy for growing cattle is to 3. maximise the forage intake and that grass silage is the dominating forage in beef production the same equations as used for dairy cows was used to predict CH<sub>4</sub> production. These equations are expected to be robust because different production levels (Mills et al., 2003) and animal categories (Kirchgessner et al.,1995).

Based on the standard feed rations, daily intake of GE, ME and Ym were predicted. From the dataset a multiple regression analysis were accomplish to develop equations that predict GE and Ym from animal characteristics available from the Cow Recording System. The analysis showed that it was necessary to develop two set of equations, one for the period when animals are younger than one year and one from one year to slaughter. The following equations were developed to predict average daily intake of GE:

From day 150 to 365 days of age:  $GE = 102.2 + 0.3849 \cdot CAW - 6.25 \cdot SLA$ 

From 366 days to slaughter:  $GE = 118.5 + 0.375 \cdot CAW - 4.05 \cdot SLA$ 

Where:

GE = gross energy, MJ/dCAW = carcass weight, kgSLA = months at slaughter

Equations to estimate Ym:

From day 150 to 365 days of age:  $Ym = 9.79 - 0.0187 \cdot CAW + 0.3155 \cdot SLA$ 

From 366 days to slaughter:  $Ym = 9.64 - 0.0045 \cdot CAW + 0.074 \cdot SLA$ 

Where:

 $Y_m$  = methane conversion rate, % CAW = slaughter weight, kgSLA = months at slaughter

Table H3 present examples of daily GE intake and Y<sub>m</sub> at different age at slaughter and carcass weights.

| Table 115.          | Ym (%) at different | ghts                | iversion rate      |                           |                    |
|---------------------|---------------------|---------------------|--------------------|---------------------------|--------------------|
|                     |                     | Period: 150 – 365 d |                    | Period: 366 d - slaughter |                    |
| Months at slaughter | Carcass<br>weight   | GE, MJ/d            | Y <sub>m</sub> , % | GE, MJ/d                  | Y <sub>m</sub> , % |
| 14                  | 290                 | 126                 | 8.8                | 191                       | 9.4                |
| 14                  | 350                 | 149                 | 7.7                | 193                       | 9.1                |
| 22                  | 290                 | 76                  | 11.3               | 138                       | 10.0               |
| 22                  | 350                 | 99                  | 10.2               | 161                       | 9.7                |

Table H3 Estimated average daily intake of gross energy (GE) and methane conv

The Y<sub>m</sub> values presented in Table H3 are higher than those presented as standard values in IPCC Tier 2 (IPCC 2001). which are 3% for feedlot cattle (90% or more concentrates in the diet) and 6,5% for other cattle. The discrepancies can probably be explained by differences in diet composition and the scientific basis for prediction of CH<sub>4</sub> from enteric fermentation.

Methane emissions from Norwegian's cattle population calculated from the developed equations are presented in Table H4. To be able to compare our values to what has been suggested by IPCC, CH<sub>4</sub> emission per animal has been is standardised to kg/head/year. In prediction of total CH4 emission from enteric fermentation data has been corrected for animal lifetime. Our emission factors (kg CH4/head/yr) for dairy cows and beef cows are comparable to what is presented by IPCC (IPCC, 2001) for Western European cows. Our estimate is 10% higher, which are mainly due to differences in dry matter intake and the  $Y_m$  factor. The latter can be explained by a high proportion of forage in the diet and scientific basis for the equations used to predict CH<sub>4</sub> production. The same effect is found for growing cattle, which in IPCC (IPCC, 2001) is suggested to be 57 kg CH<sub>4</sub>/head/yr. Our average value, across all growing cattle categories, is 64 kg CH<sub>4</sub>/head/yr, which is 11% higher than the IPCC value suggested for Western European countries (IPCC, 2001).

 
 Table H4.
 Methane emissions from enteric fermentation in Norwegian's cattle and sheep, as determined by emission factors taken from European literature (cattle) and IPCC Tier 2 guidelines for 2006 (sheep). Animal predictions from year 2004

|                                                     |                       |                                                    |                                                      | Meth  | ane, t per | year  |
|-----------------------------------------------------|-----------------------|----------------------------------------------------|------------------------------------------------------|-------|------------|-------|
| Categories of cattle and sheep                      | GE<br>intake,<br>MJ/d | Methane<br>lost, % of<br>gross<br>energy<br>intake | Methane,<br>kg per<br>head per<br>year <sup>12</sup> | 1990  | 2000       | 2004  |
| Dairy cows <sup>1</sup>                             | 297                   | 7.3                                                | 143                                                  | 46194 | 40236      | 37605 |
| Beef cows <sup>2</sup>                              | 208                   | 9.0                                                | 122                                                  | 1971  | 6932       | 6312  |
| Replacement heifers <sup>3</sup>                    | 68                    | 11.1                                               | 49                                                   | 7999  | 8340       | 7611  |
| Finisher heifers, < one year <sup>4</sup>           | 93                    | 10.3                                               | 63                                                   | 92    | 163        | 133   |
| Finisher heifers, > one year <sup>5</sup>           | 74                    | 11.1                                               | 67                                                   | 742   | 982        | 997   |
| Finisher bulls, < one year <sup>6</sup>             | 104                   | 9.8                                                | 67                                                   | 335   | 617        | 543   |
| Finisher bulls, > one year <sup>7</sup>             | 114                   | 10.1                                               | 76                                                   | 10265 | 9716       | 9559  |
| Breeding sheep, < one year <sup>8</sup>             | 51                    | 4.5                                                | 15                                                   | 3317  | 4212       | 2876  |
| Breeding sheep, > one year <sup>9</sup>             | 40                    | 6.5                                                | 17                                                   | 13688 | 15127      | 14976 |
| Slaughter lamb, < one year. Jan- May <sup>10</sup>  | 51                    | 4.5                                                | 15                                                   | 389   | 387        | 467   |
| Slaughter lamb, < one year. Jun- Sept <sup>11</sup> | 49                    | 4.5                                                | 14                                                   | 3142  | 3120       | 3768  |

<sup>1</sup>dairy cows: milk yield of 6469 kg per year

<sup>2</sup>Beef cows: milk yield of 2500 kg per year

<sup>3</sup>Replacement heifers: 27 months of at calving

<sup>4</sup>Finisher heifers < one year: 7.8 months at slaughter

<sup>5</sup>Finisher heifers > one year: 23.2 months at slaughter

<sup>6</sup>Finisher bulls, < one year: 19.8 months at slaughter

<sup>8</sup>Breeding sheep, < one year:

<sup>9</sup>Breeding sheep, > one year:

<sup>10</sup>Slaughter lamb, < one year. Jan- May: 4.8 moths at slaughter

<sup>11</sup>Slaughter lamb, < one year. Jun- Sept: 11 moths at slaughter

<sup>12</sup>Methane in kg per head per year was calculated as follows: ((GE intake, MJ/d x methane lost as % of GE/100)/55.65 MJ/kg)\*365, where 55.65 is the energy content (MJ) of 1 kg of methane.

#### Calculation of methane emission from enteric fermentation in sheep

In Norway sheep are used for meat- and not for milk production. No information system as the Cow Recording System is available for sheep. Information is restricted to number of sheep younger and alder 1 year, the number of slaughtered sheep younger and alder 1 year, and how many sheep younger than 1 year that are slaughtered each month throughout the year. Prediction of methane emission from sheep is therefore based on the Tier 2 method described by IPCC (IPCC, 2001). In Norway most ewes lamb in the period march to may. There is a big demand for lamb meat around Christmas, and therefore, the major part of the lambs is slaughtered in the period October to December. Lambs that don't fulfil the minimum levels for weight will be fed and slaughtered the next year together with ewe lambs that are not pregnant. On this basis the sheep population has been divided in four categories: 1) lambs under 1 year of age slaughtered in the period from June 1<sup>st</sup> to December 31<sup>st</sup>, 2) lambs under 1 year of age slaughtered in the period from January  $1^{st}$  to may  $31^{st}$ , 3) breeding sheep under 1 year of age and 4) breeding sheep over 1 year. Slaughtered lambs younger than 1 one year are divided in two groups because lambs that live longer then December will have an increased energy requirement for maintenance, activity and growth. To be able to divide the number of slaughtered lambs younger than 1 year in the two groups, the portion of slaughtered lambs for each are calculated. This calculation are based on available information of the number of slaughtered lambs younger than 1 year, and the number of lambs slaughtered each month, for two subsequent years. The number of lambs slaughtered in the period from June 1<sup>st</sup> to December 31<sup>st</sup>, and in the period from January 1<sup>st</sup> to may 31<sup>st</sup>, are added up for each year and the portion according to total number for each period and year were calculated, and an average number of the same period from the two subsequent years where used. The average portion of lambs slaughtered in June – December were found to be 0.921 and the portion slaughtered in January – May were 0.0789.

Prediction of methane emission from sheep is based on the intake of GE and the fraction of GE converted to  $CH_4$  (the  $CH_4$  conversion rate,  $Y_m$ ). The intake of GE is estimated from the net energy requirement and concersion factors from net energy to GE. According to IPCC (IPCC, 2001) the  $Y_m$  for sheep over one year is 6.5 % and 4.5 % for sheep under one year.

The following equation was used to predict GE:

$$GE = [(NE_m + NE_a + NE_l + NE_p)/NEM_{ef}] + [(NE_g + NE_{wool})/NEG_{ef}]/(DE/100),$$

Where:

$$\begin{split} & GE = \text{gross energy, MJ/day} \\ & \text{NE}_{m} = \text{net energy for maintenance, MJ/day} \\ & \text{Ne}_{m} = Cf_{i} \cdot (\text{bodyweight})^{0, 75} \\ & \text{NE}_{a} = \text{net energy for activity, MJ/day} \\ & \text{Ne}_{a} = C_{a} \cdot \text{bodyweight} \\ & \text{NE}_{l} = \text{net energy for unknown lactation, MJ/day} \\ & \text{NE}_{l} = ((5 \cdot Wg_{wean}) / 365 \text{ days}) \cdot EV_{milk} \\ & \text{NE}_{p} = \text{net energy for pregnancy, MJ/day} \\ & \text{NE}_{p} = C_{\text{pregnancy}} \cdot \text{NE}_{m} \\ & \text{NE}_{g} = \text{net energy for growth, MJ/day} \\ & \text{NE}_{g} = \{WG_{lamb} \cdot [a + 0.5b (BW_{i} + BW_{f})]\} / (365 \text{ days/year}) \\ & \text{NE}_{wool} = \text{net energy for one year of wool production, MJ/day} \\ & \text{NE}_{wool} = (EV_{wool} \cdot \text{yearly wool production, kg/year}) / (365 \text{ days/year}) \end{split}$$

 $NEM_{ef}$  = the ratio of net energy available in a diet for maintenance to digestible energy consumed

 $NEG_{ef}$  = the ratio of net energy available for growth in a diet to digestible energy consumed

DE = digestible energy in present of gross energy

Net energy for maintenance is calculated as metabolic bodyweight (bodyweight<sup>0</sup>, <sup>75</sup>) multiplied with a coefficient (Cf<sub>i</sub>) varying with age and sex. Cf<sub>i</sub> provided by IPCC (IPCC, 2001) is 0.217 for ewes over one year and 0.2496 for intact males over one year. For sheep under one year it is 0.236 for ewes and 0.2714 for intact male lambs. It is not possible to divide the number of sheep by sex, and therefore an average value of 0.2333 for sheep over one year and 0.2537 for sheep under one year has been used. Net energy for activity is calculated as bodyweight multiplied by a coefficient (C<sub>a</sub>) corresponding to the animal's feeding situation. According to IPCC (IPCC, 2001) C<sub>a</sub> for housed ewes is 0.009, sheep grazing on flat pasture 0.0107, sheep grazing on hilly pasture 0.024, and for lambs kept indoor 0.0067. The feeding situation varies during the year, and therefore an average of the first three values (0.0146) has been used for sheep over one year, and an average of the three last values (0.0138) has been used for sheep under one year. Calculation of net energy for lactation is based on the formula for unknown lactation, because sheep in Norway are used for meat production. This formula includes average daily gain for each lamb in the period from birth to weaning,  $(WG_{wean})$ , in kg. Weaning was set at seven weeks of age, which is taken as the time when the lambs are

dependent on milk for half their energy requirement, and WG<sub>wean</sub> was set to 21.5 kg. The energy required for producing 1 kg of milk ( $EV_{milk}$ ) is 4.6 MJ /kg. Net energy for lactation is calculated for breeding sheep over one year, and for two lambs for each ewe. Net energy for pregnancy is calculated from a coefficient for pregnancy, (C<sub>pregnancy</sub>), multiplied with net energy for maintenance. According to IPCC (IPCC, 2001) C<sub>pregnancy</sub> is 0.077 for one lamb, 0.126 for two lambs and 0.15 for more than two lambs. When the GE intake is calculated an average of the first two values (0.1015) is used for breeding sheep under one year, and an average of all three values (0.1177) is used for breeding sheep over one year. The formula used for calculating net energy for growth include bodyweight at the time of weaning (BW<sub>i</sub>), bodyweight at one year of age or at the time of slaughtering (BW<sub>f</sub>), average daily gain in the period from weaning to on year of age or slaughtering (WG<sub>lamb</sub>), and the given factors a and b. This formula was tried out, but the outcome was not in accordance with expected theoretical numbers, and therefore, another method was used to estimate the net energy requirement for growth. This method is based on average daily gain from birth to slaughtering and a net energy requirement of 17.3 MJ per kg gain was used. Average daily gain was calculated on the assumptions that weight at birth was 4.5 kg (Nedkvitne, 1989). Net energy for growth is calculated for both slaughtered and breeding sheep younger than 1 year. The need for net energy for wool production is calculated as the amount of wool produced during a year multiplied with the net energy content of 1 kg wool (EV<sub>wool</sub>), which is 24 MJ/kg (IPCC, 2001). The quantity of wool produced was set to 1.9 kg for sheep under one year and 4.1 kg for sheep over one year.

From the estimated net energy requirement, daily GE intake is calculated based on conversion factors from net energy to GE. Conversion ratios was derived from the Dutch net energy system (Van Es, 1975), where values of 65, 81 and 43 % were used as average conversion rates from net energy to metabolizable energy, from metabolizable energy to digestible energy and from digestible energy to GE, respectively.

For slaughtered lamb under one year, the requirements for net energy (MJ/day), NE<sub>m</sub>, NE<sub>a</sub>, NE<sub>g</sub>, and NE<sub>wool</sub>, where added up and converted into GE as described above. For these two animal sub-categories, June - December and January - May, the  $CH_4$  emission was calculated for the living period, since the lamb live shorter than one year. When calculating methane emission from lambs it is, according to IPCC (2001), assumed that lambs do not emit methane until half of their energy requirement is covered from milk, and this phase has been set to 7 weeks of age. Therefore, when calculating methane emission from lambs younger than one year, daily emission is multiplied with the age at slaughter subtracted the 7 weeks. For breeding sheep under one year the requirements for net energy (MJ/day), NEm, NE<sub>a</sub>, NE<sub>g</sub>, and NE<sub>wool</sub>, where multiplied by 365 days, and net energy for pregnancy in MJ/day where multiplied by 150 days. Then the total requirement for net energy, MJ/year, was divided by 365 to get the energy requirement in MJ/day, and then converted GE. For breeding sheep over one year calculation of total net energy requirement was done in the same way as for breeding sheep under one year. For this category of sheep net energy for unknown lactation (IPCC, 2001) was used and this was done by multiplying daily requirement by 96 days, and then divided by 365 days.

In Table H4 daily GE intake and  $CH_4$  production for the different sub-categories of sheep is presented. The CH4 emission values, expressed as kg CH4/head /year, are higher than IPCC Tier 1 values. It is likely that the IPCC Tier 1  $CH_4$  emission factors for sheep under Norwegian feeding practices and management strategies are set too low.

#### **References for Appendix H**

INRA (1989): Ruminant Nutrition: recommended allowances and Feed Tables. Ed: Jarrige, R., INRA Publications, Paris, John Libbey Eurotext, London, Paris. 389 p.

IPCC (2001): Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. J. Penman et. al. (eds.), Hayama, Japan: IPCC National

Greenhouse Gas Inventories Programme, Technical Support Unit.

Kirchgessner, M. Windisch and H. L. Muller (1995): Nutritional factors for the quantification of methane production. In: W. v. Engelhardt, S. Leonhard-Marek, G. Breves and D. Giesecke (eds.) Ruminant physiology: Digestion, Metabolism, Growth and Reproduction. Proceedings of the Eight International Symposium on Ruminant Physiology. Ferdinand Enke Verlag Stuttgart 1995.

Mills, J. A. N., E. Kebreab, C. M. Yates, L. A. Crompton, S. B. Cammell, M. S. Dhanoa, R. E. Agnew and J. France (2003): J. Anim. Sci. 81: 3141-3150.

Nedkvitne, J.J. (1989): Fôring og stell av sau. I: Saueboka. Landbruksforlaget ISBN: 82-529-1219-2. redigert av Arne Maurtvedt (in Norwegian).

Van Es, A. J. H. (1975): Feed evaluation for dairy cows. Livestock Production Science 2: 95-107.

Volden, H. and N. P. Kjos (2003): Use of NDF-systems to predict forage intake. Proceedings of the International syposium "Earley harvested forage in milk and meat production. 23-24 October 2003. Kringler, Nannestad, Norway. p. 35-43.

Wood, P. D. P. (1967): Algebraic model of the lactation curve in cattle. Nature, 216:164-165.

#### Appendix I

# QA/QC performed for GHG emissions from industrial plants included in the national GHG inventory

#### Introduction

This appendix presents the methodology for the performance of QA/QC on time series from 1990 to 2004 of greenhouse gas (GHG) emissions from the largest industrial plants in Norway.

The work was carried out by Section for climate and energy at the Norwegian Pollution Control Authority in the period from February to April 2006. The following sectors of industry were covered: Cement production, mineral fertilizers, carbide industry, production of ferroalloys, production of primary aluminium, anode manufacture, production of iron and steel, nickel production, pulp and paper manufacture, oil refineries, gas terminals, lime production, other mineral production, methanol production, plastics, other chemical industry and production of magnesium.

The goal of this work was to establish final time series of greenhouse gas emissions from 1990 to 2004 for these sectors. The main documentation from this work is contained in Excel spread sheets giving the resulting time series for each plant included in this revision, and in a documentation report "QA/QC performed for GHG emissions from industrial plants included in the national GHG inventory", which is under preparation and will be published by the Norwegian Pollution Control Authority in 2006.

#### Method for establishing and verifying data series of emissions

The following work procedure was established to verify data series:

- 1. For each plant; a first time series of emission data as well as activity data were established with basis on existing sources of data (see section on data sources).
- 2. The first time series of emission data and activity data were presented in both a table format as well as a graphic presentation. See Figure I1 and Figure I2 for examples.
- 3. Based on the table with compiled data and the graphic presentation, it was possible to identify:
  - Lack of emission data and activity data for any year or time series.

• Possible errors in the reported data. Possible errors were typically identified if there were discrepancies between reported activity data (consumption of raw materials, production volumes etc) and emissions, or if there were large variations in the existing time series of emissions.

- 4. The emission data where supplemented and/or corrected if possible by one or more of the following sources of information:
  - Supply of new data from the company
  - Supplementary data from SFT paper archives.
  - Verification of reported emission data by new calculations based on reported activity data.
  - Calculation of missing emissions (if sufficient activity data were present).
- 5. A final time series of greenhouse gas emissions from 1990 to 2004 were established, and presented both as a tables and a figure. The origin of the data was documented by the use of colour codes.
- 6. The differences between former and new time series of emissions were identified and documented.

In the tables, colour codes were used to describe the source and type of the data. See Figure I1 as an example of a data table with the explanations of the colour codes.

|                                     | 1990   | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 200  | 0 20 | 01 2  | 2002 | 2003  | 2004  |
|-------------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|------|-------|-------|
| CO2 process (1000 ton)              | 218,0  | 232,6 | 252,0 | 256,0 | 243,6 | 273,0 | 271,9 | 242,0 | 265,4 | 272,7 | 272  | 5 21 | 8,0 1 | 29,1 | 209,0 | 229,5 |
| CH4 (ton)                           | 79,5   | 69    | 72    | 77    | 74    | 84    | 84    | 80    | 88    | 86    | 8    | 57   | 74    | 52   | 69    | 76    |
| N2O (ton)                           | 26,5   | 26    | 27    | 29    | 27    | 31    | 31    | 30    | 33    | 32    | (T)  | 13   | 28    | 20   | 28    | 31    |
| Activity data -whitebook(1000 ton)  | 69,68  |       |       |       |       |       |       |       | 84,33 | 85,1  | 84,5 | 5 70 | 05    |      |       |       |
| Activity data -Inkosys (1000 ton)   |        | 61    | 64    | 78,6  | 80,2  | 87,9  | 85,4  | 73,2  | 79,7  | 80,3  | 79   | ,8 5 | 3,5   | 45,6 | 72,4  |       |
|                                     |        |       |       |       |       |       |       |       |       |       |      |      |       |      |       |       |
| Time Serie                          | 1990   | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000 | 2001 | 2002  | 20   | 03    | 2004  |
| total CO2 (1000 tons)               | 47     | 32    | 64    | 84    | 161   | 151   | 207   | 207   | 202   | 185   | 128  | 213  | 153   | 1:   | 35    | 137   |
| CO2 combustion (1000 tons)          | 38     | 23    | 55    | 75    | 152   | 143   | 199   | 198   | 193   | 177   | 119  | 205  | 145   | 12   | 27    | 127   |
| CO2 process (1000 tons)             | 9      | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 9     | 8     | 9    | 8    | 8     | 9    | 9     | 10    |
| CH4 (ton)                           | 2,0    | 2,2   | 2,5   | 0,9   | 7,4   | 7,0   | 9,8   | 9,9   | 9,6   | 8,7   | 5,8  | 10,1 | 7,1   | 6    | ,0    | 6,2   |
| N2O (ton)                           | 0,40   | 0,42  | 0,43  | 0,63  | 1,33  | 1,33  | 1,83  | 1,83  | 1,80  | 1,60  | 1,10 | 1,90 | 1,4   | 1    | ,1    | 1,2   |
| Activity data white book (1000 tons | ) 12,2 |       |       |       |       |       |       |       | 60,5  | 55,4  | 37,2 | 64,1 |       |      |       |       |
| Activity data Inkosys (1000 tons)   |        |       | 17,3  | 7,4   | 48,1  | 45,1  | 62,6  | 63,0  | 60,7  | 55,4  | 35,6 | 64,1 | 45,7  | 39   | 9,4   | 41,3  |

#### Figure I1. Examples of presentation in data tables and the use of colour codes

| Data from:                    | Color<br>code |
|-------------------------------|---------------|
| White book on GHG             |               |
| Inkosys database              |               |
| Former time serie reported to |               |
| Statistics Norway             |               |
| New, calculations by SFT      |               |
| New, by intrapolation         |               |
| New, provided by company      |               |

Figure I1 illustrates different data tables with indication of the data sources with colour codes.

As the figure shows, there were six main sources of final data to the time series; the white book of climate gases (SINTEF and Det Norske Veritas 2004), the Inkosys database (described in section on data sources), new data calculated by SFT based on reported activity data, new data provided by company, and new data based on intrapolation between. Intrapolation was typically used as a method to establish data for the year 1991, if the emissions from 1990 and 1992 were given.

The emission data and the activity data were presented in graphic presentation for a visual presentation.

Figure I2 illustrates a presentation of the emissions and activity data from a pulp and paper plant.

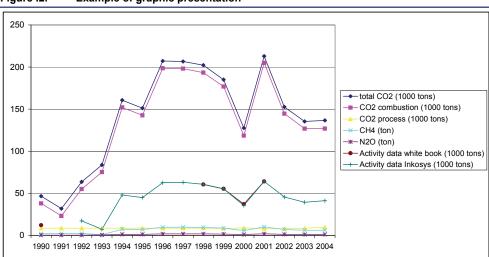



Figure I2. Example of graphic presentation

| The Inkosys Database                                                         | <b>Data sources</b><br>Data from the annual company emission reports are stored in the SFT database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | INKOSYS. The database contains data from 1992, and holds emission and activity data from all companies reporting emissions to SFT. The Inkosys database holds reported emissions and activity data from Norwegian companies. The companies report the data according to a manual9. In SFT, the respective responsible officer in the State Pollution Control Authority undertakes a control of the data, before they are inserted in the database.                                                                                                                                                                                                                                                                                                                                                                                                         |
| The white book on climate<br>gases from Norwegian<br>process industry        | The white book on climate gases from Norwegian process industry (SINTEF and Det Norske Veritas 2004) was initiated by the Federation of Norwegian Process industry (PIL), Norwegian Chemical Industrial Worker's Union (NKIF) and Norwegian Oil- and Petrochemical Worker's Union (NOPEF). The work was carried out by DNV and Sintef, who collected, compiled, controlled and verified all emissions of climate gasses from these industrial plants for the years 1990, 1998, 1999, 2000 and 2001. The method of work as well as the main results are described in the reports from this project published by Federation of Norwegian Process Industry 2003. The main data files and verification tables from this work have been made available for Norwegian Pollution Control Authority. The white book includes data from 60 process industry plants. |
|                                                                              | Since the emission data in this white book has gone through a thorough verification process, these emissions were assumed to be correct, unless any other information proved them incorrect. If several data sources reported different series of emissions, the data series from the white book were used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The white book on climate<br>gases from Norwegian pulp<br>and paper industry | The white book on climate gases from Norwegian pulp and paper industry work<br>was initiated by the Norwegian Pulp and Paper Association, and was carried out by<br>DNV, Sintef and the Norwegian Association of Energy Users and Suppliers. They<br>collected, compiled, controlled and verified all emissions of climate gasses from<br>the relevant pulp and paper plants for the years 1990, 1998, 1999, 2000 and 2001.<br>The method of work as well as the main results are described in the reports from<br>this project published by Norwegian Pulp and Paper Association 2003. The main<br>data files from this work have been made available for the Norwegian Pollution<br>Control Authority.                                                                                                                                                   |
|                                                                              | Since the emission data in this white book has gone through a thorough verification process, these emissions were assumed to be correct, unless any other information proved them incorrect. If several data sources reported different series of emissions, the data series from the white book were used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other sources                                                                | <ul> <li>Other data sources also available for this work were:</li> <li>Annual update of the climate gas inventories based on annual reports from Norwegian industry. Reported to Statistics Norway.</li> <li>Yearly (paper) reports from industry of emission to air, water and soil (Egenrapportering).</li> <li>Applications for CO<sub>2</sub>-permits for the Norwegian emissions trading scheme.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                              | Documentation of calculations and time series<br>The main documentation from the work is contained in Excel spread sheets giving<br>the resulting time series for each plant included in this revision. Each spread sheet<br>includes emission data and activity data from the relevant data sources for each<br>production plant. It includes the proposed time series for the relevant greenhouse<br>gases, and states the sources for this information. Relevant information related to<br>the QA/QC process for the specific site is noted as a comment or as a text box for<br>each plant.                                                                                                                                                                                                                                                            |

<sup>&</sup>lt;sup>9</sup> SFT (2004): Bedriftenes egenrapportering til forurensningsmyndighetene. Veiledning. Manual. Declaration of emissions. TA-1929/2004.

# List of Figures and Tables

### **List of Figures**

| <b>6.</b><br>6.1. | Agriculture<br>The principle of the NH <sub>3</sub> model1                                                                                                                                                                                  | 134  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Appen             | lix                                                                                                                                                                                                                                         |      |
| H1.               | Example of estimated daily feed intake through the lactation cycle. Medium forage<br>quality and a 305 d lactation yield of 7000 kg                                                                                                         | 237  |
| H2.               | Gompertz growth function for prediction of live weight change and daily weight ga 240                                                                                                                                                       | in   |
| l1.<br>l2.        | Examples of presentation in data tables and the use of colour codes                                                                                                                                                                         |      |
| List o            | f Tables                                                                                                                                                                                                                                    |      |
| 1.                | Introduction                                                                                                                                                                                                                                |      |
| 1.1.              | Definition of pollutants in the Norwegian emission inventory                                                                                                                                                                                | 8    |
| 1.2.              | Uncertainties in emission level. Each gas and total GWP weighted emissions.<br>Excluding the LULUCF sector                                                                                                                                  |      |
| 1.3.              | Uncertainties in emission level. Each gas and total GWP weighted                                                                                                                                                                            |      |
|                   | emissions. Including the LULUCF sector                                                                                                                                                                                                      | . 16 |
| 1.4.              | Uncertainty of emission trend, 1990-2004. Excluding the LULUCF sector                                                                                                                                                                       |      |
| 1.5.<br>1.6.      | Uncertainty of emission trend. 1990-2004. Including the LULUCF sector<br>Summary of identified key categories for the greenhouse gases except LULUCF.<br>Per cent contribution to the total uncertainty in level and/or trend. Bold numbers |      |
| 1.7.              | are key<br>Summary of identified key categories – LULUCF. Per cent. Bold numbers are key                                                                                                                                                    |      |
|                   | -                                                                                                                                                                                                                                           | . 13 |
| 2.                | The Norwegian emission model; general description                                                                                                                                                                                           |      |
| 2.1.              | Energy commodities in the Norwegian emission inventory                                                                                                                                                                                      |      |
| 2.2.              | Sources for energy combustion in the Norwegian emission inventory                                                                                                                                                                           | 25   |
| 2.3.              | Combinations of fuels and sources in use                                                                                                                                                                                                    | 25   |
| 3.                | Energy                                                                                                                                                                                                                                      |      |
| 3.1.              | Average energy content and density of fuels                                                                                                                                                                                                 | 28   |
| 3.2.              | Overview of estimated and reported greenhouse gases $CO_2$ , $CH_4$ and $N_2O$ for the energy combustion in 2005                                                                                                                            | . 28 |
| 3.3.              | Vehicle categories <sup>1,2</sup> in the emission model for road traffic                                                                                                                                                                    | 40   |
| 3.4.              | Emission factor for electric railway conductions. g/km                                                                                                                                                                                      | 43   |
| 3.5.              | Uncertainties in emission factors for ships and fishing vessels. Per cent                                                                                                                                                                   | .46  |
| 3.6.              | Emission factors for particles from tyre wear. kg/mill. km                                                                                                                                                                                  |      |
| 3.7.              | Heavy metals emission factors from tyre wear. g/mill. km                                                                                                                                                                                    |      |
| 3.8.              | PAH emission factors from tyre wear. kg PAH/ 1000 mill. km                                                                                                                                                                                  |      |
| 3.9.<br>3.10.     | Metal content in brake blocks. mg/kg<br>Particle emission factors for brake wear. kg/mill. km                                                                                                                                               |      |
| 3.10.             | Heavy metal emission factors for brake wear. g/mill. km                                                                                                                                                                                     | 51   |
| 3.12.             | SPS values. g/km                                                                                                                                                                                                                            | 5/   |
| 3.12.             | Use of studded tyres in five prioritized communities. Share of traffic load with                                                                                                                                                            |      |
| 5.15.             | studded tyres. Light duty vehicles                                                                                                                                                                                                          | 54   |
| 3.14.             | Averaged studded tyre share in Norway weighted after traffic load in the                                                                                                                                                                    |      |
|                   | different counties                                                                                                                                                                                                                          | 54   |
| 3.15.             | Grouping of wet, dry and icy road surface                                                                                                                                                                                                   | 54   |
| 3.16.             | PAH and Cd emission factors from road dust <sup>1</sup> . g/ton PM <sub>10</sub> of road dust                                                                                                                                               | 55   |
| 3.17.             | Fugitive emissions from oil and natural gas. Emission sources, compounds, methods, emission factors and activity data included in the Norwegian GHG                                                                                         | 60   |
| 3.18.             | Inventory<br>Emission factors for cold vents and leakage at gas fields off shore                                                                                                                                                            |      |
| 3.10.             | Emission factors for flaring of natural gas at off shore oil fields and one                                                                                                                                                                 | 00   |
| 5.19.             | gas terminal on shore                                                                                                                                                                                                                       | 66   |
| 3.20.             | Emission factors for flaring in connection with well testing                                                                                                                                                                                |      |
| 3.21.             | $CO_2$ from the Sleipner field injected in the Utsira-formation, 1000 tonnes                                                                                                                                                                |      |
| 3.22.             | Emissions of $CO_2$ from the Sleipner $CO_2$ -injection plant due to inaccessibility of the injection facilities, tonnes                                                                                                                    |      |
| 4.                | Industrial processes                                                                                                                                                                                                                        |      |
| 4.1.<br>4.2.      | Mineral products. Components emitted and included in the Norwegian inventory<br>Emission factors for Pb, Cd, As and Cr from production of rock wool. g/tonne                                                                                |      |
| 12                | produced rock wool                                                                                                                                                                                                                          | .76  |
| /1 <              | $\mathbf{x}_{1}$                                                                                                                                                                                                                            | · 2  |

4.3. Particle size distribution for particles emitted from ore mining. Ratio X<sup>1</sup>/TSP.......78
4.4. Particle emission factors for sandpits and rock-crushing plants. Ratio X<sup>1</sup>/TSP.......81

| 4.5.<br>4.6.   | Particle emission factors for building and construction. Tonne/hectare/year<br>Chemical industry. Components emitted and included in the Norwegian<br>inventory |     |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                |                                                                                                                                                                 | 02  |
| 4.7.           | Distribution of PAH emission from silicon carbide production. Ratio X <sup>1</sup> /TSP                                                                         |     |
| 4.8.           | Emission factors for flare                                                                                                                                      | 91  |
| 4.9.           | Metal production. Components emitted and included in the Norwegian inventory                                                                                    | 97  |
| 4.10.          | Distribution of PAH emission from production of ferroalloys                                                                                                     |     |
| 4.11.          | Emission factors for production of ferroalloys.Tonnes CO <sub>2</sub> /tonne reducing agent or electrode                                                        |     |
| 4.12.          | Emission factors for $CH_4$ and $N_2O$ from production of ferroalloys. Emission factors in kg per tonne produced ferroalloy                                     |     |
| 4.13.          | Emission factors for production of ferro silicon and silicon metal. Kg NO <sub>X</sub> /tonne metal produced.                                                   |     |
| 4.14.          | Emission factors for production of ferroalloys. µg dioxin /tonne metal produced                                                                                 | 101 |
| 4.15.          | Emission factor used by Statistics Norway to calculate dioxin emission from production of ferro manganese/chromium                                              |     |
| 4.16.          | Emission factors for production of ferroalloys. g PAH /tonne metal produced                                                                                     |     |
| 4.17.          | Technology specific slope and overvoltage coefficients for the calculation of                                                                                   |     |
| <b>ч</b> . 17. | PFCs emissions from aluminium production                                                                                                                        | 105 |
| 4 4 0          |                                                                                                                                                                 |     |
| 4.18.          | Distribution of PAH emissions from production of primary aluminium. Ratio                                                                                       | 107 |
| 4.19.          | Emission factor used to calculate dioxin emissions from aluminium production                                                                                    |     |
| 4.20.          | Distribution of PAH emissions from production of anodes. Ratio                                                                                                  |     |
| 4.21.          | NMVOC emission factors from production of bread and beverage                                                                                                    | 116 |
| 4.22.          | Emission factors for HFCs from products and lifetime of products                                                                                                | 117 |
| 4.23.          | Yearly rate of leakage of SF <sub>6</sub> from different processes                                                                                              |     |
| 4.24.          | Product lifetimes and leakage rates from products containing SF <sub>6</sub>                                                                                    |     |
| 4.25.          | Parameters employed when calculating emission figures                                                                                                           |     |
| 4.20.          | Farameters employed when calculating emission lightes                                                                                                           | 120 |
| 5.             | Solvent and other product use                                                                                                                                   |     |
| 5.1.           | Emission factors for evaporating from creosote-treated materials.                                                                                               |     |
|                | 10 <sup>-6</sup> kg/m <sup>2</sup> /year                                                                                                                        | 123 |
| 5.2.           | Emission of PAH from use of tarry jointing paste <sup>1</sup> . kg PAH/year                                                                                     | 124 |
| 5.3            | Dioxin emission factor for asphalt production. µg I-TEQ/tonne produced                                                                                          | 127 |
| 5.5            | Dioxin emission factor for asphalt production. µg i- i EQ/tonne produced                                                                                        | 405 |
|                | asphalt                                                                                                                                                         | 125 |
| 6.             | Agriculture                                                                                                                                                     |     |
| 6.1.           | Categories of cattle and sheep used in the Norwegian calculations of methane                                                                                    |     |
|                | emission from enteric fermentation                                                                                                                              | 129 |
| 6.2.           | Emission factors for CH <sub>4</sub> from enteric fermentation and different animal types, estimated with the Tier 1 method                                     | 130 |
| 6.3.           | Norwegian factors used to estimate CH <sub>4</sub> from manure management in the                                                                                | 400 |
| <b>.</b>       | IPCC Tier 2 method                                                                                                                                              |     |
| 6.4.           | N in excreta from different animals                                                                                                                             | 133 |
| 6.5.           | Fraction of total excretion per specie for each management system and for                                                                                       |     |
|                | pasture 2006                                                                                                                                                    | 133 |
| 6.6.           | Average CH <sub>4</sub> emission factors for manure management in the Norwegian                                                                                 |     |
|                | method. Tier 2                                                                                                                                                  | 135 |
| 6.7.           | N <sub>2</sub> O emission factors for manure management per manure management                                                                                   |     |
|                | system                                                                                                                                                          | 135 |
| 6.8.           | Emissions factors for various storage systems and productions. Per cent                                                                                         |     |
|                | losses of N of total N                                                                                                                                          | 136 |
| 6.9.           | Average emission factors for the manure storage systems used, distributed                                                                                       |     |
| 0.5.           | on type of animal production and region. Per cent of total N                                                                                                    | 126 |
| 6.10.          |                                                                                                                                                                 | 130 |
| 6.10.          | Factors used for the calculation of the nitrogen content in crop residues                                                                                       | 400 |
|                | returned to soils                                                                                                                                               |     |
| 6.11.          | Activity data for non-combustion emissions of $N_2 O$ in the agriculture                                                                                        |     |
| 6.12.          | Parameters included in the estimation of NH <sub>3</sub> emissions from manure                                                                                  | 142 |
| 6.13.          | Emission factors for NH <sub>3</sub> -N for different fertilisers and their share of the total use of fertiliser                                                | 142 |
| 6.14.          | Emissions factors for NH <sub>3</sub> -N for various methods of spreading of manure.                                                                            |     |
|                | Per cent of total N                                                                                                                                             | 143 |
| 6.15.          | Average NH <sub>3</sub> emission factors for cultivated fields and meadows after time of                                                                        | 0   |
| 0.10.          | spreading and region. Per cent. Year 2000                                                                                                                       | 112 |
| 6.16           |                                                                                                                                                                 | 143 |
| 6.16.          | $NH_3$ emission factors from droppings from grazing animals on pasture.                                                                                         | 140 |
| 0.47           | Per cent                                                                                                                                                        |     |
| 6.17.          | Factors used for agricultural residue burning in Norway                                                                                                         | 146 |
| 6.18.          | Emission factors for agricultural residue burning. g emitted/tonnes crop                                                                                        |     |
|                | residue burned                                                                                                                                                  | 147 |
| 6.19.          | Emission factors for non-combustion emissions of particles from the                                                                                             |     |
|                | •                                                                                                                                                               |     |
|                | agricultural sector                                                                                                                                             | 149 |

| 7.           | Waste                                                                                                   |     |
|--------------|---------------------------------------------------------------------------------------------------------|-----|
| 7.1.         | Variables used in the calculations of methane from landfills                                            | 154 |
| 7.2.         | The developed water consumption coefficients and chemical oxygen demand. m3/mill NOK and mg/l           | 157 |
| 7.3          | Potencial protein intake, and estimated protein intake. g/pers/day, kg/pers/year. 1990-2005             |     |
| 7.4.         | Emission factors for flare, cremation and hospital waste, incineration                                  | 159 |
| 7.5.         | Emission factors used for car fires and house fires, emission unit/fire                                 |     |
| 7.6.         | Emission factors used for tobacco combustion                                                            |     |
| 7.0.         |                                                                                                         | 101 |
| 8.           | Recalculations                                                                                          |     |
| 8.1.         | Recalculations in 2008 submission to the UNFCCC compared to the 2007                                    |     |
|              | submission. CO <sub>2</sub> , CH <sub>4</sub> and N <sub>2</sub> O. Tonnes CO <sub>2</sub> -equivalents | 167 |
| 8.2.         | Recalculations in 2008 to the UNFCCC submission compared to the 2007                                    | 107 |
| 0.2.         | submission. HFCs, PFCs and SF <sub>6</sub> . Ktonnes $CO_2$ -equivalents                                | 167 |
| 8.3          | Trends in emissions 1990-2005. 2008 submission compared to 2007                                         | 107 |
| 0.0          | submission. GHG. Per cent change 1990-20054                                                             | 167 |
| 8.4.         | Recalculations in 2008 submission compared to the 2007 submission. Main                                 | 107 |
| 0.4.         | Recalculations in 2006 submission compared to the 2007 submission. Main                                 | 470 |
| 0.5          | pollutants                                                                                              | 172 |
| 8.5.         | Recalculations in 2008 submission compared to the 2007 submission.                                      | 4=0 |
|              | Particulate Matter                                                                                      | 172 |
| 8.6.         | Recalculations in 2008 submission compared to the 2007 submission. POPs                                 |     |
|              | and heavy metals                                                                                        | 173 |
| 8.7.         | Trends in emissions 1990-2005. This submission vs. previous submission.                                 |     |
|              | Main Pollutants. Per cent change 1990-2005                                                              | 173 |
| 8.8.         | Trends in emissions 1990-2005. This submission vs. previous submission.                                 |     |
|              | Particulate Matter. Per cent change 1990-2005                                                           | 173 |
| 8.9.         | Trends in emissions 1990-2005. This submission vs previous submission.                                  |     |
| 0.01         | POPs and heavy metals. Per cent change 1990-2005                                                        | 173 |
|              |                                                                                                         | 170 |
| Apper        |                                                                                                         |     |
| B1.          | General emission factors for CO <sub>2</sub> , SO <sub>2</sub> and heavy metals                         | 187 |
| B2.          | Exceptions from the general emission factors for heavy metals: Solid fuels                              |     |
|              | in small stoves                                                                                         | 187 |
| B3.          | Time series for variable emission factors for SO <sub>2</sub> (kg/tonne)                                |     |
| B4.          | Time series for variable emission factors for heavy metals, stationary                                  |     |
| <b>D</b>     | combustion g/tonne                                                                                      | 188 |
| B5.          | Exceptions from the general emission factors for natural gas combusted on                               | 100 |
| D0.          | gas terminals, tonne CO <sub>2</sub> /1000 Sm <sup>3</sup> natural gas                                  | 188 |
| B6.          | Exceptions with time series for variable emission factors for natural gas                               | 100 |
| Б0.          | combusted by oil exploration, tonne CO <sub>2</sub> /1000 Sm <sup>3</sup> natural gas                   | 100 |
|              | Compusied by on exploration, torne $CO_2/1000$ SIT initial gas                                          | 100 |
| B7.          | General emission factors for aviation                                                                   |     |
| B8.          | Exceptions from the general factors for aviation                                                        | 189 |
| B9.          | Time series for variable emission factors for aviation Factors for 1989, 1995,                          |     |
|              | and 2000 were calculated as given in the table. Faactors for 1990-1994 and                              |     |
|              | 1996-1999 were calculated by linear interpolation. Factors before 1989 and                              |     |
|              | after 2000 were kept constant                                                                           |     |
| B10.         | General emission factors for road traffic                                                               | 190 |
| B11.         | Average CH <sub>4</sub> emission factors for road traffic including cold start emissions                |     |
|              | and evaporation, g CH <sub>4</sub> / kg fuel                                                            | 190 |
| B12.         | Average N <sub>2</sub> O emission factors for road traffic including cold start emissions               |     |
|              | and evaporation, g N <sub>2</sub> O/ kg fuel                                                            | 191 |
| B13.         | General emission factors for navigation                                                                 |     |
| B14.         | Exceptions from the general factors for navigation                                                      | 192 |
| B15.         | Time series for variable emission factors for navigation. NO <sub>X</sub>                               |     |
| B16.         | Time series for variable emission factors for navigation. NMVOC, CO, TSP,                               | 102 |
| D10.         | $PM_{10}$ and $PM_{2.5}$                                                                                | 102 |
| B17.         | General emission factors for other mobile sources                                                       |     |
| Б17.<br>B18. |                                                                                                         | 192 |
| Б10.         | Exceptions from the general factors for greenhouse gases and precursors                                 | 400 |
| <b>D</b> 40  | for other mobile sources                                                                                | 193 |
| B19.         | Exceptions from the general factors for other pollutants for other mobile                               | 400 |
|              | sources                                                                                                 | 193 |
| B20.         | Time series for $NO_X$ emission factors for use of auto diesel in motorized                             |     |
|              | equipment 4t                                                                                            |     |
| B21.         | Time series for variable emission factors for other mobile sources                                      |     |
| B22.         | General emission factors, kg CH4/tonne fuel                                                             | 194 |
| B23.         | Exceptions from the general factors for CH <sub>4</sub> , stationary combustion                         |     |
|              | (kg CH₄/tonne fuel)                                                                                     | 194 |
| B24.         | General emission factors. kg N <sub>2</sub> O/tonne fuel                                                | 194 |
| B25.         | Exceptions from the general factors for $N_2O$ . Stationary combustion                                  |     |
|              | (kg $N_2O/1000$ Sm <sup>3</sup> natural gas)                                                            | 194 |
| B26.         | General emission factors. kg NO <sub>X</sub> /tonne fuel                                                | 195 |
| 020.         |                                                                                                         | 00  |

| B27.                | Exceptions from the general factors for NO <sub>X</sub> . Stationary combustion (kg NO <sub>X</sub> /tonne fuel)           | 105   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|-------|
| B28.                | Time series for variable emission factors for NO <sub>X</sub> . Stationary combustion                                      |       |
| <b>D</b> 00         | (kg NO <sub>X</sub> /tonne fuel)                                                                                           |       |
| B29.                | General emission factors. kg NMVOC/tonne fuel                                                                              | . 196 |
| B30.                | Exceptions from the general factors for NMVOC. Stationary combustion (kg NMVOC/tonne fuel)                                 | 106   |
| B31.                | General emission factors. kg CO/tonne fuel                                                                                 | 190   |
| B32.                | Exceptions from the general factors for CO. Stationary combustion                                                          | 100   |
| 202.                | (kg CO/tonne fuel)                                                                                                         | . 197 |
| B33.                | Time series for variable emission factors for CO. Stationary combustion (kg                                                | -     |
|                     | CO/tonne fuel)                                                                                                             |       |
| B34.                | General emission factors. kg NH <sub>3</sub> /tonne fuel                                                                   | . 197 |
| B35.                | General emission factors. kg particle component/tonne fuel                                                                 | . 198 |
| B36.                | General particle emission factors for heavy distillate and heavy fuel oil for all                                          |       |
|                     | sources. Factors dependent on sulphur content (kg particle                                                                 |       |
| <b>D</b> 0 <b>-</b> | component /tonne fuel)                                                                                                     |       |
| B37.                | Exceptions from the general factors for particles. Stationary combustion                                                   | . 199 |
| B38.                | Time series for variable emission factors for particles <sup>1</sup> . Stationary combustion                               | 400   |
| <b>D</b> 20         | (kg particle component /tonne fuel)                                                                                        | . 199 |
| B39.                | General emission factors for PAH<br>Time series for variable emission factors for PAH <sup>1</sup> . Stationary combustion | . 199 |
| B40.                | (g component /tonne fuel)                                                                                                  | 200   |
| B41.                | General emission factors for dioxin                                                                                        | 200   |
| B42.                | Exceptions from the general factors for POPs. Stationary combustion                                                        |       |
| B43.                | Time series for variable emission factors for PAH. Stationary combustion                                                   |       |
| D40.<br>D1.         | Summary of standard deviation and probability density of activity data                                                     |       |
| D1.                 | Summary of standard deviation and probability density of emission factors                                                  |       |
| D3.                 | Uncertainties in emission level. Each gas and total GWP weighted emissions.                                                |       |
| 20.                 | Excluding the LULUCF sector                                                                                                | . 213 |
| D4.                 | Uncertainties in emission level. Each gas and total GWP weighted emissions.                                                |       |
|                     | Including the LULUCF sector                                                                                                | 213   |
| D5.                 | Uncertainty of emission trend. 1990-2004. Excluding the LULUCF sector                                                      | . 214 |
| D6.                 | Uncertainty of emission trend. 1990-2004. Including the LULUCF sector                                                      |       |
| D7.                 | Source category level used in the analysis                                                                                 |       |
| D8.                 | Summary of expert judgements of uncertainties in point sources                                                             |       |
| D9.                 | Summary of standard deviation and probability density of activity data                                                     |       |
| D10.                | Summary of standard deviation and probability density of emission factors                                                  |       |
| D11.                | Uncertainty in emission level of pollutants. 1990, 1998 and 2010                                                           |       |
| D12.                | Uncertainties in emission trends 1990-1998 and 1990-2010                                                                   |       |
| E1.                 | Summary of new identified emission key categories in the Tier 2 analysis                                                   |       |
| E2.<br>E3.          | Summary of new identified key categories in the Tier 1 analysis                                                            | 224   |
| ⊏ວ.                 | Summary of identified emission key categories. Excluding LULUCF.<br>Bold numbers are key                                   | 226   |
| E4.                 | Summary of identified LULUCF key categories Tier 2. Bold numbers are key                                                   | 220   |
| E5.                 | Summary of identified key categories Tier 1. Excluding LULUCF                                                              |       |
| G1.                 | Source classifications used in the national emission inventory                                                             | 232   |
| G2.                 | UNFCCC/CRF and EMEP/NFR source sector categories                                                                           |       |
| H1.                 | Categories of cattle and sheep used in the Norwegian calculations of methane                                               |       |
|                     | emission from enteric fermentation. Animal numbers from 2004                                                               | . 236 |
| H2.                 | Daily intakes of gross energy (GE) and methane conversion rate (Ym) at                                                     |       |
|                     | different milk yields (305 d yield) and concentrate proportions in the diet                                                | . 239 |
| H3.                 | Estimated average daily intake of gross energy (GE) and methane                                                            |       |
|                     | conversion rate Ym (%) at different slaughter age and carcass weights                                                      | . 241 |
| H4.                 | Methane emissions from enteric fermentation in Norwegian's cattle and sheep,                                               |       |
|                     | as determined by emission factors taken from European literature (cattle)                                                  |       |
|                     | and IPCC Tier 2 guidelines for 2006 (sheep). Animal predictions from year                                                  |       |
|                     | 2004                                                                                                                       | 242   |