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1. Introduction 

The data commonly applied when estimating complete systems of

consumer demand functions are time series of aggregate household expendi-

tures (per capita) at current and constant prices. Since the consumer

demand function, as derived from classical utility theory, is in essence

a micro concept, this approach inevitably raises well-known problems

of aggregation. Micro data from household budget surveys have proved

very useful in analysing the effect on theconsumption of different commodities

resulting from changes in income, family size, age, etc. However, as such

data are usually collected during a fairly short time span, e.g. one year,

prices and other variables with essentially time specific variation, show 	 411
virtually no variation, and we cannot estimate their effect with an accept-

able degree of precision.

In this situation, the idea of combining data from several house-

hold budget surveys naturally comes to mind. Provided that the different

surveys dollot differ substantially with respect to the sampling plan, the

definition of variables, the length of the period in which each household

is under observation etc., this approach may be fruitful. Unfortunately,
1)

such conformity is not always satisfied in practice. 	 Recently, however,

attempts at a more or less continuous registration of household expenditures

according to a unified plan have been made in several countries. The Central .

Bureau of Statistics of Norway, for instance, is continuously collecting

expenditure reports on a sample survey basis from the year 1974 on. This

sheds a new light on many problems related to empirical consumer demand

analysis, and should accordingly induce econometricians working in this

field to look their models and methods over again.

From the outset, we should make the following clear: It is practi-

cally very difficult - and probably impossible - to obtain household expendi-

ture data which conform with those dealt with in the standard models for

analysing 'complete cross-section/time series data'.
2) We cannot expect

all - not even the majority of - the households selected for observation

in one year to accept participating in the next five or ten years as well.

As the reporting of consumption expenditures is rather time-consuming - at

1) The design of the Norwegian Surveys of Consumer Expenditure of 1958, 1967,
and 1973, for instance, differed significantly in several respects.

2) For instance, the error components models of Balestra and Nerlove()] and
others.



least if it is based on detailed book-keeping, as in Norway - the data-

collecting agency will hardly be able to persuade households to participate

more that once, or at most twiceJt is worth mentioning that the proportion

of non-respondents in the Norwegian household budget surveys is as high as 30

per cent, even when the households are asked to report only once (and even

though the book-keeping period of these households is only two weeks).

Thus, the data we can obtain in practice, constitute what may be

properly called 'incomplete cross-section/time-series data" different house-

holds as well as different periods (years) are represented, but the sample

of households changes over time. The purpose of this paper is to discuss

problems relating to model formulation and estimation in such situations.

In order to put our results in perspective, reference will also be made

to the (hypothetic) case where complete cross-section/time-series data

exist. Our plan is to try to implement, by means of Norwegian data, some

of the theoretical results obtained in the paper at a later stage.

Chapter 2 discusses the model formulation in rather general terms,

with one section devoted to the classification of variables, one section

devoted to the decomposition of the disturbances and one section dealing

with the parametrization of the demand functions. Chapter 3 concentrates

on the special case where only one commodity group is under consideration.

The disturbance variance-covariance matrix of the model are discussed sepa-

rately for three different sampling schemes: disjointed samples, complete

cross-section/time-series data, and samples where the households "rotate".

In chapter 4,these results are generalized to a complete demand model.

Finally, chapter 5 is devoted to estimation, taking the Full Information

Maximum Likelihood principle as the point of departure.



2. The system of demand functions 

2.1. General concepts

Assume that the consumption commodities are divided into N groups,

and let the vector x symbolize the quantities consumed (expenditures at

constant prices) by a 'typical' household to be explained by our model.

The set of exogenous (explanatory) variables can be separated into three

subvectors:

q: a vector of individual (household specific) variables, i.e.
variables showing variation across individuals (households),
but (for practical purposes) no variation over time,

s: a vector of time  specific variables; i.e. variables showing
variation over time, but (for practical purposes) no variation
across individuals,

z: a vector of combined variables; i.e. variables showing
simultaneous variation across individuals and over time.

The q vector may, for instance, include the year of birth and the sex of

the head of household, his (or her) socioeconomic group, the geographic

location of the household etc., provided that the same househdld member is

considered the head in all the periods of observation and that his

socioeconomic group and the location of the household do not change over

time. 	 If the latter assumptions seem too restrictive, the relevant

variables should be included into the z vector. 	 Examples of variables

belonging to the s vector may be consumer prices (disregarding _geographic

price differences), tax rates, indicators of the general economic situation

etc. 	 Of course, different individuals may evaluate the economic outlook

differently and have different expectations about the future. Variables

of this kind, provided they can be quantified, should be included into the

z vector. 	 Finally, the z vector may represent the income and wealth

position of the household, (and, possibly, lagged values of these variables),

the stock of durables, the number of household members, the week(s) in

each distinct period (e.g. year) during which the consumption expenditures

are reported 1) etc.

Let subscript i denote the commodity number (no. of the element of

the x vector), and let h symbolize the number of the individual (household)

and t the number of the period. The system of demand equations can then

be written in the following general form:

1) The variable 'week(s) of reporting' may be "individualized", i.e.
transferred from z to q, by adopting an observation (sample) plan in
which each household reports in the same week(s) in all the periods (years)
it participates in the investigation.



t 	 i h 	 t ht) + Eiht
(2.1) 	 Xi ht 	 f.( 	 , s

where E
iht
. 	 is a stochastic disturbance supposed to be uncorrelated with

qh , s t and zht . We assume that the vectors of exogenous variables are

properly specified, i.e. that the structural parts of the f 1 functions do

not shift across households or over time.

Let p
i
 denote the price (index) of the j th commodity in the 'th
t

period and let

(2.2)
N

E pi xihti=1

represent the total consumption expenditure of the h th household in the

t i th period. The price vector(p 	 p ) is a part of the "time

specifie'vector s
t' 

and y 	 is an element in the "combined" vector z .
ht 	 ht

Defining

(2.3) a., 	 -
int

p itxiht 

Yht
(• = 1, ..., 	 ),

i.e. the budget share of the i l th commodity for the h h individual in the

t'th period, we respecify eqs. (2.1) as follows:

(2.4) 	 a. 	 = f.(q, 	 s, z
iht 	 i h 	 t 	 ht 	 iht

where 	 f( S )
) = Pitfi(*)/Yht' 

and E iht = p. Eiht lYht .

• ,

It seems more plausible to assume that the variances of Eiht

are constant across individuals and over time than it is to make this

assumption for s
iht 	 E
. 	 This rests on the fact that homoscedasticity of .iht

(across h and t) (i) pays regard to the notion that the scope for variations

in consumption habits is larger the higher is the real income, and (ii)

ensures that a proportional change of prices and income does not affect the

second order moments of the distribution of the disturbances.
2) Therefore,

we shall stick to the formulation given in (2.4).

2.2. The structure of  disturbances: 2reliminary remarks

The disturbances 6iht represent the net effect of several non-

observable variables not included in the argument list of f 1 	One possible

specification of the stochastic structure might be, for each value of i, to

2) See Morn : 4 3, pp. 4-71 for a further elaboration of this point.



let • all E.
iht 

be independenly and identically distributed. However,

recalling that the effects taken care of by the disturbances may be partly

purely individual (e.g., "tastes", "habits" etc.), partly purely time

specific (e.g., general expectations concerning the economic development)

and partly combined effects
3) , this does not appear as the preferable

solution.

Rather, we shall take the 'error components approach' previously

used by several authors in the context of single equation regression

models (cf. e.g., Balestra [2], Balestra and Nerlove:a], ChettyS 7,
Kuh[9] Maddalaril], Nerlove0.3],[14], and Wallace and HussainED::) ,

specifying E.
iht 

as the sum of three components:

(2.5)	 Ciht 	 u. + v. + wiht 	 it	 iht

Here u.
h
 is the individual component, v. is the time specific component

	

i 	 it
and wht

	

. 	 is the combined component respectively associated with commodity i.
i

The structure of the disturbances will be discussed in some detail

in chapters 3 and 4, so we leave this problem here. Only one remark: If

the parametric speeification of the demand functions conforms "exactly"

with constrained utility maximization, the adding-up condition

N
(2.6) 	

1i h' st' zht )i=

will be satisfied identically in q, s, and zint . Then, in view oft 
(2.2)-(2.4), the distribution of the disturbances should obey

N
(2.7)

1

E7) iht = E (u h
. + v. + w i t) = 0 for all h and t.

	

i 	 iti=l 

On the other hand, if the functional forms chosen imply satisfaction of

(2.6) only approximately, then (2.7) does not represent an exact and

absolute constraint.

2.3.  Possible 2arametrizations of the budget share functions 

The choice of parametric specification of the budget share func-

tions f clearly deserves particular attention. Briefly stated, our problem

is to establish functional forms that a) are sufficiently flexible to reflect

adequately the variations in consumption pattern across the individual as

3) Compare the formally similar disaggregation of the vector of (the
observable) exogenous variables.



well as the time "dimension", b) agree reasonably well with commonly

accepted theory of consumer's demand, and c) permit econometric estimation

with the Aitken Generalized Least Squares or the Maximum Likelihood

methodology.

We shall not attempt to give a definite solution to this problem;

that is partly an empirical matter, of course. At this stage, we confine

ourselves to a list of selected functions which may be worth investigating.

We concentrate on the parametrization of the income and price responses.

Demographic and socioeconomic variables, as well as the possible effect

of expectational variables will not be introduced at this stage.

All the equation systems AH below satisfy the homogeneity con-

straints of the static theory of choice; AD satisfy the adding-up

condition identically. Among these, only A-C satisfy the conditions

of symmetry and negative definiteness of the Slutzky substitution matrix.
4)

A. Linear Expenditure Functions 'a la Stone

This specification implies

P. 	Np.it(2.8) 	 a. 	 = c.- + b.(1-
t ht 	 j=1v-ht 1

(0<b.<1, E.b.=1).
1

B. A generalization of the Stone system along the lines of  Fourgeaud

and Nataf

(2.9)

Replace the constants c i in (2.8) by
pitJ3-1 ,,Yhtc; 	 t.

,
i p P

t

N
where 	 E (t.p. )

1/3' and C(*) is an unspecified function obeying
j=1 	 3t

certain constraints. 	 Cf. Johansen E8.,, Nasse Ei:1.)

In the rest of this chapter, all disturbance  terms are, for simplicity,
omitted.



C.  Carlevaro's aeneralization of the Stone system

Replace the constants b. in (2.8) by

J 3(2.10)	
p	

J 
0	

(Ebio = 1, Eb il = 0
P

where 45(s) and the price index function P t

certain conditions. (Cf. Carlevaro

Notice, in passing, that (2.3), (2.8) and (2.10) imply

= P (Plt ,

	 • • , ) satisfy

p. (x.	 -c.
it iht

Y	c.
ht j it

+ b.
-E.p. c.
t J	 J 

P
t

i.e., the supernumerary budget shares' are linear functions of a

transformation (1)(.) of the 'supernumerary real income'.

D4 ----------
Budpt shares 2o ynomials of the third dearee in total real
ex2enditure

We postu1ate
5)

D	 D Yht	 D Yht 2(2.11)
ht

=ct. 
l 	 1	 - 1 P

1 t

'ht
P
t

where P is a consumer price index homogeneous of the first degree, and
D t D	E a. = 1, E 13.	 E.y.D =	 = O.i 	 i i 	il	li

E. Expenditures  at constant Rrices  Eolynomials
degree in total real expenditure

This specification implies thatrather than a. , is axiht,	
iht

polynomial of the third degree in yht /P t , i.e.,

	

(2 12) a	
EP	

+it	 ,EP	 + yEit	 E it h  + E  itY ht 

	

..	 = a.----	 00.---- 	 .

i t 	 iy 	 1P 	 i 	 i	ht	 t	
p2

P3
	t 	 t

This parametrization does not, in contrast with A-D, satisfy the adding-

up constraint (2.6) exactly. It will, however, hold reasonably well if in_the

period of interest prices change in such a way that

E.a%.	 = E.
i

6
i

p. = 0,
i t

E
E..p.

i it

are satisfied approximately.

Of course, this specification may be generalized to polynomials of any
degree.

the third

2

p ,



F. Budet shares linear in total real exRenditure  and  wn real_price

In this case, the budget share functions take the form

(2.13) 	 a.
	y 	 P.oF h 	 F it
	4. P ill) 	 i2P

Neither in this case will the adding-up constraint be satisfied

exactly, but it will hold approximately if

F 	 F 	 F
EiiO 	I, E i ail 	0, E i a i2p i Pd0,

F 	 oF 	 F
or if 	 E.(3.

3. 	
n

i Pil 	 v,

G. Expenditures at  constant  Erices linear in total real expenditure
and own real  price

Specification G differs from F in a similar way as E differs from

D, i.e. we postulate

(2.14) 	 a.
iht

2
G

it 4-
13 '	 Grit 	 Grit 

1°Yht 	
11P t 	

'i2y P
ht t

Approximate satisfaction of the adding-up constraint in this case is

ensured if

E.(3
G 	

.
2

i2
p
 it

H. Modification of  specification G to Remit  cross-Trice effects

A drawback with specifications D-G is that cross-price responses

are rather summarily represented. For some levels of aggregation this may

be felt a serious lack of realism. A possible remedy might of course be

to extend (2.13), or (2.14), to a full quadratic form in y /P and
ht t

N), or in p /y
ht 

and p
it

/P
t
(j=1, 	 N), respectively.t t 	 it 

Such extensions would, however, imply a lavish increase in the number

of coefficients, even for moderate values of N.

The following specification, proposed by Lybeck ElC] in connection

with aggregate time series data

H P it 	 H itP.
(2.15) 	 a. 	 = (3. ---- 4- (3. ---- 4-iht 	 lOy 	 ilP tht

N 	 P. 	 p't
p 

'ij 	 tj = 1 	t



9

represent an intermediate solution. (Lybeck, however, presents and uses

his equation with P 
t 
x
iht
. /yht = a. P /p

'

 i.e. the budget shares at
t it

constant prices, as left-hand variables.) In this case, approximate satis-

faction of the adding-up constraint would be ensured if

E.	 p

	

(3.,.	 0,	 E.E.p. y..p.
iu	

O.
t 	 3 it 1.3 3t

•



10

3.  The single -e uation (one commodity) model approach

3.1 The structure  of disturbances: Basic assumptions

In this chapter , our attention is devoted to one commodity only. Let

cht denote the disturbance of the demand function for this commodity relating

to the h l th household and the t i th period. Assuming that eht may be decom-

posed into three additive components, a household specific (individual) corn.-

ponent uh , a period (time) specific -component v t , and a combined component

(a remainder) wht' we have

(3 .1) E	 = 	 + V + W
t	 t	 ht

for all h and t.

(Notice that the symbols correspond to those used in ch. 2 with the comma-

dity subscript i

pectations,

omitted.) 	 All components are supposed to have zero ex-

(3.2) 	 E(u )
h

E(v) =
ht 	 for all h and t ;

and to be mutually uncorrelated, with constant variances, i.e.,

2a(3.3a) E(u
h uk) = hk I '

(3 . 3b) E (v v )
t s

2
6 ats T

for all h,k,s and t,

0.30,w 	 a2ht ks) 
.

hk ts

(3.3d) E(uhvt ) 	 E(uhwks) =Evtwks) = 0,

where 6 and 3 denote Kronecker deltashk 	 ts

(6 	 =hh 	 tt 6hk = O for k h, 	 = 0 for s 4 0ts

The subscripts I,Tvand C symbolize "individual", "time specific" and 'com-

bined", respectively.

From assumptions (3.1) - (3.3) follows

(3.4) 	Echt) = 0,
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(3.5) 	 E(E e ) = cS a2 + 	 a2 + 	 6 a2
ht ks 	 hk I 	 ts T 	 hk ts C•

The variances/covariances may be written, more explicitly, as

2
a 	 for k = h & s = t,

2
Pa 	 for k = h & s 	 t,(3.5a) E(chtcks) 	 2
wa 	 for k h & s t,

o 	for k h & s 	 t,

2 	 2
a

T
=a+a+ a

I 	 C
(3.6) 	 2, 2

= a /a
I 	 41
22= a /a

3 2.2The_categories of data

Of course, we do not observe all households in the population in all

periods; i.e. observations for all possible combinations of h and t do not

exist in the sample at our disposal. Only selected (h,t) constellations are

represented. It is useful to distinguish between the following three main -

categories of data:

A. Pure cross section (CS) data.

B. Pure time series (TS) data.

C. Combined cross section/time series (CS/TS) data.

In pure cross section data  , all observations are taken from one period,

i.e., observations for which s 	 t do not exist. Assuming that the period in

question hau number 1, the first and second order moments of the disturbances

are completely described by (cf.(3.4)-(3.5))

E ( chi )

E ( Eh lek l ) 

2a 	 for k=h,

wa2 for k+h,     

We notice that all disturbances are correlated, since they have v
1
 as a

common stochastic component. At a first glance this see-ms to be in - cofiflict

with the specification commonly adopted when analysing cross section data. The

solution is, of course, that the usual assumptions should be interpreted as

where
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conditional with respect to the value of the time specific component in

period no 1. Fram (3.1)-(3.3) follows

E(chi lvi) = vl , 

a + a 1-w)a2 	for k=h,

for k+h,
E(ehi ckl ivi )

I.e., ehl and ski (k+h) are uncorrelated 
in the distribution conditional on v/ .

The non-zero expectation v1
 causes no problem, as this is an unidentifiable

constant that cannot be distinguished from the constant term of the "structural"

part of the equation; E(Ehl 1) may be set 
equal to zero without loss of

generality.

Correspondingly, in pure time series data, all observations relate to

one individual, i.e., observations for which k+h do not exist. If the indi-

vidual in question has number 1, the structure of the disturbances in the

sample may be described as (cf. (3.4)-(3.5))

for s=t,

for s+t,

Also in this situation all disturbances are correlated, since they have the

individual stochastic component u1 in common, The corresponding first 
and

second order moments conditional on the value of this component are

E(e i 	 =u

E(e e s l
(1-00* for s=

for s+t.

I s e " elt and els ( +t) are uncorrelated in the distribution conditional on u1.

A sample of combined cross section/time series data  contains observa-

tions from different individuals as well as observations from different time

periods. Assume that the observations relate to the periods 1,2,...,T re-

spectively, and let the set I denote the members of the households selected

from the population in the t'th period. Adopting this notation, we may distin-

guish between three types of combinedcross section/time series data, which

can be formally described as follows:
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C 1. CS/TS data with disjointed samples: 

Data in which the sets I t/
II

S 
are empty for all t and s4t.

C 2. Complete CS/TS data:

Data in which Il 
= 1 2 =

C 3. Incomplete CS/TS data: 

Data in which the sets Iv 1 2 , 	 are not identical, and

the sets I nl are not empty for all t and s+t. "Rotationt s
samples" i.e., samplei for which 1.1

111,n-ell, is empty,whereas
4 	 .

I tra t_ i is not empty, (t=2, 	 ,T), constitute a particularly in-

teresting subclass of incomplete CS/TS data.

Stated in words: In CS/TS data with disjointed samples, different --

individuals are selected for investigation each period; 1.e., we find no

observations for which k=h and s4t 	 In complete CS/TS data, the individuals

selected in each. of the T periods are identically the same. In incomplete

CS/TS data, some, but not all, of the individuals selected in one period are

included in the sample for one or more of the subsequent periods. In rota-

tion samples, in particular, some of the individuals selected in period 1

are included also in period 2, while the remaining ones are replaced by

a fresh sample drawn from the (updated) population. A subset of this

sample is kept for investigation in period 3 and combined with a fresh

sample from the (updated) population in period 2, etc. Thus, in complete as

well as in 'incomplete CS/TS data sets, observations for which k=h and s+t

exist.

Obviously, the form of the variance/covariance matrix of the complete

sample vector of disturbances does strongly depend on the choice of sampling

plan. We have already pointed out the differences in this respect between CS

data, TS data, and CS/TS data. In sections 3.3-3.5, we shall discuss the co-

variance structure within the CS/TS class, assuming,for simplicity, that all

data sets include H observations (individual household reports) from each

of the periods 1,2,. .,T, I.e., the total number of observations is HT. Assume,

further, that the individuals are numbered consecutively from no 	 onwards,

and that the number of individuals in the population by far exceeds_HT.

We shall consider the following three sampling schemes:
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CS/TS data with disjointed samples:
OM ...NM 	 .111,11.11 	 ONO 4.11.000

Il = f1,2, ..,H),

1
2 

= fH + 	 , H + 	 , .111,11 , 2H 1

•

I t = {(t -I) H + 1, t- 	
H + 2, ...,tHl,

IT = f(T-1) R 4. 1,•(T-1) H + ,...,TH1.

Complete CS/TS data:

I t = f1,2, 	 ,H} 	 (t=1,2, 	 ,T)

Rotation samples with one half of the individuals "in  rotation"

each  period:

•,}1};

I
2 

= 	 -1 —
H + 2,...

•

t-1) , (t+1)

IT = “T-1) -2
H
- +	 (T-1 ) 

H
 + 2,.
	 H

CH is supposed to be an even number .)

The total number of individuals investigated is strongly different,

being TH when using disjointed sami)les, H when using complete CS/TS data,

and (T+1)H/2 when using rotation samples. Thus, the first sampling plan

involves the least "intensive" investigation of the micro units, the second

is the most "intensive", while the third is situated "in between".

In the discussion so far, we have used the subscript h to indicate

the number of the individual (household) in the population. From now on,

this letter will be reserved to denote the number of the individual ob-

servation (household report) in the sample from each period under investi-

gation, i.e.
ht is reinterpreted as the 

disturbance of the h th observa-

tion (household report) collected in the t i n period (h=1,...,H;t=1,...,T).

Indicating the disturbances relating to the individuals as numbered in the

population by the superscript A, we thus have



li)  disjointed sam2 es

A

= eta'

,Ae = ch2 	 11441,2,

etc.

1ii) complete CS ITS data

eht e
A
ht

/iii)  rotation sampies

A= e
hl'

A
Eh2
	

eh-fill 12 2

etc.

(h=1, ...,H; t=1,

(h=1,—

In this way, we ensure that the values of the subscript variables h and t form

a HxT matrix regardless of the choice of sampling plan (provided, of course,

that the sample includes H observations from each_ period).

3.3 The  disturbance variance/covariance matrix: CS/TS data with disiointed

sam2lesi

Let e denote the (column) vector of disturbances relating to the

individuals observed in the t f th period, i. .e.,

(3.7)

We find

(3.8)	 E

	2 	 2	a 	
TCT ...a'f',,, 	 =

- t 	 2 	 2. .... 2	a T 	
. 	 aT

::

=
2
A 	 (t=1,...,T

2
	

2
•

where A is the HxH matrix



(3.12) E(cE ) 	 a
•

w CO 	 1
2

with w representing the proportion of the total variance a which is due

to the time specific component. (Compare eq. (3.6).) In compact notation,

the matrix A may be written as

(3.9 ) A = (1-w) In w(eH4),

where H is the identity matrix of order H and eu is 
the Hxl unit vector

(i.e., the vector consisting entirely of ones). Moreover, since all ob-

servations relate to different individuals, all disturbances with diffe-

rent time subscripts are uncorrelated, i.e.,

(3.10) E 	 E
S 	

oH H
	 (t= * ib

	 t),

where 0H H is the HxH zero matrix.,
Defining the THx1 vector

(3.11 ) c

consisting of all the disturbances in the sample ordered first by period

and then by observation within each period, the variance/covariance struc-

ture may be expressed as

or, by using the Kronecker product operator 	 as

(3.12a) E(cc ) I (DAT

where IT is the identity matrix of order T. (The subscript D is

viation of "disjointed".) From (3.9a) and (3.12a) and well-known proper-
1)ties of Kronecker products 	 follows

1) See e.g., Theil j,7], pp. 303-306,

an abbre-
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(3 .13) E (Ec
1

=	 t (1-w) ITH + (.1) (IT e eaeti )1,

where 'TH = 
I

T
 e IH is the identity matrix of order TH.

We conclude that the variance/covariance matrix of the disturbances

when using CS/TS data with disjointed samples is block-diagonal with

identical blocks, whose elementes may be expressed fairly simply by the two

parameters a and w. If no time specific effect is present, i.e. w = 0,

the matrix degenerates to the diagonal matrix a
2

3.4  The  disturbance variance[covariance matrix: ComPlete CS/TS data

Using this sort of data, where all the T subsamples contain identi-

cally the same individuals (i.e., the subscript h identifies the individual)

the variance/covariance matrix of the disturbances may be formulated in

two different ways, corresponding to two different ways of ordering the

disturbances: (i) ordering first by period, second by individual, and

(ii) ordering first by individual, second by period. Principle (ii) is

the one commonly used in the context of complete CS/TS data (see, for in-

stance, Nerlove :13 , :14 ""D,and it may, of course , be applied also

when dealing with. rotation designs. However, in the latter case, prin-

ciple (i) appears to be the most convenient, giving somewhat simpler alge-

bra. (This is at least the case with the particular sampling plan con-

'sideredin section 3.5.)2) In this section, both principles will be considered )

partly for the sake of completeness and partly in order to facilitate

comparisons with sections 3.3 and 3.5.

Needless to say, the distinction between the different ways of

ordering the observations is of formal significance only: Changes

in the ordering of the elements of the e vector do not affect its density

function. Although the variance/covariance matrix Q = E(ce ) is changed,

neither the value of the determinant IQ' nor the quadratic form E Q E

is altei.'ed -. Consequently, the likelihood function of the observations is

the same as before.

3.4.1  Ordeting  first by Deriod, second by individual

We start by noticing that the choice of sampling plan does not in-

fluence the properties of the contemporaneous variances and covariances, i.e.

the vector e
t (defined in (3.7)) has the variance/covariance matrix (3.8)

2) As regards disjointed samples, there is only one natural way of ordering
the observations. Differences between principles (i) and (ii) do not
exist.



(3.14) E E
t
E
S 

= = a pIH 	(t=	 ,T; s
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with A given by (3.9). The matrices of non-çontemporaneous covariances,

E(c c s ) (s+t), however are not zero matrices as in section 3.3, but
t 

scalar matrices,

with the diagonal elements representing disturbances relating to the same

household (recalling that p is the proportion of the total variance which

is due to the individual component).

Combining (3.8) and (3.14), we find that the variance/covariance

matrix of the disturbance vector c (as defined in (3.11)) takes the form

(3.15) E(ce

(4:

A pi .....PI
2

pI A

PI	 pI ......

•

.. çi)AI
.:

(The subscript C is an abbreviation of "complete") Using Kronecker pro-

duct notation, this matrix can be written as

C
2 = a

2

 1T 
e (ApI

H
-	 )	 eT e 

T
)(ID (pI )1,

or, when inserting for A from (3.9a), as

(3.16) E(EE)
= a {(1-w-P)ITH 

waT eHeid + p e €) I )
T	 H

3.4.2 Ordering  first by individual second by period

Let Eh denote the vector of the T disturbances relating to the h t th

individual, i.e.

(\,
(3.17) c

h (h=1,...,H).

We find
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2 	 2 	 2
aI

(3.18) E(ch6h) = 	

a 

2 
aI

2	
a
2 	 = a

2
B 	 (h=1, ...,H ) ,	a a	 	  

where B is the TxT matrix

p.....p

(3•19) B
 . p 1.....p

(1 -p)I + p (e e )

p p.....1

The matrices of covariances relating to different individuals are diagonal

matrices, the diagonal elements representing covariances between distur-

bances from the same period:

(3.20)E(h) 	 az
	 w ••, •

• II

46 	 •

0 0 a

. 	 0

• •

• • 	 •

•

#
a k+h).

w 0 	 • 4 •

The HTx1 vector

(3.21)

consisting of all:: the disturbances ordered first by individual, second by

period, thus has the following variance/covariance matrix:

B wi	 ..wi

(NA,' —(3.22) E() = a2Q 	 = 2 wi B . —wi
/e.	 .	 .

:

. 	 .

WI wi	 .B

This may be written compactly as
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2r	 1

= a 
H
	(B-wIT ) + e tieH e(WIT)1,

or, when inserting for B from (3.19), as

(3.23) E(cc') =
2

= a f(1- p-w)IH (T-He eTe
w(eHeHe I )1.

Disregarding a few differences with respect to the choice of symbols,

this expression is identical with the one derived by Nerlove E: 7] ( q.

(1.7), p. 385).

Summing up: I. The variance/covariance matrix of e, as well as

that of c, have identical blocks, of dimensions TxT and HxH respectively,

along the main diagonal. The blocks outside the main diagonal are identi-

cal scalar matrices.

2. In the absence of individual effects, i.e. p=0, all off-diagonal blocks of

thevariance/covariance matrix of E become zero, and the matrix is identi-

cal with the one we get when using disjointed samples Mc = Quo).
3. In the absence of time specific effects, i.e. w=0, all off-diagonal

blocks of the variance/covariance matrix of 'lc' becom.e zero.

4. In the absence of both individual and time specific effects, the vari-

anceicovariance matrice of c and that of e are both scalar matrices Q =

= I ).
Cle	 TH

3.5 The  disturbance variance/covariance matrix: Rotation samples

We focus on the particular rotation scheme outlined in section

3.2, i.e., the one in which half of the H individuals reporting in period

t-I also report in period t (t=2,...,T)Yorthe sake of convenience, the

observations will be ordered first by period, second by individual. (Cf.

the beginning of section 3.4. In appendix A , however, we shall briefly

discuss the opposite ordering, confining our attention to the individuals

reporting twice, i.e. omitting those reporting in period I only and those

reporting in period T only.)

It is readily observed (a) that the matrices of contemporaneous

variances/covariances, E(c tc t), have the form (3.8); and (b) that matrices

of covariances between vectors	 and
s more than one period apart are

zero matrices, since all elements relate to different individuals, i.e.
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(3.24) E(E
t
 ET
) = H,Hs (s=1, • • .,t-2,t+2, .•

The only difference between this case and the case with disjointed samples

relates to the structure of the covariance matrices of vectors for two ad-

joining periods. Recalling that the h i th observation in period t and the

(h+H/2) 1 th observation in period t-1 come from the same individual, we have
,2 (h=1,...,H/2; t=2, 	 ,T) . Similarly, E(E

E(chtEhl-H/2,t- 1 ) = 'I 	 htch-H/2, t+1 )
2

(h=V2+1,...,H; t=1, ...,T-1). Thus,

(3.25)

where

E c E '\ 	 02 g I = 2t-1 =/ 	 I 	 0 	 a pCH

(

2 0 0 _ 2E(E e 	 ) = a
t+1 	 I I 0 - a PCH

is the HxH matrix

(t=2,.. .,T) 

(t=1,...,T-1), 

(3.26) CH

(The four submatrices of CH are of the orders H/2 x H/2.)

Combining (3.8), (3.24) and (3.25), we get

	

(3.27) E(EE) - cy 	 =a;
2,

R 	
2(C

	 A pC

:

0

0 0

0

:

0

0

:
:

:

..

** ... A pCH
:

	

. 	
i

t

t

	A 	 p C 	 0. • 	 ... 0 0H	 ,

H	QC

	.

..... O 	0

	

0 	pc H A 	 . . 0 0. 	 .

....pCH A

(The subscript R is an abbreviation of "rotating".)

This matrix can also be written in compact Kronecker product notation by

introducing the TxT matrix

0 	 0
(3.28) DT

( 1,
T-1

I 	 0

	

T-I 	 T-1,1

i.e., the identity matrix of order T-1 bordered by zero vectors in the

first row and the last column. We find



when inserting for A from (3.9a).

By -partitioning A as follows

(3.30)

	
(1w)IH/2 	

wE 	 .wE

wE 	 (1-w)IH/24,wE)/
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2
(3.29) E(Ec )= a2Q = a fiT

 OA + DT
 e (pCH ) + 	 (pCH )R 

2e 	
t 	 1

= a t(1-w)ITH 4. war eHe )	
p(DT ® CH + DT OCH)},

A

coE A

where E = e
Hi2eH/2 	

and using (3.25) the matrix aft can be reformulated as

A wE 0 0»O 0

wE A pi 0-0 0%h.

0 pi Alt wE.- 0 	 0

(3.31) 0 -

	

R 0 0 wE A'' 0 	 0 	 0
/t

	i 	 .:i 	
• 	 .

	

. 	 .
0 0 0 .4- . • A	 pi 	 0

/t
0 0 0 .-..* pi A

0 0 0-4 . * # 0 	 wE Ait
where all submatrices have dimension H/2 x H/2 .

The properties of 2
R 

can be stated as follows:

1) The main diagonal consists of 2T identical blocks, each having the form A.

2) The sub-diagonals just below and above the main diagonal consist of 2T-1

blocks alternating between wE and pi, beginning (and ending) with wE. 3) The

remaining submatrices of R are zero matrices. Rom this follows:4) 
In the

absence of individual effets, i.e. p=0, then QR is block-diagonal with T

(

identical HxH dimensional blocks of the form A = A wE

wE A

5) In the absence of time specific effects, i.e. w=0, then QR is block-

diagonal with T+1 blocks; the first and last ones are identity matrices
(r I pI)of dimension H/2 x H12, the remaining are HxH matrices of the form pi I

(recalling that A = I
H/2 when w = 0). 6) In the absence of both individual/e.

and time specific effects, ,QR degenerates to the identity matrix of dimension
HT x HT.



for all h and t, and
i=1,...,N
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The simultaneous equations (multi-commoditY) model approach

In this chapter, we generalize the one-commodity model in chapter

3 to the case where a complete set of consumer demand equations is speci-

fied. We start, as in chapter 3, with discussing the covariance structure

of the disturbances corresponding to different sampling schemes (sections

4.1-4.5). The final section (section 4.6) deals with interesting special

cases and compares the main results derived in this chapter with those ob-

tained in chapter 3.

4.1. The structure of disturbances: Basic assumptions

The disturbance of the demand function for the ith commodity

relating to the h'th household and the t th period, eiht may be decomposed'

into a household specific component, a period specific component, and a

combined component (a remainder) (cf. eq. (2.5)):

(4.1) 	 ciht 	
h + v. + w.

iht
for all h and t, and
i=1„..,N.

We assume that all components have zero expectations:

(4.2) 	 E (u.) 	E(v. ) = E(w	 )iht

and that the second order moments satisfy

(4.3a) E(u ihuj ) = 	 ahk ij

(4.3b) E(v. v. ) = 	 a.
lt JS 	 S lj

C(4.3c) 	 E(w. w. 	 ) 	 = 	 a..
iht jks 	 h ts 	 '

(4.3d) E(u.
h
 v. ) = E

(u ihwjks ) = 
E v.

it 
w.
jks = 0i js 

for all h,k,s,t,
and i,j = 	 .

The superscripts 1, T and C symbolize individual (household specific) , time
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(period) specific, and combined, respectively. Assumptions (4.3a-d) imply:

(i) homoscedasticity of all components of the disturbances (var(u ) = a.ih

var	 ) = a..
it 	 11 var(w. ) = a. C

 for all h and 0, (ii) constant covarian-

ces between components relating to different commodities but to the same

household and period (cov(u h', 	
jh) 

= a.. , cov(v. ,v	 a. ) = . , cav( ihtw. 	w
jht
. )i jt 	 ij 	 ' 

= aij. 
C for all h and 0, and (iii) no correlation between components relating

to different households and/or periods)	 These are straightforward general-

izations of the corresponding single-equation assumptions in chapter 3, (3.1)-

(3.3)

(4.4)

(4.5)

From 4.1)-(4.3) follows

E(E.
ht

 ) = 0,i

E(c.	 c. 	 ) = a.. 	 +iht jks	 hk 13 ts ij
4- 6 a..

tS 13

or more explicitly

(4.5a) E(cihtjks
j

a

- 

I + a. . + a.ij 	 i 	 ij
I

a.
13

for k=h & s = t,

for k=h &

for kih & s = t,

for kih & s 

Defining

f;
i 	 1.1 	 .

crii = 
a. 1 +1 . 	i	 a..

6) I a— 

+ ij

(4.	 = a.. /a..i 	 13 	 13 	 j=1,. .,N),

T,= a.. /

the variance/covariance structure may alternatively be expressed as



(4.9)

lht

Zht

Nht

lh

;h

uNh

E	 =(I) a..	1 	 E(T) 	
(ai	13	 j

(I)
	a..)	 E 	 + E (T)

1 3

(4.10)

a.. 	 for k=h & s=t,
13

(4.5b)	 E .	 for k=h & s+t,
E iht jks ) =	 Pijaij

w ..	 for k+h & s=t,
i

a
3 13

for k+h & s+t,

Owing to the adding-up restrictions (2 7 ), the a's have to satisfy

N	 N
1

(4.7) 	 E a.. 	 E 
( Ia. 	 + 	 T 	 C

a.. + a.. )-. 0 	 ( j =1, 	 .,N).

1=1 13 	i=1 13
	 13 	 13

We shall also consider the stronger set of restrictions

Ea. I 	Ea.. T = Ea.. 0 = 0
13	 1i3 	 1.1

Before proceeding further, it is convenient to rewrite the formu-

iae above in matrix notation. Defining the Nxl disturbance vectors

(4.8) (j=1, 	 .,N)

and the NxN matrices of "contemporaneous" variances/covariances

equations

(4.1it)

4.1 )-(4.5), (4.7) and (4.8) may be formulated as

ht	 h-	 v + w	vi	
t	 ht

(4.21 )	 E(u ) = E(v ) = E(wE(uh)	 ht)

(4.3a	 E(uhu



(4.3b 	 E(v v )t s
=

ts
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(4.3c 1) E (wht wks ) = hk ts 
(C)

(4.3d ) E( hvs)(u wks ) = E v w I
h 	 t ks)

(4.4 le 	 E(E )ht

(4.5 ) E(6 	 =ht ks

(4.5a it) E e cht ks

for k=h & s=t,

for k=h & +t,

for k+h & s=t,

for k+h & s+t,

(for all h, k, t, and s)

(4.7 11) EeN = °N

(4.8 1) (1) 	 _ _(T)
eN 	 eN

)E 	 eN = °N .
Here 0N,N and 0N are zero matrices of orders NxN and 

Nxl respectively, and

eN is the Nxl unit vector.

4.2 The sampling  schemes 

Again we shall consider the following three sampling schemes: (i)

cross-section/time-series (CS/TS) data with disjointed samples, (ii) complete

CS/TS data sets, and (iii) rotation samples with one half of the individuals

"in rotation" each period. (Compare the formal definitions of the sets

given in section 3.2.) Using from now on the symbol E iht to denote

the disturbance of the i t th demand function in period t relating to the h i th

observation (household report) from this period, and lettina the superscript

A indicate' the corresponding disturbances when the individuals (households) 

are numbered as in the population, we have the following correspondence;

(I)
t s

$

Ots



(ii) 	 comp,  ete CS/TS data

A
Ciht (h=1,..H; t= ••,T),C.

iht

(i) disjointed  samples

A
Ci

	

hi 	 Eihl,

A
c.

	Eih2 	 1,h+H,2,

etc.
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(iii) rotation samgles

C.ihi
A

Eihl,

A
. 	 (h=1, 	 .,H)Eih2 	 E h+H/2,2,

etc.

4.3 The disturbance variance/covariance matrix: Disiointed CS/TS samples

Let E be the HNx1 vector of di.- turbances of the individuals observed

in period t, ordered first by individual, second by commodity, i.e.,

(4.11)

where the subvectors
h 

are defined in (4.9). From 4.5a
	

follows

(4.12) E(Etc)

E 	 E

(E E

• :
E (T) 7

•( 	 (T)

• (T)
(T)

(T)
(C) E-E 	 ) (T)

(t=1,. ,T)

r (T)

E

where EH(
H 	 H

e
H
) is the HxH matrix consisting entirely of ones, and where the

last equality defines J. Furthermore



(4.14) E

= I	 J

= ITH C)(E-E(T))) 	 TO% e
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,...,T; s+t),(4.13) E(Etcs) HN, HN 	
t=

since all disturbances with different time subscripts come from different

individuals.

Let

denote the THNx1 vector consisting of all disturbances ordered first by

period, second by individual, and third by commodity. Its variance/covariance

after inserting for J from (4.12). (As previously, the subscript D is an

abbreviationof "disjointed"). This equation generalizes eq. (3.13). In the

absence of time specific effects, AD takes the form 'TH 0. E.

4.4 The disturbance  variance/covariance matrix: Com2lete CS[TS data

In this section, as in section 3.4, we shall consider ordering the

observations first by period, second by individual, as well as the opposite

ordering. The ordering by commodity is supposed to take place after the o der-

ing by period and individual; i.e. we discuss, as in section 4.3, the ordering

of the -vectors Eht
 (defined in (4.9)). In appendix B, we shall, however,

briefly comment on the covariance structure when the ordering by commodity

precedes the ordering by period and individual.
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4.4.1 Ordering first by ReriodL second by individual

The vector c t , as defined in (4.11), obviously has the variance/c

variance matrix (4.12) in the present case as well. All the matrices of non-

contemperaneous covariances are of the form

(I)E 0

WS*

(4.16)
•

4 	 •
• •

0	 •	 E (I)

= I 0E (I) (t=1,...,T;	 t ),

where the blocks along the main diagonal contain covariances relating to the

same households. (The zero matrices have dimension NxN )

Combining (4.12) and (4.16), we get

:

J L - .

(4.17) E(c) = 	

(

0 (J-L) 	OL

with E defined in (4.14). (The subscript C is anabbreviationof "complete".)

Inserting for J and L from (4.12) and (4.16) yields

(4.18 ) E(ce ) =TH 4) (E-E ( +IOEC E Cr)
T	 H

ET C)

which is a generalization of equation (3.16).

4.4.2  Ordering first by individual, second by period

The TNx1 vector of disturbances relating to the h' th individual

•L J

L L



= I 0 (E—E) E

) •	 *

4 •

(4.19)
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with sabvectorsE
h
 defined in (4.9), has the following variance/covariance
t

matrix:

(4.20) E

the last equality defining K. The matrices of covariances relating to

different individuals are block diagonal matrices  

0

E

• * • 

(4.21)

T) 

• E

k+h),

the last equality defining M. The blocks along the main diagonal contain
•

covariances betweenobservations from the same period. (The zero matrices

have dimension NxN.)

The HTNx1 vector

1
(4.22)
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containing all disturbances ordered first by individual, second by period,

and third by commodity, thus has the variance/covariance matrix

M

(4.23) E(E )

ItT 	(K-11/44) + E

or

(4.24)	 )	 A 'HT	
(E_E(I) 	

E(T)
+

(I)

H G 1
T
 do E (T)

when inserting for K and M from (4.20) and (4.21). This equation generali-

zes 3.23).

4.5  The disturbance variance/covariance matrix: Rotation sam2les

In view of the results detivesi in sections 3.33.5, and 4.3-4.4, the

variance/covariance formulae corresponding with rotation samples may be

readily established. First, we notice that the matrices of contemporaneous

variances/covariances are identical with those in sections 4.3 and 4.4, i.e.

E(c) = j = 0 (EE)( T), + EH- (T)E	 . Second, all matrices of covari-

ances between disturbance vectors more than one period apart are zero matri-

ces, since their elements relate to different individuals, i.e.

ACie	
• 

K .-•

M

(4.25) E( t E s	
HN,HN
	 (t=1„,.,T;s=1,...,t-2, t+2,.	 ,T



h+H/2,t-1

(h=H/2+1,

(h=1,...,H/2 . t=2,...,T

H; t=1,... T-1),

Third, E(ch

and E(c E 	 4 	 )ht h-H/2,t 1

(0

z (

(I)
CS)H

(2)

0

Q'

J 	 0

(4.27) E(ce) =

32

all other submatrices of E( 	 -1c c t ) and E(ct t+1
are zero matrices, i. e.

f. (3.25) and 3.26)).

Thus, the complete variance/covariance matrix takes the form

where	 C
H 
0 	 , or in Kronecker product notation

(4.28) E(ec t ) =	 =	 (1) J	 DT 	(21

(EE
(T)

) T EH (i°- 

,( )(D
T
 CD c + Di (3) c) 0 Li

T

4.6 SRecial cases: comparison  with the sing e e2uation model

The THN x THN variance/covariance matrices AD,
 A

C, Aom, and AR (de-

fined in eqs. (4.15), (4.18), (4.24), and (4.28)) are in general rather com-

plicated and may prove inconvenient to deal with empirically, at least when

T, H, and N are not very small. This motivates simplifying the structure by

(I) 	 (T) 	 (C)imposing restrictions on E	 , and E 	 , reducing the number of free

(T )

parameters.
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(I)What is the maximal number df elements in the matrices E, E ( )

(C) , and E that may be chosen freely? First, the definitional equations

I T	 Caii = aij + au + aij ana the symmetry conditions aji
I	 I

= Gi 	aj • T = au ,
C	 Ca.	 = a.	 yield N

2
 :3N (N-1)/2 = (5N

2
	3N)/2 restrictions. Second,Ji

adding-up conditions (4.7), or the stronger set (4.8), impose N and 3N

restrictions respectively. The maximal number of 'degrees of freedom!' is

thus

2	 5 2	 14N - (-N N -1- N) = -N (3N+1)2	 2	 2

when using (4.7), and

2	 5 2	 3	 34N - (-N - -N + 3N) = -N (N- 1)2	 2	 2

when using (4.8).

Suppose that the matrices (p .) and (w..), containing the shares in

the "total" variance/covariance of the individual and time specific compo-

nents respectively, have one set of "row specific" and one set of "column

specific" components:

= X .A.

the

(i,j=
w.= p.11.
lj

(Cf.e	 (4.6).) This implies

(4.30

a. = X.X.a.

	

lj 	 13 13

a. = 11.11.a.
	1j	 1j 	 1j,  

(4.29)

or

(4.30* 
E (I) = XEX
(T)E 	 = PEV,  

where

(4.31) A

0 iv I

airr,•••■■



a22

4- a22 - a
33

)/2

33
)12.

a13 = a31

a =23 	 3,2

34

2	 2
Since a.. - 0, the inequalities X. +	 I should be satisfied for all

With this reparametrization,	 the strong set of adding-up restric-

tions, (4.8), will not be satisfied in general: E.a.= E a. .
T = 0 would

ij 	113

imply E iX iaij = E.p.a.. = 0( j=1,...,N), which cannot hold unless X. and p.

have the same value for all i ( assuming that E has rank N-1). The number

of degrees of freedom is: N(N1)/2 (= the maximal number of a.. s that can

be varied freely) + 2N = the number of X
i
's and ), i.e.

1
---N (N+3)
2

Example: N=3 

The number of degrees of freedom in the a..'s is N(N-1)/2=3. Choose

a11' a22 
and a freely. The 6 covariances then must satisfy 33

a21 + 31 	 11

21
	

32
	

22'

	3 
+ a 32
	 a33 ,

	a 21 	 a12,

	a31
	a13,

	a 32 	 a23'

which implies

a12 = a2 =(a11 a22 + a33)/2,

11

In addition, the 6 X's and p's can be varied freely. Thus, the total number

of degrees of freedom is 3+6=9.
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We now impose the following stronger set of constraints: 

(4.32) (i=1,...  

where, of course, p and w are non-negative. In view of (4.30), this implies

a.. = pa..,
13 	 13

(4.33)1

or

a.. wa
1.1 	 ij 

(I)
= pE

(T)
E 	 = wE   

Inserting (4.3310 into ells. (4.15), (4.18), (4.24),

(3.16), (3.23), and (3.29), respectively, we get

(4.34) 
AD = {(1-w)ITH WIT® HI*	 E	

OD E,

and (4.28), using (3. 13)

(4.35) A
C

f(1-w-OITH WIT EH + PET (DIH }coz

(4.36) Ac e E + wEHT 	 H 	 T 	 H T	 E =." 201e (2)4■114 

(4.37) A
R
 = { (1-w)

 'TH
 + WIT EH	 T	

H + D ' ® cf)} 	 ETH R

In this way, we obtain that the variance/covariance matrix of the

complete vector of residuals in the multi-equation model can be written as

the Kronecker product of two matrices: one of dimension THxTH and propor-

tional with the variance/covariance matrix in the single equation model,

the other of dimension NxN and equal to the E matrix of "contemporaneous"

variances/covariances in the multi-equation model. In view of the simple rules

that exist for inverting and calculating determinant values of matrices ex-

pressed in terms of Kronecker products (cf.eqs (0.2) and (0.3) in appendix

C), this simplification represents a considerable gain when it comes to
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estimation. The specification (4.32), admittedly restrictive since it im-

plies that the relative importance of the individual and time specific com-

ponents of the variances and covariances is the same for all commodities,

should be interpreted on this background. The structure of the E matrices

in this case has

—N (N-1)2

degrees of freedom, and we notice that restrictions 4.8) are satisfied

automatically when 4.7) is imposed.



f (z; ) + w,

where w is distributed as N(0,2).
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5. Estimation 

Combining the specification of the demand structure (chapter 2)

with the stochastic specification of the disturbances (chapters 3 and 4)

we now proceed to the problem of estimation. We shall first sketch the

problem in general terms (section 5.1) and then discuss practically

interesting special cases inscme detail (sections 5.2 and 5.3)

The	 m

	

5.1. Preliminaries: T	 Full Information Maximum	I . 	 4, 	 4 	 .4.

Likelihood (L4IML)  2rinci21e

Provided that the disturbances are normally distributed, the folio-

wing general scheme contains all the models and situations considered in the

previous chapters as particular cases:

Here, x denotes the vector of budget shares (ordered in a prescribed way),

w is the corresponding vector of disturbances, f is a vector function,

z is the vector containing all the values of the exogenous variables,

is the vector containing all the coefficients of the budget share

functions, and is the variance/covariance matrix of w.

Letting, in general, n denote the dimension of x and w, the log-

likelihood ,.unction (i.e., the (natural) logarithm of the density function)

of x is

(5.2) L = L (x,z, ,Q ) =	
n	 1log (27 )	 log

21.

provided 0, is non-singular.	 The symmetry constraint, 2 = rn2, leaves

n(n1)/2 free elements in Q. Meaningful estimation requires some additio-

nal restrictions on this matrix.

The Full Information Maximum Likelihood (-=) estimators of (the

unknown coefficients of) :8 anciç?, are those which maximise L simultaneously,

given the values of x and z. If, in particular, is known up to a factor
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of proportionality, the FIML estimator of 	 is found by minimising the
quadratic form

(5.3) 1w' 	 w = -f (z $)},
1

-f z; )/

We shall now turn our attention more specifically to three particular

cases:

(i) Disjointed CS/TS data.

(ii) Complete CS/TS data in the absence of time specific dis ur-
bance effects.

(iii) Rotation samples in the absence of time specific aisturbance
effects.

The single equation case is discussed in section 5.2, section 5.3 deals

with simultaneous estimation of the complete model in the particular

case where the time specific and individual component resoectively of

the variancesicoariances represent the same proportion of the corresponding

total: T : wo.„ resp. G, I
13

4

= pc., for all i and j; cf. section 4.6.

5.2 Estimation in the  sinale-evation model

5.2 1.1 _Disjointed CS/TS data. 1)

Let a denote the vector of budget shares of the commodity considered,

ordered first by period, second by individual, i.e.

1) Evidently, disjointed CS/TS data are formally identical with both
complete CS/TS data and data from rotation samples in the absence
of individual disturbance components. Thus, the results obtained
in this section are valid for the two latter categories of data as well_



(5.4)	 a
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where

(5.5) = 	 1,4111.,

omitting, for simplicity, the commoditysubscript(cf. sections 2.1, 3.1

and 3.3). We then have the following situation:

n = TH,

X = a,

w = E (as defined in eq. (3.11)),

= a2 (as defined in eq. (3.13)).1)

In order to establish the likelihood function, it is necessary

to derive expressions for the determinantI21 and the quadratic form Q.

From eqs. (3.12a) and (C.3) we obtain

a2TH	 2TH
1D '

 =a	 i I
T

2TH IAIT=a	 a

By induction we find that the determinant value of A (as defined in eq.

(3.9)) is equal to 2)

(5.6)	 l AI
	

(1-co H-1	
H-1 (1),J.

This gives

(5.7
	 1 2 1 = a2TH 1-to “ H-1) 	+ (H-1)w

Moreover, using eq. (C.6), we find

-1-1=	 =-.	 E
-

E	 A1 tt=1

Cf. also Balest a [2],p. 125



 1H	 1+ ( H-1 ) w

T
6E 	 tt=1 (

TH 	2
EE 	E
t=1 h=1 at

(5.)

Thus,

(5.9)

a (1-w)

1+(H-1 )w 
e E E )

1+01-1)w

H

hE e )

h= 	 t

B1,2a2 -w) 1 (H-1)w

ht

T H
= 	 E 	 E

t=1 h=1

where

(5.11)

(5.12)
T ji
E {Et= , 	 ht

n=1

The inverse of A is equal to
3)

40•

Inserting (5.7) and (5.9 ) into (5.2), we obtain

(5.10) 	 - 	 log 
(Zr)HTH 	 r) -log 2 4-a 	 T(H 1) (1-w)

 2

.+ T log (1+(h- 1)w)}

interpreting the Cs as shorthand expressions for the corresponding diffe-

rences when inserting eq. (2.4).

Maximising L partially with respect to a 2 with w and fixed, we

find the conditional estimator

(5.13) 1 
QTh(1-w) 	 A

1+(H -1)w

The concentrated log-likelihood function thus has the form cf. Rothenberg

and Leenders

(5.14) 17
	

constant - -2- TH log { (1 (H-1)w 
QA-A

T H-1) log (1+(H-1)w)-T log (1-w)1

3) Cf. Balestra [21 , Appendix B, or Nerlove [14], eq. 	 4.3).
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Maximising 17 partially with respect to w, with e fixed, we get, after

somealgebra, the conditional estimator

(5.15)
QB

Insertingw= w into (5.13) we obtain

2 	 QA
(5.16) a TH

Thus, the Fla, estimators of w and a2 satisfy

T H A 2 H A

E R E Eht) 	 7 ht1 	 t=1 h- 	 E=1 (5.17) w . -H-1 	 T 	 H „. 2
E 	 E E,
t=1 h=l at

(5.18)
T H 2

1 E	 EE
TH 	 ht'

tit1 h=1

the 'hats denoting the residuals calculated from the estimated equation.

'Simultaneous FIML estimation of 	 , w and a2 may prove practi-

cally troublesome. The following approximate three-stage procedure,

however, seems useful:

4)
(i) Estimate 	 by (non-linear) OLS, i. e. by min misin:q. A .

(ii) Estimate w and a2 from theresiduals by using (5.17) and (5.:18).
(iii) Reestimate by minimising

1 
2 (1w) 	 QA 	 1A-(H-1)w Q131 '

with w set equal to the estimate obtained at stage 11) . 
5)

A practical way to proceed when carrying out stage (iii) is the

following: Noticing that the matrix A
-1 

can be factorised as follows
6)

(5.19)
-1
 = VI), where (I) = -3"741.- 1H- lRA

4) Any other consistent method might be used.

5) In order to obtain a better approximation, we migat return to stage
(ii) and repeat the process.

6) Cf. Balestra E2], section 5.2.3.

2



with

(5.20) R = /1-w 
A 	 1+(H-1)w

then Q can be written as

42

(5.21) OE. E
1 	T

E	 E 	E	
1-RA (E E

=
( -w) t=1 h=1	

k1 kt)

i.e. minimisation of Q is equivalent to minimisation of the sum of squares

of the transformed disturbances

H1-R 
C

k=1 kt

5.2.2. Complete CS/TS data with no time s2ecific effects.

With reference to the general scheme (5.1 ) , this special case is

the following:

n = TH,

= a,
= 6,

2
CI w =0 =	 { (1- pE,,„i

TH T kiv H = a

where 2 and B are defined in eqs. (3.16) and (3.19) respectively.
C

Using the analogy between this case and the previous one, we directly

obtain (cf. (5.7) and (5.9))

H T 2
	  E tE E

G ( -w) h=1 t=1 ht

(5.22

(5.23)

1Q1 	
a2TH (1 H(T-1

P) T-1)p?

P 

1-1-(T-1)P
(E	 E

s=1

which when inserted into (5.2 ) yields

(5.24) 	 7-- log 2Tr - 1,TH log a + d(Tl) log 1-p) + H log 1+ (T-1)0.1

P 

1+(T-1)p

where Q,, is as defined in 5.11), and
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H ( T
(5.25) Q 	 =

C 	
c
ht 2.

h=1 t=1

As before, the E I S are interpreted as shorthand expressions for the corre-

sponding differences when inserting (2.4).
2Partial maximisation of L with respect to p and a , with 	 fixed,

yields (cf. the derivation of eqs. (5.17) and (5.18))

H 	 T 	 2 	 T 	 2
E 	 ( E E ) 	 E E

,, N 	-A-	 1 	 h=1 	 t=1 ht 	 t=1 ht 	,(5 4.L1)	 =
T-1 	 H T A

2T.: 	 E 	 E
h=1 t=1 ht

H T
2 	 1 	 2(5.27) e 	- H--- E 	 E ET 	 h

h=1 t=1

This suggests the following procedure as an approximation to

estimation:

(i) Estimate (3 by (non-linear) OLS, i.e. by minimising QA .

(ii) Estimate P from the residuals by using eq. (5.26).

(iii) Reestimate 3 by minimising

.

i Q.{,Q _  A Q 2 	 A 	 C
	a (1-p)	 1+(T -1)p

with p set equal to the estimate obtained at stage (ii).

Minimisation of Q is equivalent to minimisation of the following sum of

squares:

H T 	 T
(5.28) E 	 E 	3 ht

	1Rß
 tE eT 	 ' 	 ).' 	 2 ,

h=1 t=1 L 	 s=1 hs

where

(5.29) R = / 1-p 	
1+(T-1)p.

5.2.3 Rotation samles with no time s2ecific effects

In this case, the specification is the following:
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n = TH,

= a,

w = E,
n 	2= a R I

where 2R is defined in eq. (3.29). We have

0

0 F

0 0 • • •

0

•.F 0

. 	 .
•

2 =

0 F 0

00 04. 	 .0 0

00 0

a2 o

O 	0 0 .• 	 0 I

where G = H/2, F

Then

(5.30) [cij 	 = a2TH

il
tp
 

}i)(g
	

(The number of F's is T-1.)

, T -1 	 2TH 	 T-1I 	 I 	 II I = a	 1F1

	a 2TH 	 Ti,,I G 11T 	 (T-1)G-1 . a2TH 110
/ (19 

= a	 (1-

	

2TH 	 2)(T-1)Gp 	 ,

and

where
-1 	 1

F	 =	 )/C'eN I .2 	 -p 1 1/44Y G1-a

In order to simplify the expression for Q, we write



E t
1 E t(2) =

lt

E Gt

We then have

(5.31) 
RI

(t=1, ...,T).

-1
) c= 1(1

E as

where

45  

t-1(2)

t(1) 

E
t= t-I(2)' 	 t(1)

+	 ET(2) T(2)   

T2 	 1 	G
E 	 c 
h=l hl 	 1-p 	 t=2

2

h+G,t-
-2p 	e

h=1 h+G,t-1 cht

2 )
E 	 + E
h=1 ht 	h=1 h+G ' T3

or alternatively,

(5.32 	
a2 (1- P2 )

	 2pQD

where 	 is defined as In eq. (5.11) and
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(5.33)
T G
E 	 E E

ht't=2 h=1 h+G,t-1

G 	 2 G 	 2
(5.34) 	 . E 	 + E

1 	 =1 
e

'
hl 	 h+G T .h= 	 h 

The log-likelihood function thus takes the form

(5.35) -2-- k''rt 	 log	 +2	
2 	

T-1 G log (1-p
T 

1

( -P
	

2PQD	 P2 ‘'E •

Partial maximisation of L with respect to a 3 with p and 	 fixed,yields the

conditional estimator

(5.36) a2 1 

TH(1-p
- 2% 2p

which when inserted into 5.35 gives the concentrated log-likelihood

function

(5.37) constant - 	 TH
2 	 ' QA-2PQD-P2,

2 	
log (1-

(T+1)H 	 2

We find, after some algebra,that partial maximisation of L with respect

to p , with ß fixed, implies solution of the following equation:

3
(5.38) (Tl)QE p -2

2
p + T+1 - 2TO 2TQ =0.

By utilizing the fact that QE is approximately equal to Q A/T,

provided T is not too small, an approximate solution to (5.38) can be

found. Setting
E
Q_ = AIT , ( 5.38) can be written as

(5.33a) 
-

1,t- p 2+1) ((T-1)QAp-2TQ) = 0,

which has
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2T QD
(5.39) p 	 T-1 QA

as its only real solution. Inserting P=p into e 	 (5.36), letting QE =

QA/T, the variance estimator reduces to

(5.40 QA
TH •

Thus, when using rotation samples, the FINL estimators of p and a satisfy

approximately 	 T G
E	 E c

(5.41)
= 2T
	 t=2 h=1 h+G,t -1 ht 	= H/2

 T-1 	 T H
E 	 E 	 2
t=1 h=1 ht

(5.42
T

2 	 1 	
H

E	 E
TH 	 h

t=1 h=1 •

If we omit all observations from households observed only once,

i.e. observations for which t=1 & h1,.. .,G, and t=T & h=G+1,. .,H, it

can be shown that the FIEL estimators satisfy the following equations

exactly:

2 	 2QD 

QA-QE

(5.44)
T G 	 2 T-1 H 	 2

(T -1)H QA QEht=E 	 Eg-, 	 +E 	 Ee
t=2 h=1 	 t=1 h=G+1 ht.

We propose the following approximate estimation procedure:

(1) Estimate (3 by means of (non-linear) OLS.

(ii) Estimate p from the residuals by using eq. (5.41) or (5.43).

(iii) Reestimate 	 by minimising

1 
QA-2P QD - 

2)

a (1-p

or

(5.43

TG
2E E ^
t=2 h=1 6h+G,t -1 h
T G 	 T-1 H
E	 E C	 + E 7 	2
t=2 h=1 ht 	t=1 1-aå=G+1 ht

Q
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with p set equal to the estimate obtained at stage

The minimisation of Q' can be carried out practically as follows:

We have

a (1-P) t=2 h=1
E E h+G,t- ' Eht 	 (h+G t -11

6ht

T G1 

Noticing that

(5.45)
1 14-ct -(1-    

2/1-p - (1-0 ) 	1+a

where

(5.46) a =

has the property that

1 	 (1 -p

1-P 2
 -p 1

then Q' can be written as

(5.47) E 	 E 	 +
t=2 	 1

	

lht 	 2ht 	 )SI

T G 	 2

h=a (1-p

where 	 lht h+G,t-1
, or

2ht 	 eht

= 	 alht 	 2 	
c 	 - ( 1-a) Eht
h+G,t -1

1-et
•••••	 E

h+G,t -1 	 2 	 h+G,t -1 
-i- C

ht

M'M

2ht e 
ht - (1-a) Eh+G,t-li

1-aE
ht 	 2 	 h+ , 1 

4- E
ht

Thus minimisation of Q' is equivalent to minimisation of the sum of squares

of the transformed disturbances 	 and 	 .
lht 	 2ht
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5.3  Estimation in the multi- equation model.

5.3.1 Disjointed CS/TS data with w ii

Let a denote the vector of budget shares ordered first by period,

second by individual, third by commodity, i.e.

(5.48)

where

(5.49)

(t=1,...,T).

With reference to the general scheme 5.1 , we have the following situation:

h = THN,

X = a,

w = 	 (as defined in eq. (4.14)),

I) (it) E 
(as defined in eqs. (3.13) and 4. 0)),

assuming w 	 = w for all i and j (cf. eq. (4.34)).ij

For FINL estimation to be possible, 	 must be nonsingular, i.e. the

rank of E must be equal to N. This will,however, not be satisfied if the para-

metric specification of the budget share functions implies satisfaction of (2.6)

identically, as is the case with e.g.specifications A-D in section 2.3. Then

(2.7) must hold, and the rank of E can at most be N-1. In such cases, we de-

lete one commodity from the model, redefine x, w and 0 correspondingly j and re-

place N by N-1. The likelihood function and, consequently, the FINL estimators

are independent of which commodity is deleted 7)
We shall not comment further

Cf. Pollak and Wales a5:], Appendix A, and Deaton 77:1, section 4.2.



	5.50)	 Elnp

Moreover,

-1

	

(5.51) 	 E (Q
	

e =D

(1-w

(IT ® A®

T(H-1)N

c

= E
t=

I H- I) w
	 1 TH

® E-1-
T 42)

-1 	 -1
t (A - OZ )e t .

D'

T H
E c

1-w 	
E c

L2=1

T H H

ht - 1 (11-1)w j-1 1j-1 k1Ch tECkt
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on this way of reformulating the model in the subsequent sections.

We start as in section 5 2 1 by deriving expressions for

We have (cf. 5.7Y)

iç
 and

Using (5.8 ) , this can be written as

(5.52)
-1

E e T(I-w t=1 t 	 H 	 1 (H-1 w H

Inserting (5.50) and (5.52) into (5.2), the log-likelihood function

takes the form

(5.53) L = THN---- log (270 - I{T(H-1)N log 1-w TN log 1+(H-I)w)2

1 + TH log 1 rnE11 2 1-w 	 - 1 H-1 	 Q 13 ) '

where

(5.54) QA

(5.55)

T H
EE

t=1 h=1c
	 eht 	 ht'

T H H
=EEEcEc.t=1 h=1 k= ht 	 kt
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The c's are, as before, shorthand expressions for the corresponding differen-

ces when inserting (2.4).

Simultaneous maximisation of L with respect to w and the elements of

ß and E is even more awkward than in the single-commodity case. The following

five-stage procedure may be a practically applicable substitute:

(i) Estimate by (non-linear) OLS to each demand equation separately

(disregarding restrictions between coefficients in different equations).

These estimates are consistent (although, of course, not efficient).

(ii) Estimate E from the residuals from stage (i):

where

a.
13

1 T HA ^

TH e41 h1 Ei t Ejht .

(iii) 	 Calculate estimates of w from the residuals from stage (i) as in the

single equation case. The estimate obtained from the i'th demand

equation is (cf eq . (5.17))

41,  
T 	 H
E {( E c	 )
t= h=1 ih

H A 2

c iht l (i=1,...,N). H-1 
" 2

E 	 E ct=1 h=1 iht  

The estimates are consistent, by will, of course, generally differ.

Form a "compromise estimate" of w:

A 	 N
CU = 	 .E w.w,1=1 i 1'

where the w's are weights adding up to unity. We may, for instance )

N
let w. be equal to 1/N or (Va..) I

J= 1 	Jj
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(v) 	 Reestimate a by minimising Q (as given by (5.51)) with E and 6) set
.

equal to the estimates derived at stages (ii) - (iv)
8)
	This stage

is similar to a (non-linear) Zenner "Seemingly Unrelated Regressions"

method (cf. Zellner F19).

Stages (iii) and (iv) may be replaced by

(iii' ) Estimate w by solving 31.13w = 0, with i3 and E set equal to the estimates

obtained at stages (1) and (W. (This involves solution of an equ-

ation of the third degree.)

Stage (v) may be carried out practically in the following way: Since

is symmetric and positive definite, there existsaNxNmatrixZsuch

that

(5.56) ZZ =

The Z matrix can be found numerically by computer routines. Then, Q as given

by (5.51), can be written as

	

T •	 T
(5.57) Q =	 tLit { 	 e)(4) cD)	 (z z)le t = tz/ e t fccD	c 	 )( ® z)}c

paying regard to the factorisation of A-1 given by (5.19). Thus, minimisation

f Q is equivalent to minimisation of the sum of squares

Et=1 , where v	 = (4)	 Z) E
t

.

8) By repeating stages
	 • 	

) better approximation might be obtained.



P 	 hIl

{I° H T

1- 
-1 H 	 T	 T 	 1

e 	 E e 	 - 	 P 	E	 E 	 E eht, 	 1 (T-1)p h=1 t1 	t

(5.58)

(5.59)

H(T -1)N 	 HN TH(1-p) 	 T -1)p) 	 I
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5.3.2 Complete CS/TS data with no time specific effects and with p.

Our specification in this case is the following:

THN,

=	 I. 	 pE 0 H ® E
f. eqs. 4.34) and (3.19)).

In complete analogy with the derivation of (5.51) 5.53), we find

(5.60) L
	 THN 

og(2Tr) - itH(T-1) N log (1.-0 + HN 1 g(1+(T-1)p) +

+ TH log lEll

where Q is as defined i 	 5.54) and

n 	P 
2(1 -p) 'A - 1+(T -1)p Q

(5.61)
H T T
E 	 E 	 Eeh=1 t= s=1 ht s•

The estimation procedure is

ii): Identical with stages (i ) and (ii) in section 5.3.1.

(iii) 	 Calculate equation specific estimates of p from the OLS residuals

from stage (i). The estimate corresponding to the i'th equation is

(cf. (5.26))

H 	 T

hl 
T-1 	 H T

E 	 E 2h=1 t=1 iht



H 	 T G-1 	 -1
=1E 	 E e

ht 	
2EEE 	-1	 hE e 	 -

t=2 h= h+G,tt
1_ E

1-p 2 =
(5.63)
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Form a "compromise estimate" of

N
.E w.p.

'1=1 i 1

where the w's are weights adding up to unity.

(v) 	 Reestimate by minimising Q (as given by (5.59))with E and p set equal

to the estimates obtained at stages (ii) 	(iv).

5.3.3 Rotation samples with no time specific effects and with
.00../. RNA

We have

= THN,

= 2R1w=0 .42) E '

where QR is defined in eq. (3.29). Then compare the derivation of 5.30),

(5.32) and (5.35))

(5.62) IQ 	 = 	
w=0
	 (1-p 2

 T-1)GNI TH

= AN

-1
e 	 + Eep 	 E 	 e 	 )h=1 e

 h 	 h= h+G,T 	 h+G,T

THN- ----log (2Tr2 if (T-1)GN log (1-p 2 ) + TH log !Ell -

1 
- P QE / '2(1-p2 ) 	A	 2pQD

where G = H/2, QA is defined as in (5.54), and

(5.64)
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T G -1
(5.65) 	 =EEe 	 E	 e

t=2 h=1 h+G,t-1 	 ht'

(5.66) EE e 	
-1 	 -1

+ E e
h=1 hlE Chi 	 =1 h+G,T 	 h+G,T.

Also in this case, simultaneous FIML estimation is numerically rather

awkward, and we propose the following approximative procedure:

(i) - (ii) Identical with stages (i) and (ii) in section 5.3.1.

(iii) 	 Calculate estimates of p from the OLS residuals from stage (i) as in

the single equation case (cf. eqs. (5.38), (5.41) and (5.43)) 	 Let
A
p i denote the estimate corresponding to the i th equation.

Form the "compromise estimate"
N

=w. p
i=1 i i

(where E.w. 	 1).
11

Reestimate a by minimising Q (as given by (5.63)) or Q
2Ø D }/(1p 2) with E and p set equal to the estimates ob-

tained at stages (ii)-( ).

Stages (iii) and (iv) may be replaced by:

Estimate p by solving 31,4/p = 0, with 	 and E set equal to the esti-

mates obtained at stages (i) and (ii).

A practical way of minimising Q is the following (cf the derivation

of (5.47)): By means of the factorisation (5.56) defining

lht

vht
	

Ze ht'

Nht
can be written as

(5.67 1 	 T 	 G N 	f 1-p	 vh+G,t-1

-;i- . i t=2 h 	 i=1 = 	 h+G,t-1,i, hp

hti

T G N

1-p t=2-Z1 J1

- p

I - a-
h+G,t-1, 	 2 h+G,t -1,i 4. vhti )

2



56

1-a,{vhti 	 2 	 h G,t-1 i 	 h i )

2.]

where a is defined as in (5.46). Thus minimisation of Q is equivalent to

minimisation of a sum of squares of transformed disturbances, as in the single

equation case.
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Appendix  A

THE DISTURBANCE VARIANCE/COVARIANCE MATRIX CORRESPONDING WITH ROTATION

SAMPLES, WHEN ORDERING THE OBSERVATIONS FIRST BY INDIVIDUAL, SECOND BY PERIOD.

ADDENDUM TO SECTION 3.5

Disregarding the individuals reporting only once, i.e. the first H/2

individuals reporting in period 1 and the last H/2 individuals reporting in

period T (H is supposed to be an even number) 1) , the sample considered in

section 3.5 can be described as follows: One set of G = H12 individuals

report in periodes 1 and 2, a second set of G individuals report in periods

2 and 3,...,a (T-1)th set of G individuals report in periods T-1 and T.

Consider the 2 x 1 vector

(A.1) cht

h=1,...G=H/2

t=2„.

where the second element is the disturbance'in period t of the individual

reporting as no. h in this period, and the first element is the disturbance

of the same individual in period t-1. Arrange these individual vectors along

one 2G x 1 (H x 1) vector,

(A.2) (t=2,...,

containing the disturbances of all the individuals reporting in periods t-1

and t, ordered by individual.

We then have

(A.3)
a a

a
2B

it. le

E aht Eht	 2	 2G
(h=1,

where (cf. eq. (3.19))

1) I.e. individuals 1,2,	 .,H/2, and TH/2+1, TH/24-2,. 	 (T 1)H/2. (Cf. section
3.2.)



(A.4) 1-p)I2 	 P(e2e2

2a
T

0

wC 2

it 	 it '
cht ck,t-1

it 	 it 'E E 6ht k,t+1
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and (cf.eq.(3.20))

it ie(A.5) E c E
h kt

Moreover,

where cf.eq. (3.26))

0 1
(A.7)

)

0 0

and

it
(A.8) E (E

it
ht cks ) =

From A.2 , (A.3), and (A 5) then follows

(h=1,. 	 G; k+h).

(h,k=1,...,G,
t=3,. .,T)

(h,k=1,.	 ,G;

(h,k=1,.. G;

s=2,. .,t-2, t+2,. .,T).

B
2

(A.9) 	 E(c) 	

a2 wI 2

it

wI 2
where

2
P 	 (t= '0.40 - T)

,

(A.10) P = I
G
O(B- I ) 	 (eC e ( (wi (1-p-w) 1 2 4- PIGS e )

2

w(e eG 	 1 2

after inserting from A.4 	 Similarly, from (A.2), and (A.6) we have



	o
0 0 )

	 a2wo

	0)

	 2

o) 
= a wQ

e

(0

(t=3,. .,T

(t= , •

(A.11)

a2(e
G
e
G   

where

(A.12) (e e
G G

Moreover, owing to (A.8),
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(A.13) E(cleelt ')t s 	 0 2G 2G t=2,. 0 041 ,t'..2, t+2 , 04, 41 ,T)

The matrices P and Q have dimension 2G x 2G (H x H).

Finally, form the 2G(T-1)xl (i.e.H(T -1)xl) vector

(A.14)

containing all the disturbances of the rotation samples ordered first by indivi-

dual then by period. In view of ( A.9), (A.11), and (A.13), its variance/co-

variance matrix takes the form

It
(A.15) E(c E $ )=

wQ

P

wiP

wQ

P

or  

(A.16) E(cc) = . a f
Rie	 T-1 P 4- w(DT _ I. D	 (ID Q)T-1

where DT-1 is equal to the matrix D after deleting its first column and Its

last row 	(cf .eq. (3.28)). By inserting from (A.10) and (A.12), the matrix
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(A.16) can be written explicity in terms of a2 	
and w as

it
(A. 17 )	 c cle •■••• 2 fa_p-w)I2G(T...1

P G(T-l)	 (e 2 e 2 )

w
T-1 	 (e eG) e I

w(DT-1 e C) C + D 	 G) (e e )
	G G	 2 	 T-1 	 G

The properties of 	 can be stated as follows:

I) The main diagonal consists of T-1 identical blocks P, each of dimension

2G x 2G. 2) The first sub-diagonal below the main diagonal has T-2 identi-

cal blocks wQ, each of dimension 2G x 2G. The first sub-diagonal above the

main diagonal is identical with this, except that all blocks are transposed.

3) The remaining submatrices of are zero matrices. Notice in particular

	

that when time specific effects are absent, i.e. when w = 0, then 	 gets

a particularly simple form, viz.,

fl
T 0-1 	 = IG(T-1
	

(l-p)	 + P(e e 2)} = GT-1
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Alaendix B

THE DISTURBANCE VARIANCE/COVARIANCE MATRIX CORRESPONDING WITH COMPLETE

CS/TS DATA WHEN THE ORDERING BY COMMODITY PRECEDES THE ORDERING BY PERIOD

AND INDIVIDUAL. ADDENDUM TO SECTION 4.4

n developing the variance/covariance formulae in ch. 4, we

supposed that the ordering by commodity took place after the ordering by

period and individual. In this appendix, we shall examine the covariance

matrix of the disturbances when reversing this ordering, confining our

attention to complete CS/TS data only

1. Ordering first by commodity, second by_ erio	 hird
	

individua

the CPI orderina

Define the Hxl vector

(B.1) e.
it

containing the disturbances of the th demand function for each of the H

individuals in period t. From (4.5b) we have     

a. (1--w. .) I + w.H 	 ij = a. .A..,          

where EH (=eH e t ) is the HxH matrix consisting entirely of ones, and Ai is H

the matrix in the square bracket. Furthermore,

(B .3) E(E. 	C. ')
13 i3 H (t=1,...,T; s+t;

i,j =



62

From B.2) and (B.3), we easily find that the THx1 vectors

E.

C.

•

(i=

(B.7)	 E (E	  ')xx xx

(B .4)

have variance/covariance matrices of the form

(B.5) 	 E 	 a..

Ai J.

.1
ij H

•
4

•

Ip..
13 H

1p..
ij H

= a. LIT®  (A . 	 p..I )
 ij	 1.3

p..
H

a.. f(1-w. 	 .)1
1 	 13 	13 T

+
13

= 	
Laj
	 ,••.,N

the last equality defining Qcii • Finally, form the NTHx1 vector

consisting of all the disturbances ordered first by commodity, second by

period, third by individual. Its variance/covariance matrix is

•
Cll

p .1
H

Generally, this matrix cannot be written in Kronecker product nota-

tion. In the particular case where p.
1.3

and w. = w for all	 and j )

1
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however , (cf. section 4.6) then 2
Cij 

= 2(as defined in eq. 3.16)), and

(B.7) degenerates to

(B.8) E(e E 1 ) = 	 E	 (1-w-p) IT 	 WIT 	PET (a IH }.

2 .1 Ordering_first_by comrnoditz  second by_individual, third x_Reriod:

the CIP ordering

The reversing of the ordering of individuals and periods considered

in section 1 is straightforward. Define the Txl vector

E.ihl

(B.9)	 E ihm.

e.
ihT

its elements being the disturbances of the i th demand function for the h h

individual in each of the T periods. From (4.5b) follows

(B .10) E(c.	 E 	 ) = as.ihx .)1	 .E	 = a..B.
J T

h=1,...,

where B
	

is the matrix in the square bracket. Moreover,

(B.11) 	 E(E. 	 E. t )
111* jkft 13 ij T (h=1,.. ,H; k+hi 11 •

From (B.10), and (B.11) we find that the HTx1 vectors

iFh

have variance/covariance matrices given by

• 	 ,N)



a 
11 Ciell 

it 4. • • • 
•
	

N CielN

a 	 ••
N -t'..NN1*** 	 NN CftNN

(3.15 ) E(E 6
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(3.13)	E(š.	 E. I )

Jiet
a..{I 0 B..-	 + EH 	 w..I )

13	 13 T	 13 T

Wi jHT +PijIHET + w..E	 I
13 H

a..2
13 Olt

*he last equality defining. 
J
. Thus, the NHTx1 vector

(3.14) E

containing all the dis urbances ordered first by commodity, second by indivi-

dual, third by period, has the following variance/covariance matrix:

An ordering of disturbances identical with the CIP ordering con-

sidered above is used in a recent article by Avery F- 1:]. Eq. (3.15)

corresponds with eq. (2 7) in Avery's article (our matrix QClti3 correspon-

ding with Avery's matrix E..).

Generally, the right hand side of (3.15) cannot be written in

Kronecker product notation. In the particular case where p.. = p, and

wij = w for all i and j, (cf. section 4.6), we have Q	 =	 (as defined
CiJ	 C*

in eq. (3.23)), and (3.15) degenerates to

(B.16) E( 	 ?) = E C)
tint

{(1-p-w)I HC)
w C) IT}



Appendix C

SOME USEFUL PROPERTIES OF KRONECKER PRODUCTS

The aim of this appendix is to refer, partly without proofs, some

properties of matrices expressed as Kronecker products which have been

used in developing the estimation methods in chapter 5.

Let U = (u..) and V = (v..) be nonsingular matrices of dimension

M x M and G x G respectively. By definition we have
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(C .1)	 U® V

The dimension of C is MG x MG.

(i) 	 Matrix inversion

-1	 -	 -1-1(C.2) 	 C 	 = (UCI) )
1

i) Determinant values

luQvi(C.3)

Ranks

(C.4) 	 rank (C) = rank (U V) = rank (U)* rank (V)

MG, since U and V are non-singular).

(Proofs of (C.2) - (C.4) are found in e.g. Theil 	 17:1, pp. 304-306.)



(iv) 	 Quadratic forms

Let
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(r = 1, ...,G)

be G vectors of dimension M x . Form the GM x.1 vector

Similarly, define the M vectors of dimension

and the composite MG x 1 vector

Pirs

Then,

(C.5) (VOU)x = x (Er (2)    
GGMM

= E	 E	 .E	 .E x. u..v x.
r=1 s=1 j=1 i=1 ir ij rs js    



we have

Proof
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( f)

From the definitions of U, V and x,

( v11U

vG1U

	I 	 1 	 1

(ENT X U Ev x U ..-. Ev x II)

	

,r r	 r r	 r r
t 	 r	 r

G G
E EvxUxrs r sr=1 s=1

Expanding the bilinear form x
r xs

 we get

M
(mm) 	 x x 	 = .E 

j
E x u..x

r 	 1=1 =1 ir 13js

In a similar way, we find

M M
(lemm) (UOD	 x 	 .

3
E= 1=1 13 1 ,1

and

G G
(mmitie) x

• 

. x• . = 	 Eix v x
1 	 r=1 s=1 ir rs js

(r,s=1,...,G)

1 . 	 1M

Eq. (C.5) follows by inserting (lee) into (1) and (xxxx)into (xxx). Q.E.D.

Eq. (C.5) may be readily generalized to bilinear forms.

Examples:

; i.e. v =1, v =0 for r+s.
ss 	 rs
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(C.6)
G (D U)x

G M M
= 	 E 	 .E E x. u..x. .

s=1 j= i=1 is ij js

V = = E 	 i.e. v =1.v 	= 0 for r 	 s; uij =1 for allss 	 rs

G M M
	

G M
(C.7) ØE )x 	 E .E .E x. x.= 	 E 	 E X.G 	 /1 	 s=1 j=1 1=1 is js 	 s=1 i=1 is

i. e. u..= , u. =0 for j	11	 ij

M G G
(C.8) 	 (V(D I )x = 

i
E 	 E 	 E x v x= r=1 s=1 ir rs is

,j •

= E 	 i.e. 	 .M' 	 uli u. =0 for1 • v =1 for all r,s.rs

M G G
	

M G
(C.9) 	 x (EG OIli )x 	 .E 	 E 	 E x. x.1=1 r=1 s=1 ir is i=1 r= irE x. 1
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