Jørgen Aasness, Erik Biørn and Terje Skjerpen
Statistics Norway Research Department

Distribution of Preferences and Measurement Errors in a Disaggregated Expenditure System

Jørgen Aasness, Erik Biørn and Terje Skjerpen

Distribution of Preferences and Measurement Errors in a Disaggregated Expenditure System ${ }^{+}$

Abstract

A complete system of consumer expenditure functions with 28 commodity groups is modelled and estimated by means of Norwegian household panel data. Measurement errors are carefully modelled. Total consumption expenditure is modelled as a latent variable, purchase expenditures on different goods and two income measures are considered as indicators of this basic variable. The distribution of individual differences in preferences, represented by individual, time invariant latent variables in the expenditure functions, is structured by means of a two level utility tree which permits a parsimonious parameterization. The usual assumption of no measurement error in total expenditure is clearly rejected. The standard assumption in factor analysis of uncorrelated measurement errors is also clearly rejected. In particular, we find positive correlation between measurement errors (purchase residuals) of food groups which may be explained by rational shopping behavior of the households. The purchase residuals for automobiles show negative serial correlation and positive correlation with the volatile components of latent total expenditure, which is reasonable for such a durable good. The first and second order moments of the observed variables, which are the input in the analysis, consist of 2015 elements which are modelled by means of 213 structural parameters in our reference model. The maximum likelihood estimates of the latter have, with only a few exceptions, the expected sign and a reasonable size.

Keywords: Consumer demand, Engel functions, panel data, preference distributions, latent total expenditure, measurement errors, household expenditure surveys.

JEL classification: C4, C5, D1, D3.
Acknowledgement: An earlier version of this paper was presented at the Econometric Society World Congress 1995, Tokyo, and we thank participants for helpful comments. Financial support has been provided by the Norwegian Research Council (Project no. 2141802 and 108527/510). Tone Veiby has performed professional word processing.

Address: Jørgen Aasness, Statistics Norway, Research Department, Microeconometric Division, P.O.Box 8131 Dep., N-0033 Oslo, Norway. E-mail: j2a@ssb.no, Tel: +47 22864823.

Erik Biørn, University of Oslo, Department of Economics, P.O. Box 1095 Blindern, N-0317
Oslo, Norway. E-mail: erik.biorn@econ.uio.no. Fax: +47 228550 35, Tel: +47 22855120.

Contents

1. Introduction 3
2. Model framework and basic notation 4
3. Data and inference procedure 11
4. Specification of hypotheses and models 14
5. Empirical results 17
5.1. Hierarchy of models, goodness of fit, and model selection 17
5.2 Engel functions 21
5.3 Distributon of preferences 21
5.4 Distribution of measurement errors 26
5.5 Distribution of latent total expenditure 27
6. Conclusions 28
Appendix A: Engel functions, preference varation, and two level Stone-Geary utility 29
The linear expenditure function 29
Demographic specification 32
Appendix B. Observed moments and estimated parameters 34
References 47
List of tables
In the text:
7. Classification of hypotheses and models 18
8. Characteristics of the demand model 20
9. Distributional measures of the preference variables (α) 23
10. Distributional measures of the preference variables (μ) 24
11. Distributional measures of the measurement errors (v) 25
In appendix B:
A1. Mean of the observed variables 34
A2. Covariance matrix of the observed variables 35
A3. Engel functions. 41
A4. Income-consumption relations 41
A5. Parameters of the distribution of preference variables and measurement errors 42
A6. Parameters related to the distribution of latent total expenditure 44
A7. Overview of fitted models with characteristics 45
List of figures
12. Overview of fitted models with number of parameters and Akaike information criterion 19

1. Introduction

Systems of expenditure functions for consumption commodities, including systems of Engel functions, have been analyzed in a substantial number of scientific papers over the years. The interest often focuses on Engel elasticities and parameters representing the effect on consumption of demographic and socioeconomic characteristics. The vast majority of existing empirical analyses of systems of Engel functions utilizes cross section data from a sample of households with an income variable considered as observed without error. Often no distinction is made between income and total consumption expenditure. However, following the classical articles of Summers (1959) and Liviatan (1961) [see also Friedman (1957) and Cramer (1966)], the problem of measurement error in total expenditure and in income has been recognized as important in analyzing data from household budget surveys. An adequate modelling of measurement errors in total consumption expenditure seems to be important not only in order to avoid large biases in estimated Engel functions but also to assess the variability of preferences and the 'true' total consumption expenditure in the population from which the sample is drawn.

A main focus of the present paper is on the modelling of measurement errors in consumption in making inference on a complete system of Engel functions, with a fairly disaggregated commodity classification, from household budget data. The perspective is, in several respects, wider than in the mainstream literature in this field. First, panel data with two observations from each respondent are used. It is well known that panel data in general offer far richer opportunities for analyzing individual effects and for controlling for individual 'nuisance' variables than conventional data types [cf Mundlak (1978), Hausman and Taylor (1981), and Griliches and Hausman (1986)]. Second, in order to allow for imperfect measurement of income and consumption, they are considered as latent variables. Third, the distribution of latent total consumption expenditure across households, and its evolution over time, is identified and estimated jointly with the expenditure system. Fourth, individual differences in preferences, represented by individual, time invariant latent variables, are allowed for. A primary purpose of the investigation is to quantify the distribution of these differences.

The paper represents an extension of previous research by Biøm and Jansen (1982), Aasness (1990, Essay 5), and Aasness, Biørn and Skjerpen (1993a,b). In the first, using panel data, individual differences in consumption are analyzed by means of a complete demand system (including prices) with an error components specification of the disturbance vector, although with errors of measurement in income and consumption disregarded. The second uses cross section data, thus neglecting the panel aspect, but focuses on errors in variables and identifies and estimates a distribution of latent total consumption expenditure across households simultaneously with a system of Engel functions. The third work partly integrates the two approaches, and extends them by, inter alia, incorporating information on observed incomes from tax records, using, however, an aggregated commodity classification, with only 5 groups exhausting total consumption. A primary purpose of the present paper is to extend certain parts of the 5 group analysis of Aasness, Biørn and Skjerpen (1993a,b) to include a considerably more detailed, and for several practical purposes more interesting, commodity classification, including 28 groups which exhaust total consumption. This paper is, to the authors' knowledge, the first work attempting to combine an errors in variables approach and panel data modelling with such a disaggregate classification of consumption.

In order to keep the model transparent and tractable, we have made several simplifying assumptions. In particular, we have assumed linear Engel curves. This assumption is very convenient in our setting with latent variables, inter alia because we can apply the computer program LISREL 7, which turned out to be very efficient for our large scale latent variable model. However, it may be argued that linearity of all Engel curves is not realistic. There exists a large literature with empirical evidence suggesting nonlinear systems of Engel curves, see e.g. Working (1943), Aasness and Rødseth (1983), and Lewbel (1991). But these studies disregard the errors-in-variables problem, and linear Engel curves may well turn out to be a more appropriate assumption in a setting with latent variables. Furthermore, if the true Engel curves are nonlinear, our latent variable approach may estimate consistently least square approximations to these true nonlinear functions, and these linear approximations are well defined and interesting for some purposes, cf Aasness (1990, pp. 221-222). Be this as it may, we regard it as a challenge for future research to extend our analysis to systems of nonlinear Engel curves with latent total expenditure. Blundell et al (1993) use an instrumental variable approach, but this does not provide a satisfactory solution to the problem. Hsiao $(1989,1992)$ points out that it is far from trivial to combine errors-invariables and non-linear functions. Hausman et al (1995) have given an interesting contribution to the estimation of polynomial Engel curves in an errors-in-variables context. However, they apply a single equation approach, while we use a model with a system of 60 equations, each explaining one observable, and with an elaborated modelling of distributions of preference variables and measurement errors. Thus, the above mentioned papers do not give a solution to the problem of modelling nonlinear Engel curves within our rather complex setting, although they may give some suggestions.

The rest of the paper is organized as follows. In section 2, we present the basic notation, the general model framework, and specific features under consideration. Next, in section 3, the data and the inference procedure, implemented by means of the computer program LISREL 7, are briefly discussed. Specification of hypotheses and models for our empirical study is presented in section 4. The empirical results are reported in section 5 . Section 6 concludes and surveys the main empirical findings. An appendix shows some implications of a model with a two-level utility tree on the distribution of preference variables, which we have exploited in the empirical modelling.

2. Model framework and basic notation

Let consumption be divided into I commodities and assume that a panel of H households is observed over T years. We specify a system of I linear Engel functions,

$$
\begin{equation*}
\eta_{\mathrm{t}}=\mathrm{a}_{\mathrm{At}}+\mathrm{b} \xi_{\mathrm{t}}+\mathrm{Cz}+\mu, \quad \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{1}
\end{equation*}
$$

where η_{t} is a $\mathrm{I} \times 1$ vector of expenditures, at constant prices, in year $\mathrm{t}, \xi_{\mathrm{t}}$ is total expenditure, z is a time invariant $M \times 1$ vector of demographic variables, μ is a time invariant $I \times 1$ vector representing individual preferences attached to the I commodities (and other random effects reflecting unobserved time invariant household characteristics), and $\mathrm{a}_{\mathrm{At}}, \mathrm{b}$, and C are matrices of coefficients of dimension $\mathrm{I} \times 1, \mathrm{I} \times 1$, and $\mathrm{I} \times \mathrm{M}$, respectively. The vectors η_{t} and μ and the scalar ξ_{t} are latent, the vector z is observable. Realizations of ($\eta_{t}, \xi_{t}, z, \mu$) for different households are assumed to be independent and, for simplicity, the household subscript is suppressed. Finally, b and C have the same values for all
households and years, while the year subscripts on a_{At} indicates that shifts in the expenditure functions over time are allowed for. Since, by definition,

$$
\begin{equation*}
\mathfrak{l}_{\mathrm{t}}^{\prime} \eta_{\mathrm{t}}=\xi_{\mathrm{t}}, \quad \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{2}
\end{equation*}
$$

$\mathbf{l}_{\mathbf{I}}$ denoting the $\mathrm{I} \times 1$ vector of ones, the coefficient matrices will be subject to the adding-up restrictions $\mathfrak{l}_{\mathrm{I}}^{\prime} \mathrm{a}_{\mathrm{Al}}=0, \mathrm{l}_{\mathrm{I}}^{\prime} \mathrm{b}=1, \mathrm{l}_{\mathrm{I}} \mathrm{C}=0_{1 \mathrm{M}}, 0_{1 \mathrm{M}}$ being the $1 \times \mathrm{M}$ zero vector, while the preference variables must satisfy

$$
\begin{equation*}
\mathrm{v}_{1}^{\prime} \mu=0 . \tag{3}
\end{equation*}
$$

The $I \times 1$ vector of observed expenditures in year t is

$$
\begin{equation*}
y_{t}=\eta_{t}+a_{B t}+v_{t}, \quad t=1, \ldots, T, \tag{4}
\end{equation*}
$$

where $a_{B t}$ and v_{t} are $I \times 1$ vectors representing measurement errors, v_{t} being a household specific random measurement error component with expectation equal to zero for all households, while a_{Bt} is a non-stochastic «systematic measurement erron» with the same value for all households. In other words, $a_{B t}$ is the time varying expectation of the total measurement error $a_{B t}+v_{t}$. (Note that $a_{B t}+v_{t}$ may also be interpreted as including a vector of disturbances in the Engel functions (1), which cannot be empirically distinguished from the measurement errors.) In household budget surveys, the observed expenditures (y_{j}) are typically represented by purchase costs during a relatively short period, while true expenditures (η_{t}) can be defined precisely with reference to a specific theory of consumer behavior. For a non-durable good, true expenditure could be the value of the consumption flow during the year, $\mathrm{a}_{\mathrm{Bt}}+\mathrm{v}_{\mathrm{t}}$ representing stock changes during the registration period. In case of a durable good, true expenditure could be the service value of its stock during the period, the difference between the purchase value and the service value being a component of the measurement error. For durables, the systematic measurement error will typically be positive in boom periods and negative in recessions.

Equations (1)-(4) imply that the observed $\mathrm{I} \times 1$ vector of expenditures satisfies

$$
\begin{equation*}
y_{t}=a_{t}+b \xi_{t}+C z+\mu+v_{t}, \quad t=1, \ldots, T \tag{5}
\end{equation*}
$$

where $a_{t}=a_{A t}+a_{B t}$, while the observed total expenditure is

$$
\begin{equation*}
x_{t}=\mathfrak{l}_{1}^{\prime} y_{t}=\xi_{t}+m_{t}+v_{t}, \quad t=1, \ldots, T \tag{6}
\end{equation*}
$$

Here

$$
\begin{equation*}
\mathrm{m}_{\mathrm{t}}=\mathrm{l}_{\mathrm{r}}^{\prime} \mathrm{a}_{\mathrm{Bt}}, \quad \mathrm{v}_{\mathrm{t}}=\mathrm{l}_{\mathrm{t}}^{\prime} \mathrm{v}_{\mathrm{t}}, \quad \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{7}
\end{equation*}
$$

are the aggregate systematic and random (household specific) measurement errors, respectively. Note that the parameters $a_{A t}, a_{B t}$, and m_{t} will not be identifiable without further restrictions. In section 4 and 5 , we will present examples of such restrictions and interpret and test them in the concrete setting given by our data.

Formally, (5) says that y_{t} contains I indicators of the latent total expenditure ξ_{t}. We also assume that K additional indicators exist, represented by the observed $K \times 1$ vector w_{t}, and formalize the relationship as

$$
\begin{equation*}
\mathrm{w}_{\mathrm{t}}=\mathrm{d}_{\mathrm{t}}+\mathrm{e} \xi_{\mathrm{t}}+\mathrm{Fz}+\lambda+\varepsilon_{\mathrm{t}}, \quad \mathrm{t}=1, \ldots, \mathrm{~T} \tag{8}
\end{equation*}
$$

where d_{t}, e, and F are coefficient matrices of dimension $\mathrm{K} \times 1, \mathrm{~K} \times 1$, and $\mathrm{K} \times \mathrm{M}$, respectively, λ is a latent time invariant $K \times 1$ vector associated with the indicators, and ε_{1} is a $K \times 1$ vector of error terms. The individual effects λ play formally the same role as μ in (5), but λ, like d_{t}, e, and F, are unrestricted. Otherwise, (5) and (8) are similar, so that the vector ($y_{t}^{\prime}, w^{\prime}$) may be interpreted as containing $\mathrm{I}+\mathrm{K}$ indicators of ξ_{t}.

In the present study, w_{t} will be specified as including K different measures of household income in year t defined for tax purposes. The interpretation of (8) is not obvious - several interpretations are possible, see Aasness, Biøm, and Skjerpen (1993a, p.1398). It may be considered as a simple representation of the reduced or semireduced form of a (possibly complex) structural model of the income and wealth distribution mechanism, the statutory tax system, and the spending, saving, and tax paying activity of the individual household. In the following, (8) will be referred to as 'income functions', and λ and ε_{t}, like μ and v_{t}, will, for brevity, be denoted as a 'preference vector' and a 'measurement error vector', respectively.

When the number of commodities, I , is large, as it is in the present study, the covariance structure of the preference vector μ and the measurement error vectors v_{t} may easily become overparametrized if their covariance matrices are not restricted in some way. However, assuming full diagonality of these matrices, i.e. no correlation between the preference variables of different commodities and no correlation between their measurement errors, would seem far too restrictive. On the one hand, apart from the fact that (3) implies singularity of the covariance matrix of μ, the elements of this vector may be correlated via the preference structure underlying the system of Engel functions (1). For instance, the preferences for meat may be related to the preferences for vegetables, the preferences for public transport may be related to the preferences for private transport, etc. On the other hand, the purchase and shopping activity of the household may imply positive, or negative, correlation between the measurement errors of different commodities. For instance, customers pay a limited number of visits to their usual shop or shopping centre during the short period in which they are observed, owing to the fixed costs etc. involved. For several commodities, they make purchases for several days, some of which are, strictly speaking, not consumption, but stock increases, which in our context become parts of the measurement errors. This suggests a positive correlation between the measurement errors of goods purchased in the same shop, or even in the same shopping trip. For durable goods, the measurement errors in v_{t} may, as noted above, represent the difference between the quantity purchased and the service flow 'produced' by the stock of the good. Since a household is very unlikely to make a positive investment in the stock of such a good, say an automobile, in two successive years (assuming that the registration period is one year for durables), this may lead us to expect a negative correlation between the corresponding elements of v_{t} and v_{t-1} for this kind of goods.

We have tried to take the above considerations into account in modelling the covariance structure of μ and v_{1}, \ldots, v_{T} as described below.

We assume that the preferences of a typical household can be represented by a Stone-Geary utility function in two levels. The commodities which are related, either via the preferences or via the measurement errors (since they are purchased more or less simultaneously), are assumed to belong to one aggregate group. The overall utility function is specified as a Stone-Geary function in the utility levels of the aggregate groups. The utility function of each aggregate group is, in turn, specified as a Stone-Geary function in the quantities consumed of the commodities which belong to the group. This parametrization implies that the marginal utilities of all the commodities which belong to the same aggregate group depend on the quantities of all the commodities in the group, while the 'within-group' marginal utilities do not depend on the quantities consumed of any commodity outside the group.

Let G be the number of groups and I_{g} the number of commodities in group $g, g=1, \ldots, G, \sum I_{g}=I$. In appendix A , it is shown that the preference vector μ can be written as

$$
\begin{equation*}
\mu=\left(I_{I}-b_{l^{\prime}}^{\prime}\right) \alpha, \tag{9}
\end{equation*}
$$

where α is a (stochastic) $\mathrm{I} \times 1$ vector and I_{I} is the $\mathrm{I} \times I$ identity matrix. Since $\mathrm{l}_{\mathrm{I}} \mathrm{b}=1$, this ensures that (3) is satisfied automatically regardless of which assumptions are made about the distribution of α. Let α_{g} and b_{g} be the $I_{g} \times 1$ subvectors of α and b, respectively, which belong to group g, i.e.,

$$
\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{G}^{\prime}\right), \quad b^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{G}^{\prime}\right) .
$$

We decompose α_{g} as (cf eq. (A.22) in appendix A)

$$
\begin{equation*}
\alpha_{g}=\underline{\alpha}_{g}+b_{g} \bar{\alpha}_{g}, \quad g=1, \ldots, G \tag{10}
\end{equation*}
$$

where $\underline{\alpha}_{g}$ is a $I_{g} \times 1$ vector of commodity specific preference components and $\bar{\alpha}_{g}$ (scalar) is a preference component specific to group g. (We use 'underscore' and 'overscore' to symbolize disaggregate commodities and aggregate groups, respectively.) We assume that

$$
\begin{equation*}
\underline{\alpha}_{1}, \ldots, \underline{\alpha}_{G}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{G} \text { are uncorrelated } \tag{11}
\end{equation*}
$$

with zero expectations and

$$
\begin{array}{ll}
\mathrm{E}\left(\underline{\alpha}_{g} \underline{\alpha}_{g}^{\prime}\right)=\sum_{\underline{\alpha} \underline{\alpha}}^{g}, & \mathrm{~g}=1, \ldots, \mathrm{G} \\
\mathrm{E}\left(\bar{\alpha}_{g}^{2}\right)=\sigma_{\alpha \alpha}^{\mathrm{g}}, & \mathrm{~g}=1, \ldots, \mathrm{G} \tag{13}
\end{array}
$$

which imply zero correlation between 'necessity consumption' of commodities belonging to different groups, while within group correlation is allowed for. From (10)-(13) it follows that

$$
\begin{equation*}
\sum_{\alpha \alpha}^{\mathrm{g}}=\mathrm{E}\left(\alpha_{g} \alpha_{g}^{\prime}\right)=\sum_{\underline{\alpha \alpha}}^{\mathrm{g}}+\mathrm{b}_{g} \mathrm{~b}_{g}^{\prime} \sigma_{\alpha \bar{q} \alpha}, \quad \mathrm{~g}=1, \ldots, \mathrm{G} \tag{14}
\end{equation*}
$$

and that the $\mathrm{I} \times \mathrm{I}$ covariance matrix of α has the block diagonal form

$$
\begin{equation*}
\Sigma_{\alpha \alpha}=\mathrm{E}\left(\alpha \alpha^{\prime}\right)=\operatorname{diag}\left(\Sigma_{\alpha \alpha}^{1}, \ldots, \Sigma_{\alpha \alpha}^{\mathrm{G}}\right) . \tag{15}
\end{equation*}
$$

Defining the block diagonal matrices

$$
\begin{aligned}
\Sigma_{\underline{\alpha} \underline{\alpha}} & =\operatorname{diag}\left(\Sigma_{\underline{\alpha} \underline{\alpha}}^{1}, \ldots, \Sigma_{\underline{\alpha} \underline{\alpha}}^{G}\right), \\
\Sigma_{\overline{\alpha \alpha}} & =\operatorname{diag}\left(\sigma_{\overline{\alpha \alpha}}^{1}, \ldots, \sigma_{\overline{\alpha \alpha}}^{G}\right), \\
B & =\operatorname{diag}\left(b_{1}, \ldots, b_{G}\right),
\end{aligned}
$$

of dimension $I \times I, G \times G$, and $I \times G$, respectively, we can rewrite (15) as

$$
\begin{equation*}
\Sigma_{\alpha \alpha}=\sum_{\underline{\alpha \alpha}}+B \sum_{\overline{\alpha \alpha}} B^{\prime} . \tag{16}
\end{equation*}
$$

From (9) and (16) it follows that

$$
\begin{equation*}
\Sigma_{\mu \mu}=E\left(\mu \mu^{\prime}\right)=\left(I_{1}-b l_{\mathrm{I}}^{\prime}\right) \Sigma_{\alpha \alpha}\left(I_{I}-l_{1} b^{\prime}\right)=\left(I_{I}-b l_{I}^{\prime}\right)\left(\sum_{\alpha \alpha}+B \sum_{\overline{\alpha \alpha}} B^{\prime}\right)\left(I_{I}-\mathfrak{l}_{1} b^{\prime}\right) . \tag{17}
\end{equation*}
$$

In the particular case where $\Sigma_{\underline{\alpha} \underline{\alpha}}$ is diagonal and $\Sigma_{\bar{\alpha} \alpha}=0$, the I elements of α are uncorrelated. Note, however, that the preference vector μ will always have a non-diagonal covariance matrix, since its elements will always be related via the household's budget, cf (3) and (9). By imposing suitable restrictions on $\Sigma_{\underline{\alpha} \underline{\alpha}}$ and $\Sigma_{\overline{\alpha \alpha}}$, we can represent the covariance structure of the preference vectors α and μ in a far more parsimonious way than by letting $\Sigma_{\alpha \alpha}$ be a full unrestricted matrix or a block diagonal matrix with unrestricted blocks. This will be elaborated in more detail in section 4.

In order to pay regard to the purchase and shopping activity etc. of the household mentioned above, while preserving a parsimonious representation of the covariance structure of the error vector v_{t}, we have tried to 'structure' its distribution by adopting a decomposition related to that of the preference vector α. Using the same grouping of the I goods as above, we let

$$
v_{t}^{\prime}=\left(v_{1 t}^{\prime}, \ldots, v_{G t}^{\prime}\right), \mathrm{h}^{\prime}=\left(h_{1}^{\prime}, \ldots, h_{G}^{\prime}\right)
$$

where $v_{g t}$ is a $I_{g} \times 1$ subvector containing the elements of v_{t} which belong to group g, assuming that each group contains goods having similar 'purchase habits', and h_{g} is a $I_{g} \times 1$ vector of constants specific to group g. We decompose $v_{g t}$, in analogy with α_{g} in (10), as

$$
\begin{equation*}
v_{\mathrm{gt}}=\underline{v}_{\mathrm{gt}}+\mathrm{h}_{8} \overline{\mathrm{v}}_{\mathrm{gt}}, \quad \mathrm{~g}=1, \ldots, \mathrm{G}, \quad \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{18}
\end{equation*}
$$

where $\underline{v}_{g t}$ is a $\mathrm{I}_{\mathrm{g}} \times 1$ vector of commodity specific measurement error components and $\overline{\mathrm{v}}_{\mathrm{gt}}$ (scalar) is an error component specific to group g. We assume that

$$
\underline{v}_{1 t}, \ldots, \underline{v}_{G t}, \bar{v}_{1 t}, \ldots, \bar{v}_{G t} \text { are uncorrelated, }
$$

with zero expectations and

$$
\begin{align*}
& \mathrm{E}\left(\underline{g}_{\mathrm{gt}} \underline{g}_{\mathrm{gt}}^{\prime}\right)=\sum_{\underline{v} \underline{g}}^{\mathrm{g}}, \quad \mathrm{~g}=1, \ldots, \mathrm{G}, \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{19}\\
& \mathrm{E}\left(\bar{v}_{\mathrm{gt}}^{-2}\right)=1, \quad \mathrm{~g}=1, \ldots, \mathrm{G}, \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{20}
\end{align*}
$$

which imply zero correlation between measurement errors of commodities belonging to different groups, while within group correlation is allowed for. The variances of all \bar{v}_{gt} are set to unity, otherwise, with no restrictions imposed on h_{g}, the elements of the latter could not be identified.

From (18) - (20) it follows that

$$
\begin{equation*}
\Sigma_{\mathrm{w}}^{\mathrm{g}}=\mathrm{E}\left(v_{\mathrm{gt}} v_{\mathrm{gt}}{ }^{\prime}\right)=\sum_{\underline{v v}}^{\mathrm{g}}+\mathrm{h}_{\mathrm{g}} \mathrm{hg}_{\mathrm{g}}^{\prime}, \quad \mathrm{g}=1, \ldots, \mathrm{G}, \mathrm{t}=1, \ldots, \mathrm{~T}, \tag{21}
\end{equation*}
$$

and that the $\mathrm{I} \times \mathrm{I}$ covariance matrix of v_{t} has the block diagonal form

$$
\begin{equation*}
\Sigma_{w}=E\left(v_{t} v_{t}^{\prime}\right)=\operatorname{diag}\left(\Sigma_{w}^{1}, \ldots, \Sigma_{w}^{G}\right), \quad t=1, \ldots, T . \tag{22}
\end{equation*}
$$

The corresponding 'cross covariance' matrices $\mathrm{E}\left(\mathrm{v}_{\mathrm{t}} \mathrm{v}_{\mathrm{s}}\right), \mathrm{s} \neq \mathrm{t}$, may, for reasons stated above, contain some non-zero elements, but we do not formalize this at this stage. (See sections 4.4 and 4.5.) Defining the block diagonal matrices

$$
\begin{aligned}
\Sigma_{v \mathrm{vv}} & =\operatorname{diag}\left(\Sigma_{\mathrm{vv}}^{1}, \ldots, \Sigma_{\mathrm{vv}}^{\mathrm{G}}\right), \\
\mathrm{H} & =\operatorname{diag}\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{G}}\right),
\end{aligned}
$$

of dimensions $I \times I$ and $I \times G$, respectively, we can rewrite (22) as

$$
\begin{equation*}
\Sigma_{\mathrm{vv}}=\Sigma_{\underline{\mathrm{vv}}}+H H^{\prime} . \tag{23}
\end{equation*}
$$

By imposing suitable restrictions on $\Sigma_{\underline{v v}}$ and H, we can represent the covariance structure of the measurement error vectors v_{1}, \ldots, v_{T} in a far more parsimonious way than by letting Σ_{vv} be a full unrestricted matrix or a block diagonal matrix with unrestricted blocks. This will be elaborated in more detail in section 4.

Let $\xi=\left(\xi_{1} \ldots \xi_{\mathrm{T}}\right)^{\prime}, v=\left(v_{1}^{\prime} \ldots . . v_{\mathrm{T}}^{\prime}\right)^{\prime}$, and $\varepsilon=\left(\varepsilon_{1}^{\prime} \ldots . . \varepsilon_{\mathrm{T}}^{\prime}\right)^{\prime}$, which have dimensions $\mathrm{T} \times 1, \mathrm{TI} \times 1$, and $\mathrm{TK} \times 1$, respectively. We assume that the two composite vectors of 'structural' variables (g) and measurement errors (m),

$$
\mathrm{g}=\left(\xi^{\prime}, z^{\prime}, \mu^{\prime}, \lambda^{\prime}\right)^{\prime} \text { and } \mathrm{m}=\left(v^{\prime}, \varepsilon^{\prime}\right)^{\prime},
$$

are uncorrelated, but we allow for correlation within the vectors, specifying their covariance matrices, in partitioned form, as

$$
\Sigma_{\mathrm{gg}}=\left[\begin{array}{cccc}
\Sigma_{\xi \xi} \Sigma_{\xi z} & 0 & 0 \\
\Sigma_{\xi z} \Sigma_{z z} & 0 & 0 \\
0 & 0 & \Sigma_{m u} & 0 \\
0 & 0 & 0 & \Sigma_{\lambda \lambda}
\end{array}\right], \quad \Sigma_{\mathrm{mm}}=\left[\begin{array}{cc}
\tilde{\Sigma}_{v v} 0 \\
0 & \tilde{\Sigma}_{\varepsilon \varepsilon}
\end{array}\right], \quad \Sigma_{\mathrm{gm}}=0
$$

where $\quad \tilde{\Sigma}_{v v}=I_{T} \otimes \Sigma_{v v} \quad$ and $\quad \tilde{\Sigma}_{\varepsilon \varepsilon}=I_{T} \otimes \Sigma_{\varepsilon \varepsilon}$.

A minor departure from these assumptions is made in the case of automobiles, cf table 1 , in order to get a proper modelling of the dynamics of purchases for this durable good.

From (17) it follows that $l_{I} \Sigma_{\mu \mu}=0$, regardless of the choice of $\Sigma_{\underline{\alpha} \alpha}$ and $\Sigma_{\overline{\alpha \alpha}}$. Zero correlation between the preference vectors (μ, λ) and the latent total expenditure and the vector of observed demographic variables (ξ, z) is assumed. Correlation between the preference vectors and latent total expenditure, which may be present, but is disregarded here, is discussed in Aasness, Biørn and Skjerpen (1993a, section 4.5) for a more aggregated commodity classification.

We parametrize the distribution of latent total expenditure by assuming

$$
\xi_{t}=q_{0 t}+q_{t}\left(\chi+u_{v}\right), \quad t=1, \ldots, T
$$

where (i) χ is a permanent time invariant component of consumption, $\mathrm{E}(\chi)=\Phi_{\chi}, \operatorname{var}(\chi)=\sigma_{\chi \chi}$, (ii) u_{t} are volatile components representing individual mobility in the distribution, $\mathrm{E}\left(\mathrm{u}_{\mathrm{t}}\right)=0, \mathrm{E}\left(\mathrm{u}_{\mathrm{t}} \mathrm{u}_{\mathrm{s}}\right)=$ $\delta_{t s} \sigma_{u u}$ ($\delta_{t s}$ being the Kronecker delta), and (iii) $q_{0 t}$ and q_{t} are deterministic trend coefficients (where we, by convention and with no loss of generality, set $q_{01}=0, q_{1}=1$). The properties of this process is discussed in Aasness, Biørn, and Skjerpen (1993a, pp.1399, 1410-1412). In matrix notation it reads

$$
\xi=q_{0}+Q\left(\imath_{T} \chi+u\right),
$$

where $\mathrm{q}_{0}=\left(\mathrm{q}_{01} \ldots \mathrm{q}_{0 \mathrm{~T}}\right)^{\prime}, \mathrm{Q}=\operatorname{diag}\left(\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{T}}\right)$, and $\mathrm{u}=\left(\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{T}}\right)^{\prime}$. This implies the following restrictions on Σ_{gg} :

$$
\Sigma_{\xi \xi}=\mathrm{Q}_{\mathrm{T}} \mathrm{l}_{\mathrm{T}} \mathrm{Q}^{\prime} \sigma_{\chi \chi}+\mathrm{Q}^{2} \sigma_{\mathrm{uu}}, \quad \Sigma_{\xi \mathrm{z}}=\mathrm{Q}_{\mathrm{T}} \Sigma_{\chi \chi} .
$$

3. Data and inference procedure

The data set is taken from the Norwegian Surveys of Consumer Expenditures for the years 1975-1977, combined with information on incomes from a 'tax file'. Detailed information is given in Biørn and Jansen (1980), and in Aasness, Biøm and Skjerpen (1993a, section 3 and appendix A). We only report some main points here.

The sample consists of $\mathrm{H}=408$ individual households, each of which is observed in two consecutive years ($\mathrm{T}=2$), one half in the years 1975 and 1976 and the other half in 1976 and 1977. A 28 commodity classification, comprising the whole budget, is used ($\mathrm{I}=28$). It can be directly aggregated to give the $\mathrm{G}=5$ commodity grouping used in Aasness, Biørn and Skjerpen (1993a). The households report with an interval of exactly one year. By constructing annual aggregates, we get two annual reports from the 408 households, which we formally treat as if it were a two period balanced panel, although the two time periods are not identical for all households.

The expenditure data are recorded by a combination of bookkeeping and interviews and are collected evenly throughout the year, $1 / 26$ of the households participating in a particular year are observed between 1st and 14th of January, another $1 / 26$ between 15th and 28th of January, and so on. For commodities with a low purchase frequency, expenses during the last 12 months are registered in a concluding interview at the end of the accounting period. Housing expenses are measured by rent (including maintenance and repairs), whereas other durable goods are represented by the value of last year's purchases. These expenditure values are deflated by price indexes constructed from the basic data used in calculating the official Norwegian Consumer Laspeyres Price Index. All expenditures and incomes are measured in 1000 Norwegian 1974-kroner.

The other indicators of total expenditure are two income variables $(\mathrm{K}=2$) which are taken from a separate 'tax file' giving summary information from the individual tax returns for all personal tax payers in Norway:
w_{1} : Taxable income for the central government tax assessment minus taxes.
w_{2} : Income base used for calculating social security premiums and pension rights in the public social security system. It includes wages and net enterpreneurial income, but excludes capital income (positive and negative, e.g. interests received and paid) and pensions.

They are aggregated across all the individual tax payers in the household to get household income. Since the two income variables have several components, e.g. net wage income, in common, we expect that their measurement errors (e) are positively correlated, as are also the individual effects (λ), which we take account of in the specification of $\Sigma_{\Sigma x}$ and $\Sigma_{\lambda \lambda}$.

Two demographic variables $(\mathrm{M}=2)$ are used to characterize the household size and composition:
z_{1} : The number of children, i.e. persons with age ≤ 15 years.
z_{2} : The number of adults, i.e. persons with age ≥ 16 years.

The inference (estimation and testing) procedure is also essentially the same as used in Aasness, Biørn and Skjerpen (1993a), and we only state its main elements here.

Let $\mathrm{s}=\left(\mathrm{y}_{1}^{\prime} \ldots \mathrm{y}^{\prime} \mathrm{T}_{\mathrm{T}} \mathrm{w}_{1}^{\prime} \ldots \mathrm{w}_{\mathrm{T}}^{\prime} \mathrm{z}^{\prime}\right)^{\prime}$ denote the $(\mathrm{TI}+\mathrm{TK}+\mathrm{M})^{\prime} 1$ vector containing all the values of the observed variables. The resulting sample mean vector $\overline{\mathrm{s}}$ and covariance matrix S , with dimensions (TI+TK+M) ${ }^{\prime}$ 1 and (TI+TK+M) ' $(\mathrm{TI}+\mathrm{TK}+\mathrm{M})$ respectively (i.e. $62^{\prime} 1$ and $62^{\prime} 62$), are the basis for our empirical analysis. The realized values are presented in Tables A1 and A2 in Appendix B. Let $\Phi(\theta)$ and $\Sigma(\theta)$ denote the vector of expectations and the theoretical covariance matrix of the observed variables s as functions of the unknown parameter vector θ of our model. The parameter vector θ may be partioned into three disjoint subvectors such that $\theta=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \theta_{12}^{\prime}\right)^{\prime}$. The subvector θ_{1} contains the parameters which only enter the expression for the first order moments, i. e. the free parameters in $\mathrm{a}_{\mathrm{At}}, \mathrm{a}_{\mathrm{B}}, \mathrm{d}_{\mathrm{t}}, \mathrm{q}_{0}, \Phi_{x}$, and F_{z}. In the same way, the subvector θ_{2} contains the parameters which only enter the expression for the second order moments. These parameters are second order moments in the preference and measurement error distributions together with variance and covariance parameters in the multivariate distribution of ξ_{1}, ξ_{2}, z_{1}, and z_{2}. The last subvector θ_{12} consists of those parameters which enter both the expressions for the first and second order moments of the observed variables, i.e., Engel and demographic derivatives together with the parameter q_{2}. The realizations of s for the H households in the data set are assumed to be independent. The estimates of $\theta=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \theta_{12}^{\prime}\right)^{\prime}$ are the values that minimize the function

$$
\begin{align*}
\mathrm{F}=\mathrm{F}\left(\theta_{1}, \theta_{2}, \theta_{12}\right) & =\ln \left[\Sigma\left(\theta_{2}, \theta_{12}\right)\left|+\operatorname{tr}\left(\mathrm{S} \Sigma\left(\theta_{2}, \theta_{12}\right)^{-1}\right)-\ln \right| \mathrm{S} \mid-(\mathrm{T}(\mathrm{I}+\mathrm{K})+\mathrm{M})\right. \tag{24}\\
& +\left[\overline{\mathrm{s}}-\Phi\left(\theta_{1}, \theta_{12}\right)\right]^{\prime} \Sigma\left(\theta_{2}, \theta_{12}\right)^{-1}\left[\overline{\mathrm{~s}}-\Phi\left(\theta_{1}, \theta_{12}\right)\right] .
\end{align*}
$$

Minimization of F is equivalent to maximization of the likelihood function when assuming that s follows a multivariate normal distribution (cf e.g. Anderson (1958, section 3.2)). When the first order moments are unrestricted, which will be the case if the number of elements in θ_{1} equals the number of elements in $\overline{\mathrm{s}}$, the last term in (24) will be zero and as a result S will be a sufficient statistic for θ_{2} and θ_{12} (provided that these parameter vectors are identified). Then θ_{2} and θ_{12} can be estimated first by minimizing the sum of the four first terms of (24). The estimation of θ_{1} can be made in a second stage by solving the following set of equations with respect to θ_{1} (after having inserted the maximum likelihood estimate of θ_{12}, denoted as $\hat{\theta}_{12}$, obtained from the first stage):

$$
\begin{equation*}
\bar{s}=\Phi\left(\theta_{1}, \hat{\theta}_{12}\right) \tag{25}
\end{equation*}
$$

If, however, the dimension of θ_{1} is less than the dimension of \bar{s}, so that the last quadratic form in (24) is strictly positive, the above two step procedure cannot be used and maximum likelihood estimation requires simultaneous estimation of all parameters from the first and second order sample moments.

Our model can be formalized as a special case of the LISREL model (cf e.g. Jöreskog (1977)), and the numerical minimization of F have been performed by means of the computer program LISREL 7 (cf Jöreskog and Sörbom (1988)), using the Davidon-Fletcher-Powell method. At the minimum of F, the information matrix is computed and used to estimate asymptotic standard errors and t values. LISREL minimizes the function F without imposing inequality constraints on the admissible values of the parameter
vector θ. Thus the LISREL estimate of a parameter interpreted as the variance of a latent variable may well turn out to be negative. At a first glance, this may be regarded as a substantial drawback of this computer program. However, if our model and its interpretation is correct the LISREL estimates should turn out to have the expected sign, apart from the sampling errors. Thus, if for a given model all the estimated variances are positive, and all the estimates of the (sub) covariance matrices are positive semidefinite, we will take this as a confirmation that the model has passed an important test. On the other hand, negative estimates of variances, or negative definite "covariance matrices", indicate either that the model is misspecified or that the sampling errors in its estimates are substantial.

Let F_{0} and F_{1} be the minimum of F under a specific model (labelled 0) and a more general model (labelled 1), respectively, and let r be the difference between their number of parameters. Minus twice the logarithm of the likelihood ratio is equal to $\mathrm{H}\left(\mathrm{F}_{0}-\mathrm{F}_{1}\right)$. This statistic is thus, according to standard normal theory, approximately χ^{2} distributed with r degrees of freedom under the null hypothesis. The χ^{2} values given in Table A7 correspond to HF_{0}, interpreted as the likelihood ratio test statistic when the alternative hypothesis is a saturated model (giving a perfect fit to the sample covariance matrix and accordingly, $\left.\mathrm{F}_{1}=0\right)$. The test statistic $\mathrm{H}\left(\mathrm{F}_{0}-\mathrm{F}_{1}\right)$ for an arbitrary pair of models may be computed by simply taking the difference between the corresponding pair of χ^{2} values.

The χ^{2} statistic HF_{0} can be considered as a measure of the goodness of fit of an arbitrary model 0 . As an alternative measure of the goodness of fitnious, with more emphasis on parsimon parameterization, we use the Akaike information criterion, which (when disregarding an arbitrary additive constant) can be written as

$$
\begin{equation*}
\mathrm{AIC}=\mathrm{HF}_{0}+2 \mathrm{p}_{0} \tag{26}
\end{equation*}
$$

p_{0} denoting the number of parameters in model 0 . The lower is the value of AIC, the better is the fit (see Akaike (1987)). Some other godness of fit criteria are also reported, cf table A7, so that the robustness of the results with respect to the choice of fit criterion can be assessed. For a discussion of choice of measures of godness of fit, see e.g. Bozdogan (1987).

If one is unwilling to assume normality of the data vector s, which in the present context - considering in particular the detailed commodity classification and the following large tendency to zero expenditure reporting - is a restrictive assumption, then the estimators derived from minimizing F can be labeled quasi maximum likelihood estimators. These estimators will be consistent, but their efficiency and the properties of the test procedures are not so obvious. There exists a large literature on the robustness of these type of estimators and test procedures for departure from normality, see e.g. Jöreskog and Sörbom (1988) for an extensive list of references, leading to quite different results depending on the assumptions and methods used. See Aasness, Biørn, and Skjerpen (1993a, section 3, and appendix A) for a discussion of these issues in the present context.

4. Specification of hypotheses and models

An overview of the specified hypotheses and models in this study is given in table 1 . We use a disaggregation of total household consumption into $\mathrm{I}=28$ commodities - listed in table 2. An important part of our model formulation is the specification of the covariance matrices of the preference vector μ, denoted as $\Sigma_{\mu \mu}$, and of the measurement error vector v, denoted as Σ_{v}. In this section, we comment on the hierarchy of specification of these two matrices which has been under consideration in this study, and present the model we use as our reference model in the sequel, see table 1 . In the least restrictive case, $\Sigma_{\mu \mu}$ and $\Sigma_{\omega \nu}$ may be specified as positive semidefinite I $\times I$ matrices, and no covariance restrictions, except that $\Sigma_{\mu \mu}$ should satisfy the adding-up restriction $l^{\prime} \Sigma_{\mu \mu}=0_{I}$, i.e. all its column (or row) sums should be equal to zero. With $\mathrm{I}=28$, this extreme case would give a total number of unknown elements equal to $\mathrm{I}(\mathrm{I}-1) / 2=378$ in $\Sigma_{\mu \mu}$ and equal to $\mathrm{I}(\mathrm{I}+1) / 2=406$ in Σ_{w}. This specification, requiring 784 unknown elements in these two matrices only, may be characterized as grossly overparametrized, a property which can, however, be tested by means of our data. We use U (unrestricted) as abbreviation for this case in the following. At the other extreme, we might specify $\Sigma_{v v}$ as diagonal, i.e.with $\mathrm{I}=28$ unknown elements. Similarly, we may define $\Sigma_{\alpha \alpha}$ as a diagonal I \times I matrix, with I=28 unknown elements, and let $\Sigma_{\mu \mu}$ be given by (17). The latter specification pays regard to the adding-up restriction on $\Sigma_{\mu \mu}$ which is an integral part of our model [cf eqs. (3) and (17)]. We use D (diagonal) as an abbreviation for this case.

In view of our remarks in section 2 about (i) preference relations between commodities belonging to the same aggregate group and (ii) possible (positive or negative) correlation of measurement errors of different commodities, owing to the households' shopping and purchasing behaviour, diagonality of $\Sigma_{\alpha \alpha}$ and $\Sigma_{v v}$, which requires a total number of unknown elements in these two matrices equal to 56 , seems too restrictive. This specification can, however, be tested by means of our data.

From these considerations, a strategy leading to a specification between these two extremes, i.e. between 784 and 56 unknown elements, in $\Sigma_{\alpha \alpha}$ and $\Sigma_{v v}$, seems promising. One such intermediate case is to aggregate the $\mathrm{I}=28$ commodities into a small number of aggregate groups and assume block diagonality of $\Sigma_{\alpha \alpha}$ and $\Sigma_{v v}$ corresponding to this grouping, i.e. having nonrestricted correlation within groups, but zero correlation between groups. For this purpose, we have defined $\mathrm{G}=5$ aggregate groups, indexed by roman numbers:
I. Food, beverages and tobacco: commodities $01-10$.
II. Clothing and footwear: commodities $11-12$.
III. Housing, fuel and furniture: commodities 13-17.
IV. Travel and recreation: commodities $18-24$.
V. Other goods and services: commodities $25-28$.

This coincides with the grouping used in Aasness, Biørn and Skjerpen (1993a, 1993b). If we impose no further restrictions, this reduces the number of unknown parameters in each of the 28×28 matrices $\Sigma_{\alpha \alpha}$ and $\Sigma_{v v}$ to 111 , which is only a little more than one fourth of the corresponding numbers in the U specification. Of these 111 parameters 55 represent group I, 3 group II, 15 group III, 28 group IV, and

10 group V. We use B (block diagonal) as an abbreviation for this case in the following. The restrictions imposed by this specification are easily testable with our data.

Still, in view of the two-level specification of the utility maximization, with Stone-Geary utility functions on both levels, discussed in section 2 and appendix A, it seems to be scope for a further parsimony in the specification of the stochastic structure of the preferences and the measurement errors. This, in particular, seems to be the case for groups I, III, and IV, occupying in specification B as many as 55,15 , and 28 parameters, respectively, for each of the matrices $\Sigma_{\alpha \alpha}$ and Σ_{w}. This brings us to the fourth and final parametrization of $\Sigma_{\alpha \alpha}$ (and thus of $\Sigma_{\mu \mu}$) and Σ_{w} that we consider in this study. It is an intermediate case between specifications B and D, denoted by R (restricted) in the following. This is also our reference specification (cf below), and hence R may also be an abbreviation for reference.

In specification R, $\Sigma_{\alpha \alpha}$ (and thus $\Sigma_{\mu \mu}$) is described by 35 free parameters, i.e. 76 less than in specification B and 7 more than in specification D, and $\Sigma_{v v}$ is described by 38 free parameters, i.e. 73 less than in specification B and 10 more than in specification D . This is less than one tenth of the number of free parameters in the unrestricted specification, U , and is also a testable hypothesis with our data. In parametrizing $\Sigma_{\alpha \alpha}$ and Σ_{w}, we exploit (i) the ideas concerning the utility trees of the households described in appendix A and section 2 [cf (10) and (16)], and (ii) the formally similar representation of the measurement errors assumed to follow from the households' shopping and purchasing behavior [cf (18) and (23)]. This gives us a rich framework for formulating interesting hypotheses. In particular, we may, for some groups, model all within group covariances of preferences through one group specific preference variable (α_{g}), a hypothesis we shall denote as 'utility branch with one common factor' in the following. Correspondingly, we can model all the within group covariances of measurement errors (purchase residuals) through one group specific factor (v_{g}) , a hypothesis to be denoted as 'simultaneous group purchases with one common factor'. But there is no substantial a priori reason to follow this particular specification for all groups. (For two-good groups this model specification is not even identified as regards the parameters describing the distribution of the measurement errors since the h's also must be identified.) One may well combine such a hypothesis for one group with a full covariance matrix for another group and diagonality for a third group, and the modelling of preference variation and measurement errors can be combined in different ways. Thus there are several possibilities for alternative specifications. We have chosen a strongly parsimonious alternative (much closer to D than to B as measured by the number of parameters), but which we think can capture some basic features of preference variation and purchase behavior of Norwegain households. The main ingredients of specification R for the five commodity groups will be described below. All the parameter estimates for this model specification are given in tables A3-A6 in appendix B.

Group I (10 goods): This group is divided into two subgroups: Ia, consisting of the food commodities 01 -08 , and Ib , consisting of beverages and tobacco, i.e. commodities 09 and 10 . We assume zero correlation both in preferences, α, and in measurement errors (purchase residuals), v, between these two groups. For the preference specification within subgroups Ia and Ib , we adhere to relation (10) based on the utility tree in appendix A, and assume that the commodity specific components α_{i} are uncorrelated, i.e. a 'utility branch with one common factor'. This gives a total of 2 parameters more than in specification D (excluding the b parameters, i.e. the marginal budget shares). [Notice that when a group (subgroup) consists of two commodities only, as, for instance, Ib , the hypothesis of a utility branch with
one common factor is equivalent to treating the corresponding block in $\Sigma_{\alpha \alpha}$ as unrestricted, which can be seen from a slight reparametrization of the model. The restrictions are effective only when the number of commodities in the group is 3 or more.] For the measurement error specification, we specify block Ia in $\Sigma_{v v}$ as similar to the corresponding block in $\Sigma_{\alpha \alpha}$, which requires 8 parameters more than in specification D (including the h parameters), allowing for simultaneous purchase behavior for foods. On the other hand block Ib in Σ_{w} is diagonal, assuming independent purchase residuals for beverages and tobacco.

Group II (2 goods): The blocks in $\Sigma_{\alpha \alpha}$ and Σ_{w} are left unrestricted, allowing for correlation in preferences and shopping behavior for clothing and footwear. Since there are only two goods in the group this specification is also consistent with 'utility branch with one common factor' and 'simultaneous group purchases with one common factor'. This increases the number of free parameters in each of the two matrices by 1 as compared with specification D.

Group III (5 goods): Here we also assume a 'utility branch with one common factor', allowing for positive correlation between preferences for Housing, Fuel and power, Furniture, Household equipment, and Miscellaneous houshold goods, while increasing the number of parameters of its block in $\Sigma_{\alpha \alpha}$ by 1 only, as compared with specification D. The corresponding block in $\Sigma_{v v}$ is specified as diagonal except that commodities 15 . Furniture and 16. Household equipment have a non-zero error covariance. Thus we allow for simultaneous purchase behavior of these latter goods, due to e.g. fixing up one room in the house, while these purchase residuals are independent of the purchase residual for say Fuel and power which may be mostly influenced by the temperature in the registration period. This also increases the number of parameters by 1 as compared with specification D.

Group IV (7 goods): This group is, like group I, divided into two subgroups: IVa, consisting of the transportation commodities $18-20$, and IVb , consisting of recreation commodities $21-24$, and we assume zero correlation both in preferences (α) and in measurement errors (v) between these two groups. Within the transportation group, we expect correlations of preferences, but a 'utility branch with one common factor' seems too restrictive since it cannot simultaneously allow for positive correlations between preferences for stock of motorcars and the running cost of these private vehicles, and negative correlations in the preferences for private versus public transportation. To allow for this, we leave the 3×3 block of IVa in $\Sigma_{\alpha \alpha}$ unrestricted, which increases the number of parameters by 3 as compared with specification D . Since we have not found any particularly good reason for expecting non-zero correlations between the preference variables for recreational goods, we specify the 4×4 block belonging to group IVb to be diagonal. The corresponding blocks in Σ_{w} are both assumed to be diagonal, since we have not found any convincing a priori arguments for these measurement errors to be correlated.

Group V (4 goods): Its blocks in $\Sigma_{\alpha \alpha}$ and in Σ_{w} are both specified as diagonal matrices since we have no strong arguments against this most simple hypothesis.

5. Empirical results

5.1. Hierarchy of models, goodness of fit, and model selection

Table 1 gives a classification of the hypotheses and models in our empirical investigation. A model is specified as a combination of hypotheses, one from each of the four dimensions. We focus on the first two dimensions: 1 . Covariances of preference variables and 2. Contemporaneous covariances of measurement errors. The two other dimensions: 3. Autocovariances of measurement errors and 4. Demand drift and systematic measurement errors are commented upon in section 5.4. Combining our assumptions (hypotheses) in all possible ways, we obtain $4 \times 5 \times 2 \times 4=160$ different models. We have estimated 46 of these models, and some characteristics (number of parameters, degrees of freedom, χ^{2}, AIC and two related information criteria) of all the estimated models are reported in table A7. In figure 1, we have selected 15 models which we find particularly interesting, and for each of these we present two important pieces of information: the number of parameters (p) and the Akaike Information Criterion (AIC). We see that our restricted model $\left(P_{R} M_{R} A_{R} D_{R}\right.$, i.e. with the restricted hypothesis R in all four dimensions) has the best AIC score among all the 15 models in figure 1 , and also among all the 46 models in table A7. This result is also quite robust with respect to the choice among the three different information criteria in table A7.

This gives strong support to our choice of restricted model, and we use it as a reference model throughout the text. The reference model has $\mathrm{p}=213$ free parameters, $\mathrm{DF}=1802$ degrees of freedom, and AIC=3163. A saturated model would have $\mathrm{p}=2015$ free parameters [which is the maximal number of first order (62) and second order $(1953=62 * 63 / 2)$ moments of the 62 observed variables in the data set]. Thus its $\mathrm{DF}=0$ and its $\mathrm{AIC}=2 \mathrm{p}=4030$. In our reference specification, we thus have (i) only between 7 and 8 free parameters per commodity and (ii) a number of free parameters which is only a little more than one tenth of the corresponding number in a saturated model.

The reference model and the other specifications considered can be tested either against the saturated model, or against the unrestricted (U) model, by standard likelihood ratio tests using the c^{2} values in table A7 and standard levels of significance (cf section 3). These test will give clear rejection for most of the models, which is not surprising in view of the large number of degrees of freedom involved. The reference model can be looked upon as the specification among those considered which minimizes the AIC, and hence, loosely speaking, gives a useful compromise between a high goodness of fit and a parsimony in parametrization.

Table 1. Classification of hypotheses and models
A specific model is labeled $P_{i} M_{j} A_{k} D_{l}$, which means that the model is based on hypothesis P_{i} w.r.t. the covariances of preference variables (μ, α), hypothesis \mathbf{M}_{j} w.r.t. the contemporaneous covariances of the measurement errors (v), hypothesis A_{k} w.r.t autocorrelation of measurement errors, and D_{1} w.r.t. demand drift and systematic measurement errors. Model $P_{R} M_{R} A_{R} D_{R}$, i.e. with the "Restricted" version in all four dimensions, is used as a reference model throughout the text and is the only model reported with a full set of parameter estimates. Model $P_{i} M_{i}$ is a shorthand notation for $P_{i} M_{j} A_{R} D_{R}$, i.e. with the restricted (or reference) hypothesis in dimensions A and D is subsumed.

1. Hypotheses w.r.t. covariances of preference variables

Label Interpretation
$P_{U} \quad$ Unrestricted, i.e. $\Sigma_{\mu \mu}$ is free except that $i^{\prime} \Sigma_{\mu \mu}=0$
$\mathrm{P}_{\mathrm{B}} \quad$ Block diagonal, i.e. $\Sigma_{\alpha \alpha}=\operatorname{diag}\left(\Sigma_{\alpha \alpha}^{1}, \ldots, \Sigma_{\alpha \alpha}^{\mathrm{G}}\right), \Sigma_{\alpha \alpha}^{\mathrm{g}}$ unrestricted, $\mathrm{G}=5$
$\mathrm{P}_{\mathrm{R}} \quad$ Restricted, i.e. $\Sigma_{\alpha \alpha}=\operatorname{diag}\left(\Sigma_{\alpha \alpha}^{1}, \ldots, \Sigma_{\alpha \alpha}^{\boldsymbol{c}}\right), \Sigma_{\alpha \alpha}^{\ell}$ restricted (see text)
$P_{D} \quad$ Diagonal, i.e. $\Sigma_{\alpha \alpha}=\operatorname{diag}\left(\sigma_{\alpha \alpha}^{1}, \ldots, \sigma_{\alpha \alpha}^{i}\right), \sigma_{\alpha \alpha}^{i}$ unrestricted
2. Hypotheses w.r.t. contemporaneous covariances of the measurement errors

Label Interpretation
$M_{u} \quad$ Unrestricted, i.e. $\Sigma_{v v}$ free
$\mathrm{M}_{\mathrm{N}} \quad$ No measurement errors in total expenditure, i.e. $\mathrm{t}^{\prime} \Sigma_{\mathrm{vv}}=0$, otherwise unrestricted
$\mathrm{M}_{\mathrm{B}} \quad$ Block diagonal, i.e. $\Sigma_{\mathrm{w}}=\operatorname{diag}\left(\Sigma_{\mathrm{w}}^{1}, \ldots, \Sigma_{\mathrm{wv}}^{\mathrm{G}}\right), \Sigma_{\mathrm{w}}^{\mathrm{g}}$ unrestricted, $\mathrm{G}=5$
$M_{R} \quad$ Restricted, i.e. $\Sigma_{w v}=\operatorname{diag}\left(\Sigma_{w}^{1}, \ldots, \Sigma_{v v}^{G}\right), \Sigma_{w}^{g}$ restricted (see text)
$M_{D} \quad$ Diagonal, i.e. $\Sigma_{v}=\operatorname{diag}\left(\sigma_{v v}^{1}, \ldots, \sigma_{w}^{1}\right), \sigma_{w}^{i}$ unrestricted

3. Hypotheses w.r.t autocovariances of measurement errors

Label Interpretation

$\mathrm{A}_{\mathrm{R}} \quad$ Restricted autocovariation, i.e. autocovariation of purchase residuals of automobiles ($\operatorname{cov}\left(v_{18,1}, v_{182}\right)=$ free $)$ and correlation between the purchase residual for automobiles and the volatile component of latent total expenditure $\left(\operatorname{cov}\left(v_{18,1}, u_{1}\right)=\operatorname{cov}\left(v_{182}, u_{2}\right)=\right.$ free, $\operatorname{cov}\left(v_{18,1}, u_{2}\right)=$ free, $\left.\operatorname{cov}\left(v_{182}, \mu_{1}\right)=0\right)$ but no such correlations for other goods.
$A_{N} \quad$ No autocovariances (i.e. $\left.\operatorname{cov}\left(v_{183}, v_{182}\right)=\operatorname{cov}\left(v_{181}, u_{1}\right)=\operatorname{cov}\left(v_{182}, u_{2}\right)=\operatorname{cov}\left(v_{18,}, u_{2}\right)=0\right)$.

4. Hypotheses w.r.t demand drift and systematic measurement errors

Label Interpretation
$D_{v} \quad$ Unrestricted, i.e. either $\left(a_{A 1}, a_{A 2}\right)$ unrestricted or $\left(a_{B 1}, a_{B 2}\right)$ unrestricted or both.
$D_{s} \quad$ Systematic, i.e. systematic measurement errors, but only for durables in the second period $\left(a_{\text {Bii }}=0 \forall i, a_{B 2 i}=0 \forall i \neq 15,16,18\right)$. No demand drift $\left(a_{A 1}=a_{A 2}\right)$
$D_{R} \quad$ Restricted, i.e. no demand drift $\left(a_{A 1}=a_{A 2}\right)$, no systematic measurement errors in the first period ($a_{B 1}=0$), systematic measurement errors for automobiles in the second period only $\left(\mathrm{a}_{\mathrm{B} 2 \mathrm{i}}=0 \forall \mathrm{i}, \forall \mathrm{i} \neq 18\right)$
$\mathrm{D}_{\mathrm{N}} \quad$ No demand drift ($\mathrm{a}_{\mathrm{A} 1}=\mathrm{a}_{\mathrm{A} 2}$) and no systematic measurement errors ($\mathrm{a}_{\mathrm{B} 1}=\mathrm{a}_{\mathrm{B} 2}=0$)

Figure 1. Overview of 15 fitted models with number of parameters (p) and Akaike information criterion (AIC)

Table 2. Characteristics of the demand model. ${ }^{2}$ Standard deviations in parentheses

Commodity group		ω (\%)	E	P_{1}	P_{2}	Rv_{α}	RV ${ }_{\text {v }}$
01)	Flour and bread	2.239	0.373	0.472	0.459	0.300	0.468
			(0.055)	(0.057)	(0.089)	(0.024)	(0.014)
02)	Meat and eggs	5.862	0.753	0.265	0.106	0.479	0.788
			(0.092)	(0.093)	(0.145)	(0.047)	(0.027)
03)	Fish	1.560	0.654	-0.187	0.022	0.742	0.897
			(0.118)	(0.125)	(0.192)	(0.048)	(0.031)
04)	Canned meat and fish	0.554	0.671	0.179	0.042	0.526	1.050
			(0.112)	(0.117)	(0.181)	(0.065)	(0.036)
05)	Dairy products	2.881	0.188	0.601	0.582	0.289	0.360
			(0.046)	(0.049)	(0.076)	(0.018)	(0.011)
06)	Butter and margarine	0.875	0.271	0.457	0.477	0.335	0.747
			(0.075)	(0.080)	(0.123)	(0.046)	(0.024)
07)	Potatoes and vegetables	4.237	0.625	0.399	0.129	0.375	0.517
			(0.067)	(0.068)	(0.105)	(0.030)	(0.017)
08)	Other foods	3.471	0.527	0.307	0.333	0.312	0.498
			(0.060)	(0.061)	(0.094)	(0.028	0.015)
09)	Beverages	2.406	1.733	-0.447	-0.915	0.755	0.976
			(0.144)	(0.139)	(0.218)	(0.059)	(0.035)
10)	Tobacco	1.527	0.814	-0.008	-0.071	1.120	0.583
			(0.149)	(0.154)	(0.238)	(0.046)	(0.021)
11)	Clothing	8.794	1.147	0.033	0.067	0.442	0.824
			(0.098)	(0.092)	(0.146)	(0.054)	(0.029)
12)	Footwear	1.906	1.178	0.243	-0.161	0.122	1.925
			(0.182)	(0.176)	(0.277)	(0.764)	(0.067)
13)	Housing	11.325	1.133	-0.055	-0.552	0.580	0.704
			(0.098)	(0.093)	(0.147)	(0.041)	(0.025)
14)	Fuel and power	3.435	0.230	0.073	0.147	0.391	0.306
			(0.057)	(0.058)	(0.090)	(0.018)	(0.011)
15)	Furniture	5.124	1.365	-0.370	-0.509	0.529	1.466
			(0.152)	(0.146)	(0.229)	(0.115)	(0.051)
16)	Household equipment	2.894	1.105	-0.055	-0.177	0.466	1.586
			(0.160)	(0.155)	(0.244)	(0.145)	(0.055)
17)	Misc. household goods	2.043	1.013	0.160	-0.738	0.568	1.052
			(0.126)	(0.122)	(0.192)	(0.066)	(0.037)
18)	Motorcars, bicycles	7.316	0.740	-0.040	1.066	1.285	2.047
			(0.362)	(0.227)	(0.408)	(0.280)	(0.181)
19)	Running cost of vehicles	8.478	1.346	0.135	0.219	0.697	1.066
			(0.133)	(0.123)	(0.195)	(0.065)	(0.038)
20)	Public transport	2.223	1.083	-0.602	0.172	0.644	1.408
			(0.166)	(0.158)	(0.249)	(0.096)	(0.050)
21)	PTT charges	1.394	0.848	-0.625	-0.271	1.251	2.858
			(0.312)	(0.307)	(0.481)	(0.196)	(0.100)
22)	Recreation	6.834	1.344	-0.195	-0.379	0.492	1.250
			(0.134)	(0.128)	(0.201)	(0.096)	(0.044)
23)	Public entertainment	3.162	0.763	-0.118	0.512	0.837	1.099
			(0.149)	(0.147)	(0.230)	(0.061)	(0.039)
24)	Books and newspapers	1.843	1.016	-0.196	-0.105	0.876	1.027
			(0.151)	(0.149)	(0.233)	(0.058)	(0.036)
25)	Medical care	1.407	0.547	0.365	0.290		2.349
			(0.200)	(0.197)	(0.308)		(0.082)
26)	Personal care	1.894	0.976	0.108	0.210	0.449	0.811
			(0.102)	(0.099)	(0.155)	(0.052)	(0.029)
27)	Misc. goods and services	1.344	1.712	-0.218	-0.450	0.569	2.035
			(0.210)	(0.205)	(0.321)	(0.201)	(0.072)
28)	Restaurants, hotels etc.	2.974	1.904	-0.629	-0.607	0.904	1.121
			(0.166)	(0.160)	(0.252)	(0.067)	(0.040)

[^0]
5.2 Engel functions

The estimated parameters of the Engel functions are given in appendix B (table A3), while table 2 presents main characteristics in terms of budget shares (ω), Engel elasticities (E), child elasticities (P_{1}), and adult elasticities $\left(\mathrm{P}_{2}\right)$. The child (adult) elasticity is defined as the relative change in household expenditure divided by the relative change in the number of persons in the household, when the number of children (adults) is increased by one. These 'person elasticities' are defined conditionally on the value of (latent) total expenditure, thus their (weighted) sum across all goods is equal to zero owing to the budget constraint. The elasticities are computed at the (global) sample average point (cf table A1). In addition, table 2 includes a measure of the relative variation of preferences $\left(R V_{\alpha}\right)$ for each good, defined as the standard deviation of the preference variable (α) divided by the overall sample mean of the expenditure, and a corresponding measure of the relative variation of the measurement error $v\left(\mathrm{RV}_{\mathrm{v}}\right)$. Thus these measures are dimensionless numbers similar to coefficients of variation.

Note that all the food groups (01-08) have Engel elasticities that are significantly less than one, and larger than zero, once again confirming Engel's law. The three goods with lowest Engel elastisicity are 05 Dairy products ($\mathrm{E}=0.19$), 14 Fuel and power ($\mathrm{E}=0.23$), and 06 Butter and margarine ($\mathrm{E}=0.27$), while those with the largest Engel elasticity are 28 Restaurants and hotels ($\mathrm{E}=1.90$), 09 Beverages ($\mathrm{E}=1.73$), and 27 Miscellaneous goods and services ($\mathrm{E}=1.71$).

A model assuming a linear homogeneous equivalence scale implies that the person elasticities are positive for necessities ($\mathrm{E}<1$) and negative for luxuries ($\mathrm{E}>1$), see e.g. Bojer (1977,p.183). The empirical results of our less restrictive general model also satisfy this property for most of the goods, in particular for the goods mentioned above, with one exception. This exception is the negative child elasticity for 03 Fish, which may be explained by a tendency of children not to enjoy eating fish as much as adults do.

The goods with the largest estimates of relative preference variation are 18 Motorcars and bicycles (RV_{α} $=1.29)$, 21 PTT charges $\left(\mathrm{RV}_{\alpha}=1.25\right)$, and 10 Tobacco $\left(\mathrm{RV}_{\alpha}=1.12\right)$. The goods with the estimated largest relative variation of measurement errors are 21 PTT charges $\left(\mathrm{RV}_{v}=2.86\right), 25$ Medical Care ($\mathrm{RV}_{\mathrm{v}}=2.35$), and 18 Motorcars and bicycles $\left(\mathrm{RV}_{\mathrm{v}}=2.05\right)$.

5.3 Distributon of preferences

Tables 3 and 4 contain summary characteristics of the distribution of the vectors of preference variables, α and μ, supplementing the relative variation statistics RV_{α} reported in table 2 , column 5 . The statistics in table 3 are renormalizations of the elements of the estimated $\mathrm{I} \times \mathrm{I}$ matrix $\Sigma_{\alpha \alpha}$ while those in table 4 are similar renormalizations of the estimated I \times I matrix $\Sigma_{\mu \mu}$. Recall that the relationship between these two matrices are given by (17). All statistics in these two tables refer to the specification denoted as R (restricted, reference) in section 5.1, all the "basic" free parameter estimates being given in table A5 in appendix B.

Element i on the main diagonal of table 3 (table 4) is the estimated variance of $\alpha_{i}\left(\mu_{i}\right)$ normalized against the squared (global) sample mean of expenditure of commodity i - i.e. it is a sort of squared coefficients of variation of preferences. (The diagonal of table 3 thus contains the square of the entries in the fifth
column of table 2.) Below the main diagonal are given the corresponding normalized covariances, i.e. the figure in position ($\mathrm{i}, \mathrm{j}, \mathrm{i}>\mathrm{j}$) is the estimated covariance between α_{i} and α_{j} in table 3 and between μ_{i} and μ_{j} in table 4, both divided by the product of the expenditures on commodities i and j. Above the main diagonal of table 3 (table 4) are reported the estimated simple coefficients of correlation of α_{i} and α_{j} (μ_{i} and μ_{j}). Hence, all entries in table 3 and 4 are dimensionless numbers, which is a definite advantage from the point of view of interpretability and stability of the parameters.

It follows from our specification (cf section 4) that the transformed $\mathrm{I} \times \mathrm{I}$ matrices underlying table 3 are block diagonal matrices, but it is by no means a priori obvious that all covariance elements of each block should have the same sign. However, it follows from our assumptions regarding commodities $01-08$, i.e. the food commodities (block Ia), that all the normalized covariances of the preference variables in the α vector of these commodities are positive. This is due, inter alia, to the positivity of all the estimated marginal budget shares, i.e. the corresponding elements of the estimates of the $I \times 1$ vector b [cf (14)]. A positive relationship between the preference variables represented by the μ vector is also indicated for the eight food commodities, cf table 4, although the two I \times I matrices underlying the latter table are not block diagonal matrices (cf (17)) - recall that all columns of $\Sigma_{\mu \mu}$ add to zero. Hence, at least some of its off-diagonal elements must be negative, since its estimated and normalized variances, along its diagonal, are all positive (with one exception, see below).

An interesting result is found for the three transportation commodities, commodities 18-20 (block IVa). Here the elements of $\Sigma_{\alpha \alpha}$ are not a priori restricted to have the same sign (its 3×3 submatrix is in fact freely estimated, cf section 5), and our estimates give the quite reasonable result that the preferences for both 18 Motorcars and bicycles and 19 Running costs of vehicles are negatively correlated with the preferences for 20 Public transportation. On the other hand, the preferences for commodities 18 and 19 are positively correlated, as they should probably be. We here obtain the same qualititive result regardless of whether we use the α or the μ vector to represent preference variations.

We find, however, among the 28×28 entries, two anomalous results. First, one preference variable, among the 28 , comes out with a negative variance estimate, namely for commodity 25 Medical care. Second, the estimated coefficients of correlation between commodities 11 Clothing and 12 Footwear exceeds one (1.718 for α and 1.187 for μ). Strong positive correlation between the preferences of these two commodities, however, comes as no surprise.

Table 3. Distributional measures of the preference variables α. Relative covariation of preferences in the lower triangle (relative variation along the main diagonal) and correlation coefficients in the upper triangle (excluding the main diagonal)

| $\alpha 01$ | $\alpha 02$ | $\alpha 03$ | $\alpha 04$ | $\alpha 05$ | $\alpha 06$ | $\alpha 07$ | $\alpha 08$ | $\alpha 09$ | $\alpha 10$ | $\alpha 11$ | $\alpha 12$ | $\alpha 13$ | $\alpha 14$ | $\alpha 15$ | $\alpha 16$ | $\alpha 17$ | $\alpha 18$ | $\alpha 19$ | $\alpha 20$ | $\alpha 21$ | $\alpha 22$ | $\alpha 23$ | $\alpha 24$ | $\alpha 25$ | $\alpha 26$ | $\alpha 27$ | $\alpha 28$ | |
| :--- |

| $\alpha 01$ | 0.090 | 0.244 | 0.137 | 0.198 | 0.101 | 0.126 | 0.259 | 0.263 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- | $\begin{array}{llllllllllllllllllllllllll}\alpha 02 & 0.035 & 0.229 & 0.173 & 0.250 & 0.128 & 0.159 & 0.328 & 0.333 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ | $\alpha 03$ | 0.030 | 0.062 | 0.551 | 0.140 | 0.072 | 0.089 | 0.183 | 0.186 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- | | $\alpha 04$ | 0.031 | 0.063 | 0.055 | 0.277 | 0.104 | 0.129 | 0.265 | 0.269 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- |
| 0.000 | $\begin{array}{llllllllllllllllllllllllll}\alpha 05 & 0.009 & 0.018 & 0.015 & 0.016 & 0.083 & 0.066 & 0.136 & 0.138 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ | $\alpha 06$ | 0.013 | 0.026 | 0.022 | 0.023 | 0.006 | 0.112 | 0.169 | 0.171 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- | | $\alpha 07$ | 0.029 | 0.059 | 0.051 | 0.052 | 0.015 | 0.021 | 0.141 | 0.352 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- | $\begin{array}{lllllllllllllllllllllllllllllll}\alpha 08 & 0.025 & 0.050 & 0.043 & 0.044 & 0.012 & 0.018 & 0.041 & 0.097 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ $\begin{array}{lllllllllllllllllllllllll}\alpha 09 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.570 & 0.384 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$

 $\begin{array}{lllllllllllllllllllllllll}\alpha 11 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.195 & 1.718 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ | $\alpha 12$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.093 | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| :--- | $\begin{array}{llllllllllllllllllllllll}\alpha 13 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.337 & 0.057 & 0.248 & 0.228 & 0.171 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array} 0.000$ $\begin{array}{lllllllllllllllllllllllll}\alpha 14 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.013 & 0.153 & 0.075 & 0.069 & 0.052 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ $\begin{array}{lllllllllllllllllllllll}\alpha 15 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.076 & 0.015 & 0.280 & 0.301 & 0.226 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0.000 & 0.000\end{array}$ $\begin{array}{lllllllllllllllllllllllll}\alpha 16 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.062 & 0.013 & 0.074 & 0.217 & 0.208 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$

 $\begin{array}{lllllllllllllllllllllllll}\alpha 18 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.650 & 0.359 & -0.143 & 0.000 & 0.000 & 0.000 & 0.000\end{array}$ \begin{tabular}{lllllllllllllllllllllllll}
$\alpha 19$ \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.321 \& 0.486 \& -0.211 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline

 $\begin{array}{llllllllllllllllllllllll}\alpha 20 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & -0.118 & -0.095 & 0.414 & 0.000 & 0.000 & 0.000 \\ 0.0 .000\end{array}$

$\alpha 21$ \& 0.000 \& 1.566 \& 0.000 \& 0.000

0.0 .000

\hline

$\alpha 22$ \& 0.000 \& 0.242 \& 0.000 \& 0.000

\hline

$\alpha 23$ \& 0.000 \& 0.701 \& 0.000

\hline

$\alpha 24$ \& 0.000 \& 0.767

\hline

$\alpha 25$ \& 0.000

\hline

$\alpha 26$ \& 0.000

\hline

$\alpha 27$ \& 0.000

\hline
\end{tabular} $\begin{array}{lllllllllllllllllllllllllllllll}\alpha 28 & 0.000 & 0.818\end{array}$

*) The estimated variance of the preference variable is negative, and hence the correlation coefficients can not be calculated.

Table 4. Distributional measures of the preference variables μ. Relative covariation of preferences in the lower triangle (relative variation along the main diagonal) and correlation coefficients in the upper triangle (excluding the main diagonal)

$\mu 01$	$\mu 02$	$\mu 03$	$\mu 04$	$\mu 05$	$\mu 06$	$\mu 07$	$\mu 08$	$\mu 09$	$\mu 10$	$\mu 11$	$\mu 12$	$\mu 13$	$\mu 14$	$\mu 15$	$\mu 16$	$\mu 17$	$\mu 18$	$\mu 19$	$\mu 20$	$\mu 21$	$\mu 22$	$\mu 23$	$\mu 24$	$\mu 25$	$\mu 26$	$\mu 27$	$\mu 28$

$\begin{array}{llllllllllllllllllllllllllllllllllll}\mu 01 & 0.089 & 0.224 & 0.123 & 0.193 & 0.091 & 0.121 & 0.246 & 0.253 & 0.006 & -0.019 & -0.012 & 0.043 & -0.073 & -0.016 & -0.023 & -0.012 & -0.012 & -0.141 & -0.092 & 0.039 & -0.011 & 0.002 & -0.019 & -0.001\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}\mu 02 & 0.031 & 0.216 & 0.148 & 0.234 & 0.109 & 0.147 & 0.298 & 0.306 & -0.021 & -0.033 & -0.049 & -0.021 & -0.123 & -0.029 & -0.064 & -0.046 & -0.039 & -0.190 & -0.148 & 0.030 & -0.023 & -0.032 & -0.036 & -0.017\end{array}$ $\begin{array}{lllllllll}\mu 03 & 0.027 & 0.051 & 0.542 & 0.129 & 0.060 & 0.081 & 0.164 & 0.169\end{array}$ $\begin{array}{lllllllll}\mu 04 & 0.030 & 0.057 & 0.050 & 0.276 & 0.095 & 0.126 & 0.257 & 0.264\end{array}$ $\begin{array}{lllllllll}\mu 05 & 0.008 & 0.015 & 0.013 & 0.014 & 0.083 & 0.059 & 0.121 & 0.124\end{array}$ $\begin{array}{lllllllll}\mu 06 & 0.012 & 0.023 & 0.020 & 0.022 & 0.006 & 0.112 & 0.162 & 0.166\end{array}$ $\begin{array}{llllllllll}\mu 07 & 0.027 & 0.051 & 0.045 & 0.050 & 0.013 & 0.020 & 0.137 & 0.338\end{array}$ $\mu 08 \quad 0.023 \quad 0.044 \quad 0.038 \quad 0.043 \quad 0.011 \quad 0.017 \quad 0.039 \quad 0.095$ $\begin{array}{lllllllllllllllll}-0.011 & -0.018 & -0.026 & -0.009 & -0.067 & -0.016 & -0.034 & -0.024 & -0.020 & -0.104 & -0.080 & 0.017 & -0.012 & -0.016 & -0.019 & -0.009\end{array}$ $\begin{array}{lllllllllllllllllllll}0.013 & -0.017 & -0.003 & 0.063 & -0.068 & -0.015 & -0.015 & -0.004 & -0.006 & -0.142 & -0.087 & 0.045 & -0.009 & 0.011 & -0.016 & 0.002\end{array}$ $\begin{array}{lllllllllllllllllll}-0.008 & -0.013 & -0.019 & -0.008 & -0.049 & -0.012 & -0.025 & -0.018 & -0.015 & -0.077 & -0.059 & 0.013 & -0.009 & -0.012 & -0.014 & -0.007\end{array}$ $\begin{array}{llllllllllllllllllll}0.006 & -0.011 & -0.005 & 0.033 & -0.046 & -0.010 & -0.013 & -0.006 & -0.006 & -0.091 & -0.058 & 0.027 & -0.007 & 0.004 & -0.011 & 0.000\end{array}$ $\begin{array}{llllllllllllllllll}0.001 & -0.027 & -0.024 & 0.039 & -0.106 & -0.024 & -0.039 & -0.023 & -0.022 & -0.193 & -0.132 & 0.048 & -0.017 & -0.006 & -0.028 & -0.006\end{array}$ $\begin{array}{lllllllllllllllllll}0.009 & -0.025 & -0.015 & 0.061 & -0.099 & -0.022 & -0.030 & -0.015 & -0.015 & -0.192 & -0.125 & 0.054 & -0.015 & 0.004 & -0.025 & -0.001\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllll}109 & 0.001 & -0.008 & -0.006 & 0.005 & -0.002 & 0.001 & 0.000 & 0.002 & 0.602 & 0.358 & 0.028 & 0.188 & -0.090 & -0.018 & 0.009 & 0.024 & 0.013 & -0.240 & -0.123 & 0.100 & -0.007 & 0.054 & -0.016 & 0.019\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}\mu 10 & -0.006 & -0.017 & -0.015 & -0.010 & -0.004 & -0.004 & -0.011 & -0.009 & 0.309 & 1.232 & -0.033 & -0.035 & -0.065 & -0.016 & -0.040 & -0.031 & -0.025 & -0.089 & -0.077 & 0.007 & -0.013 & -0.026 & -0.020 & -0.013\end{array}$ | $\mu 11$ | -0.002 | -0.010 | -0.008 | -0.001 | -0.002 | -0.001 | -0.004 | -0.002 | 0.010 | -0.016 | 0.194 | 1.187 | -0.138 | -0.030 | -0.029 | -0.008 | -0.012 | -0.289 | -0.177 | 0.093 | -0.018 | 0.023 | -0.032 | 0.005 |
| :--- |

 $\begin{array}{lllllllllllllllllllllllllllllllll}\mu 13 & -0.011 & -0.030 & -0.026 & -0.019 & -0.007 & -0.008 & -0.021 & -0.016 & -0.037 & -0.038 & -0.032 & -0.020 & 0.275 & 0.008 & 0.123 & 0.125 & 0.089 & -0.271 & -0.258 & -0.004 & -0.050 & -0.116 & -0.074 & -0.055\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}\mu 14 & -0.002 & -0.005 & -0.004 & -0.003 & -0.001 & -0.001 & -0.003 & -0.003 & -0.005 & -0.007 & -0.005 & -0.003 & 0.002 & 0.151 & 0.042 & 0.042 & 0.030 & -0.073 & -0.065 & 0.004 & -0.012 & -0.024 & -0.018 & -0.012\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}\mu 15 & -0.004 & -0.015 & -0.013 & -0.004 & -0.004 & -0.002 & -0.007 & -0.005 & 0.004 & -0.023 & -0.007 & 0.008 & 0.033 & 0.008 & 0.266 & 0.282 & 0.206 & -0.299 & -0.199 & 0.081 & -0.024 & 0.000 & -0.041 & -0.005\end{array}$ \begin{tabular}{lllllllllllll|lllllllllllllll}
$\mu 16$ \& -0.002 \& -0.010 \& -0.008 \& -0.001 \& -0.002 \& -0.001 \& -0.004 \& -0.002 \& 0.009 \& -0.016 \& -0.002 \& 0.011 \& 0.031 \& 0.007 \& 0.067 \& 0.215 \& 0.198 \& -0.265 \& -0.163 \& 0.083 \& -0.017 \& 0.019 \& -0.030 \& 0.004

$\mu 17$ \& -0.002 \& -0.010 \& -0.008 \& -0.002 \& -0.002 \& -0.001 \& -0.005 \& -0.003 \& 0.005 \& -0.016 \& -0.003 \& 0.008 \& 0.026 \& 0.007 \& 0.060 \& 0.052 \& 0.319 \& -0.201 \& -0.129 \& 0.059 \& -0.014 \& 0.008 \& -0.025 \& 0.000

\hline

 $\begin{array}{llllllllllllllllllllllllllllll}\mu 18 & -0.051 & -0.107 & -0.092 & -0.090 & -0.027 & -0.037 & -0.086 & -0.072 & -0.224 & -0.119 & -0.154 & -0.150 & -0.171 & -0.034 & -0.186 & -0.148 & -0.137 & 1.453 & 0.151 & -0.296 & -0.079 & -0.288 & -0.109 & -0.127\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}\mu 19 & -0.017 & -0.042 & -0.036 & -0.028 & -0.010 & -0.012 & -0.030 & -0.024 & -0.059 & -0.052 & -0.048 & -0.034 & -0.083 & -0.015 & -0.063 & -0.046 & -0.045 & 0.111 & 0.376 & -0.251 & -0.060 & -0.156 & -0.088 & -0.072\end{array}$

$\mu 20$ \& 0.008 \& 0.010 \& 0.009 \& 0.016 \& 0.002 \& 0.006 \& 0.012 \& 0.011 \& 0.053 \& 0.005 \& 0.028 \& 0.041 \& -0.001 \& 0.001 \& 0.028 \& 0.027 \& 0.023 \& -0.244 \& -0.105 \& 0.468 \& 0.014 \& 0.112 \& 0.015 \& 0.046

\hline

$\mu 21$ \& -0.004 \& -0.013 \& -0.011 \& -0.006 \& -0.003 \& -0.003 \& -0.008 \& -0.006 \& -0.006 \& -0.018 \& -0.010 \& -0.001 \& -0.032 \& -0.006 \& -0.016 \& -0.010 \& -0.010 \& -0.119 \& -0.046 \& 0.012 \& 1.552 \& -0.011 \& -0.014 \& -0.006

\hline

 $\begin{array}{llllllllllllllllllllllllll}\mu 22 & 0.000 & -0.007 & -0.006 & 0.003 & -0.002 & 0.001 & -0.001 & 0.001 & 0.021 & -0.015 & 0.005 & 0.020 & -0.031 & -0.005 & 0.000 & 0.004 & 0.002 & -0.176 & -0.048 & 0.039 & -0.007 & 0.256 & -0.023 & 0.018\end{array}$

$\mu 23$ \& -0.005 \& -0.014 \& -0.012 \& -0.007 \& -0.003 \& -0.003 \& -0.009 \& -0.006 \& -0.010 \& -0.019 \& -0.012 \& -0.004 \& -0.032 \& -0.006 \& -0.017 \& -0.012 \& -0.012 \& -0.109 \& -0.045 \& 0.008 \& -0.015 \& -0.009 \& 0.686 \& -0.012

\hline
\end{tabular}

 $\begin{array}{llllllllllllllllllllllllllllll}\mu 26 & 0.003 & 0.001 & 0.001 & 0.008 & 0.000 & 0.003 & 0.004 & 0.005 & 0.029 & -0.004 & 0.013 & 0.024 & -0.013 & -0.002 & 0.011 & 0.012 & 0.010 & -0.121 & -0.024 & 0.037 & 0.002 & 0.021 & -0.001 & 0.014\end{array}$ | $\mu 27$ | 0.007 | 0.003 | 0.003 | 0.015 | 0.001 | 0.005 | 0.009 | 0.010 | 0.056 | -0.005 | 0.026 | 0.045 | -0.020 | -0.002 | 0.023 | 0.024 | 0.020 | -0.211 | -0.039 | 0.068 | 0.006 | 0.040 | 0.001 | 0.027 |
| :--- |

[^1]Table 5. Distributional measures of the measurement errors v. Relative covariation of measurement errors in the lower triangle (relative variation along the main diagonal) and correlation coefficients in the upper triangle (excluding the main diagonal)

	V01	$v 02$	V03	v04	V05	$v 06$	V07	V08	V09	V10	V11	V12	V13	V14	V15	$V 16$	V17	$V 18$	V19	V20	V21	V22	$V 23$	V24	V25	V26	V27	V28
V01	0.219	0.061	0.098	0.109	0.291	0.223	0.156	0.252	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V02	0.023	0.622	0.024	0.027	0.071	0.054	0.038	0.062	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V03	0.041	0.017	0.805	0.042	0.113	0.087	0.061	0.098	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V04	0.053	0.022	0.040	1.103	0.126	0.096	0.067	0.109	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V05	0.049	0.020	0.036	0.047	0.129	0.257	0.180	0.291	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V06	0.078	0.032	0.058	0.075	0.069	0.558	0.138	0.223	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V07	0.038	0.015	0.028	0.036	0.033	0.053	0.267	0.156	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	. 000
V08	0.059	0.024	0.044	0.057	0.052	0.083	0.040	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V09	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.953	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.340	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.679	0.206	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.327	3.704	0.0	0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.496	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.093	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.150	0.109	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.254	2.516	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	4.189	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.136	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.983	0.000	0.000	. 000	000	000	0.000	0.000	0.000
V21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.168	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.562	0.000	0.000	0.000	0.000	0.000	0.000
V23	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.209	0.000	0.000	0.000	0.000	0.000
V24	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.054	0.000	0.000	0.000	0.000
V25	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.516	0.000	0.000	0.000
V26	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.658	0.000	0.000
V27	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	4.140	0.000
V28	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.257

5.4 Distribution of measurement errors

Table 5 contains summary characteristics of the distribution of the vectors of commodity specific measurement errors, v, supplementing the relative variation statistics $R V_{v}$ reported in table 2, column 6 . The statistics in table 5 are renormalizations of the elements of the estimated $\mathrm{I} \times \mathrm{I}$ matrix Σ_{w}, with different normalizations used below and above the main diagonal. Table 5 is constructed in a similar way as table 3. Note that all statistics in this table, like those in tables 3 and 4, refer to the specification denoted as R (restricted, reference) in section 4. All the basic free parameter estimates characterizing the distribution of measurement errors are reported in table A5 and A6 in appendix B.

Element i on the main diagonal of table 5 is the estimated variance of v_{i} normalized against the squared (global) sample mean of expenditure on commodity i-i.e. it is a sort of a squared coefficient of variation of measurement errors. (The main diagonal of table 5 thus contains the square of the entries in the sixth column of table 2.) Below the main diagonal are given the corresponding normalized covariances, i.e. the figure in position ($\mathrm{i}, \mathrm{j}, \mathrm{i}>\mathrm{j}$) is the estimated covariance between v_{i} and v_{j}, divided by the product of the overall sample mean of expenditures on commodities i and j. Above the main diagonal are reported the estimated simple coefficients of correlation between v_{i} and $v_{j}(i<j)$. Hence all entries in table 5, like those in tables 3 and 4, are dimensionless numbers.

According to our R specification of the model, Σ_{w} is a block diagonal matrix (cf section 4). Observe that all the estimates within each block come out with positive values. This implies that no negative estimates occur in table 5. In particular, we find positive estimated correlation between the measurement errors of all food commodities - with coefficients of correlation varying between 0.04 and 0.25 - which was not imposed as an a priori restriction. This support our purchase behavior argument above for food commodities. The measure of relative variation, reported along the main diagonal of table 5 , have quite large values for the three most prominent commodities containing durables, i.e. 15 Furniture, 16 Household equipment, and 18 Motorcars, bicycles ($2.150,2.516$, and 4.189 , respectively), but we also find large estimates for 12 Footwear (3.704) (which also is often assumed to have some of the characteristics of durables), 21 PTT charges (8.186), 25 Medical care (5.516), and 27 Misc. goods and services (4.140). Medical care also occurred with a negative estimate of the preference variance in tables 3 and 4 , which may not be a coincidence.

In several ways, special attention has been devoted to purchase of Motorcars and bicycles (commodity 18), which is the most typical durable good in our data set. (Note that Housing is measured by rent.) An overview of the specific restrictions for Motorcars and bicycles in the R specification are presented in table 1 (part 3 and 4). First, we allow for a systematic component of the measurement error (purchase resdiual) in year 2 , represented by the parameter $\mathrm{a}_{\mathrm{B} 18,2}$. Macroeconomic statistics indicate that a boom period started in our observation period with a general upswing in the purchase of cars form the first to the last observation. Thus we expect $\mathrm{a}_{\mathrm{B} 18,2}$ to be postive, and this hypothesis is confirmed by the significant estimate presented in table A6. Second, for this major durable good, allowance has been made for a non-zero autocovariance $\left(\operatorname{cov}\left(v_{18,1}, v_{18,2}\right)\right)$ between the measurement errors. A priori, this autocovariance is conjectured to be negative since for instance purchase of a car in the first period will most likely not be followed by a another purchase in the subsequent period. Table A6 reveals that a significantly negative autocovariance for the measurement errors is obtained, confirming our conjecture.

Third, we allow for covariation between the measurements error of 18 Motorcars and bicycles and the volatile component of latent total expenditure $\left(\operatorname{cov}\left(v_{18, t}, u_{t}\right)\right)$ and $\left.\operatorname{cov}\left(v_{18,2}, u_{1}\right)\right)$. Our hypothesis here is that a positive surprise in 'income' is associated with an immediate as well as a delayed increase in the purchase of (investment in) Motorcars and bicycles. Again, our hypotheses are supported by significant estimates reported in table A6.

5.5 Distribution of latent total expenditure

Table A6 presents estimates of parameters related to the distribution of latent total expenditure. The ratio between the variance of the permanent and the volatile component of latent total expenditure ($\sigma_{\chi x} / \sigma_{u u}$) is almost as high as 25 , but the variance of the volatile component is nevertheless significantly positive, indicating some change in the ranking of households according to total expenditure from observation period 1 to period 2 . Significantly positive estimates are also obtained for the covariance between the permanent component of latent total expenditure and the number of children and adults respectively ($\sigma_{x \geq 1}$ and $\sigma_{\chi_{22}}$). The time specific intercept term in period $1, \mathrm{q}_{01}$, has been set to 0 a priori in order to identify the model parameters. For the second period, a significantly negative estimate of the intercept term, q_{02}, is obtained, which means that the coefficient of variation of ξ increases from the first to the second period. The growth factor of latent total expenditure, q_{2}, significantly exceeds unity and yields, despite the negative shift in the intercept term, a significant growth in expected latent total expenditure ($\Phi_{\xi_{2}}$ $\Phi_{\xi_{1}}$) among Norwegian households in the period 1975-1977. Note, however, that there is a significantly positive discrepancy between the expectation of observed total expenditure and the expectation of latent total expenditure in the second period, corresponding to the estimated systematic component of the measurement error (purchase residual) for 18 Motorcars and bicycles in year 2 ($a_{B 18,2}$), cf section 5.4.

6. Conclusions

In this paper, we have analyzed, using a multivarate errors-in-variables approach, a complete system of Engel functions, including household size and composition as covariates, for 28 disaggregate commodities by means of a two wave panel data set for 408 Norwegian households. In each Engel function, a random household specific effect, interpreted as a preference variable is included. The covariance matrix of these preference variables is structured using an approach based on utility trees. Furthermore, each component of the observed consumption expenditure is assumed to contain a random measurement error, mainly interpreted as a purchase residual, i.e. a difference between observed purchase expenditure in the short registration period and the latent consumption defined in the context of a consumer theory with nondurable as well as durable goods. The contemporaneous covariance matrix of these purchase residuals is structured, using a factor analytic approach with an interpretation including joint shopping behavior for groups of goods. Dynamic features of purchases of durables are taken into account. The model also includes, apart from 28 commodity specific consumption expenditure variables, two income variables observed from tax records, used in identifying and estimating the demand system, and analyzing jointly the distribution of (a) latent total consumption expenditure, (b) the latent preference variables, and (c) the measurement errors. Specifying and analyzing the demand system in this way, at such a disaggregate level while using panel data, is, as far as we know, a novel feature of our approach.

The basic data input of our analysis is a 62 dimensional vector of observed variables, giving a number of first and second order sample moments as large as 2015. A data matrix of this size has in fact "worked" in the present context, within the framework of a full information maximum likelihood estimation with errors in variables. Within a class of systematically specified models, a carefully designed parsimonious model with 213 free parameters gave the best fit according to the Akaike Information Criterion (AIC). This is used as a reference model and is completely documented in the paper. Almost all the estimates of the 213 structural parameters have the expected signs and reasonable magnitudes.

The empirical study has thus confirmed our conjecture that this type of latent variable approach is fruitful for econometric analysis of surveys of household expenditures, at a disaggregate level of commodity classification.

Appendix A: Engel functions, preference varation, and two level Stone-Geary utility

The linear expenditure function

Assume that the I commodities in the household's budget are divided into G groups, and let I_{g} be the number of commodities in group $g\left(g=1, \ldots, G ; \Sigma_{g} I_{g}=I\right)$. The utility function U has the following Stone-Geary form in the group specific 'sub-utilities' $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{g}}$

$$
\begin{equation*}
\mathrm{U}=\prod_{\mathrm{g}=1}^{\mathrm{G}}\left(\frac{\mathrm{U}_{\mathrm{g}}-\gamma_{\mathrm{g}}}{\beta_{\mathrm{g}}}\right)^{\beta_{\mathrm{g}}}, \quad \beta_{\mathrm{g}}>0, \quad \mathrm{U}_{\mathrm{g}}>\gamma_{\mathrm{g}}, \quad \mathrm{~g}=1, \ldots, \mathrm{G} \tag{A.1}
\end{equation*}
$$

where β_{g} and γ_{g} are unknown parameters. Here we can assume, without loss of generality, that

$$
\text { (A.2) } \quad \sum_{g} \beta_{g}=1
$$

since $V=U^{1 / \Sigma_{g} \beta_{8}}$ is an equally valid (ordinal) representation of the household's preferences as U. The 'sub-utility' functions U_{g} are also assumed to have the Stone-Geary form
(A.3) $U_{g}=\prod_{i=1}^{I_{g}}\left(\frac{\eta_{i g}-\gamma_{i g}}{\beta_{i g}}\right)^{\beta_{i g}}, \quad \beta_{i g}>0, \quad \eta_{i g}>\gamma_{i g}, \quad i=1, \ldots, I_{g}, \quad g=1, \ldots, G$,
where η_{ig} is the quantity consumed of commodity i in group g , denoted as commodity (i, g) for short, and β_{ig} and γ_{ig} are unknown parameters. We also assume that
(A.4) $\sum_{i} \beta_{i g}=1, \quad g=1, \ldots, G$,
which imply that all the 'sub-utilities' are homogeneous of degree one in the 'supernumerary consumption' $\eta_{\mathrm{ig}}-\gamma_{\mathrm{ig}}$ of all commodities. In contrast to (A.2), (A.4) implies restrictions on the demand functions and it will substantially facilitate the model formulation in the sequel. Note also the crucial role played by the non-zero 'minimum consumption' parameters γ_{g} in the upper utility function (A.1). If all $\gamma_{\mathrm{g}}=0$, (A.1) and (A.3) would imply an overall utility function having the StoneGeary form in all the I quantities consumed,

$$
U=\prod_{g} \beta_{g}^{-\beta_{g}}\left[\prod_{i}\left(\frac{\eta_{i g}-\gamma_{i g}}{\beta_{\mathrm{ig}}}\right)^{\beta_{\mathrm{ig}}}\right]^{\beta_{g}}=\prod_{g} \prod_{i}\left(\frac{\eta_{\mathrm{ig}}-\gamma_{\mathrm{ig}}}{\beta_{g} \beta_{\mathrm{ig}}}\right)^{\beta_{\mathrm{ig}} \beta_{\mathrm{g}}} .
$$

Note also that (A.1) and (A.3) are equivalent to representing the preferences in the more familiar form

$$
U^{*}=\prod_{g}\left(U_{g}^{*}-\gamma_{g}^{*}\right)^{\beta_{g}}, \quad U_{g}^{*}=\prod_{i}\left(\eta_{i g}-\gamma_{i g}\right)^{\beta_{i g}} .
$$

The proof is the following: From the latter equations we have

$$
\begin{aligned}
& U^{*}=\prod_{g} \beta_{g}^{\beta_{g}}\left(\frac{U_{g}^{*}-\gamma_{g}^{*}}{\beta_{g}}\right)^{\beta_{g}}, \\
& U_{g}^{*}=\prod_{i} \beta_{i g}{ }^{\beta_{g}}\left(\frac{\eta_{i g}-\gamma_{i g}}{\beta_{i g}}\right)^{\beta_{i g}},
\end{aligned}
$$

which when

$$
\gamma_{\mathrm{g}}^{*}=\prod_{\mathrm{i}} \beta_{\mathrm{ig}} \beta_{\mathrm{ig}} \gamma_{\mathrm{g}},
$$

using (A.3), implies

$$
\mathrm{U}_{\mathrm{g}}^{*}-\gamma_{\mathrm{g}}^{*}=\left[\prod_{\mathrm{i}} \beta_{\mathrm{ig}}^{\beta_{\mathrm{g}}}\right]\left(\mathrm{U}_{\mathrm{g}}-\gamma_{g}\right) .
$$

Hence, U^{*} is proportional to U, as defined by (A.1) and (A.3), with a factor of proportionality equal to

$$
\prod_{g} \beta_{g}^{\beta_{z}}\left[\prod_{i} \beta_{i g}^{\beta_{i}}\right]
$$

When all prices are normalised to one, the budget constraint of the household can be written as
(A.5) $\xi_{g}=\sum_{i=1}^{I_{g}} \eta_{i g}, \quad g=1, \ldots, G$,
(A.6) $\xi=\sum_{\mathrm{g}=1}^{\mathrm{G}} \xi_{\mathrm{g}}$,
where ξ is total consumption expenditure and ξ_{g} is the part of it allocated to group g. A set of necessary conditions for U to be maximised with respect to all $\eta_{i t}$, subject to (A.5) - (A.6) with ξ given, is that all U_{g} are maximised with respect to $\eta_{1 g}, \ldots, \eta_{1_{g} g}$, subject to (A.5), with ξ_{g} given. The solution to this sub-problem, paying regard to (A.4) and assuming an interior solution, is described by the (conditional) within group, linear expenditure functions
(A.7) $\eta_{i g}-\gamma_{i g}=\beta_{i g}\left(\xi_{g}-m_{g}\right), i=1, \ldots, I_{g}, \quad g=1, \ldots, G$,
where m_{g} is 'aggregate minimum consumption' of group g ,
(A.8) $\mathrm{m}_{\mathrm{g}}=\sum_{\mathrm{i}} \gamma_{\mathrm{ig}}, \quad \mathrm{g}=1, \ldots, \mathrm{G}$.

From this it follows that maximal utility of group g is simply equal to the 'supernumerary expenditure' on this group, since (A.3), (A.4), and (A.7) imply
(A.9) $U_{g}=\xi_{g}-m_{g}, \quad i=1, \ldots, I_{g}, g=1, \ldots, G$.

Substituting (A.9) in (A.1), it follows that the overall utility conditional on group specific utility maximization, for given group expenditures ξ_{1}, \ldots, ξ_{G}, is equal to

$$
\begin{equation*}
\mathrm{U}=\prod_{\mathrm{g}=1}^{\mathrm{G}}\left(\frac{\xi_{\mathrm{g}}-\mathrm{m}_{\mathrm{g}}-\gamma_{\mathrm{g}}}{\beta_{\mathrm{g}}}\right)^{\beta_{\mathrm{g}}} . \tag{A.10}
\end{equation*}
$$

The remarkable property of this 'partially maximised' utility function is that it has exactly the same Stone-Geary form as (A.1) and (A.3), with $\mathrm{m}_{\mathrm{g}}+\boldsymbol{\gamma}_{\mathrm{g}}=\Sigma_{\mathrm{i}} \boldsymbol{\gamma}_{\mathrm{ig}}+\boldsymbol{\gamma}_{\mathrm{g}}$ now interpreted as the 'minimum consumption of group g . The upper (overall) utility maximisation of the household is then obtained by maximising (A.10) with respect to $\xi_{1}, \ldots, \xi_{\mathrm{G}}$ subject to (A.6). The solution to this problem, using (A.4), is, in complete analogy to (A.7), given by the G group specific, linear expenditure functions

$$
\begin{equation*}
\xi_{g}-m_{g}-\gamma_{g}=\beta_{g}(\xi-m-M), \quad g=1, \ldots, G \tag{A.11}
\end{equation*}
$$

where
(A.12) $m=\sum_{g} m_{g}=\sum_{g} \sum_{i} \gamma_{i g}$,
(A.13) $\quad \mathrm{M}=\sum_{\mathrm{g}} \gamma_{\mathrm{g}}$.

Eqs. (A.11) say that the overall 'supernumerary expenditure', defined as $\boldsymbol{\xi}-\mathrm{m}-\mathrm{M}$, whose components are given by (A.6), (A.12), and (A.13), are allocated on the G groups according to the group specific marginal budget shares $\beta_{\mathrm{g} \text {. }}$ Note also that the overall unconditional maximal utility is equal to the 'supernumerary expenditure', since (A.4), (A.10), and (A.11) imply

$$
\begin{equation*}
\mathrm{U}=\xi-\mathrm{m}-\mathrm{M}=\sum_{\mathrm{g}} \xi_{\mathrm{g}}-\sum_{\mathrm{g}} \mathrm{~m}_{\mathrm{g}}-\sum_{\mathrm{g}} \gamma_{\mathrm{g}}=\sum_{\mathrm{g}} \sum_{\mathrm{i}} \eta_{\mathrm{ig}}-\sum_{\mathrm{g}} \sum_{i} \gamma_{\mathrm{ig}}-\sum_{\mathrm{g}} \gamma_{\mathrm{g}} . \tag{A.14}
\end{equation*}
$$

Using (A.11) to eliminate $\xi_{g}-m_{g}$ in (A.7), we find that the commodity specific, linear expenditure functions can be written as

$$
\eta_{\mathrm{ig}}-\gamma_{\mathrm{ig}}=\beta_{\mathrm{ig}}\left[\beta_{\mathrm{g}}(\xi-\mathrm{m}-\mathrm{M})+\gamma_{\mathrm{g}}\right],
$$

or
(A.15) $\quad \eta_{i g}-\gamma_{i g}-\beta_{i g} \gamma_{g}=\beta_{i g} \beta_{g}(\xi-m-M), i=1, \ldots, I_{g}, \quad g=1, \ldots, G$.

Here, minimum consumption of commodity (i, g) has two additive components, the first, γ_{ig}, representing commodity specific minimum consumption [cf. (A.3)], the second, $\beta_{\mathrm{ig}} \gamma_{\mathrm{g}}$, being the share β_{ig} of the group specific minimum consumption [cf. (A.1)]. Likewise, the marginal budget share of commodity (i, g) has two multiplicative components, the first, β_{ig}, being the within group commodity specific marginal budget share, the second, β_{g}, being the marginal budget share specific to group g .

Demographic specification

In the econometric specification of the model, the minimum consumption parameters γ_{g} and γ_{ig} are not assumed to be constants, as implied by the above description, but are specified as functions of household characteristics in the following way

$$
\begin{equation*}
\gamma_{\mathrm{g}}=\beta_{\mathrm{g}}\left(\overline{\mathrm{a}}_{\mathrm{g}}+\bar{c}_{\mathrm{g}} \mathrm{z}+\bar{\alpha}_{\mathrm{g}}\right), \quad \mathrm{g}=1, \ldots, \mathrm{G} \tag{A.16}
\end{equation*}
$$

(A.17) $\gamma_{i g}=\underline{a}_{i g}+\underline{c}_{i g} z+\underline{\alpha}_{i g}, \quad i=1, \ldots, I_{g} ; \quad g=1, \ldots, G$.

Here z is a $\mathrm{M} \times 1$-vector of demographic variables, $\boldsymbol{\beta}_{\mathrm{g}} \overline{\mathrm{c}}_{\mathrm{g}}$ and $\underline{c}_{\mathrm{ig}}$ are $1 \times \mathrm{M}$-vectors representing their effect on minimum consumption of group g and of commodity (i, g), respectively, $\boldsymbol{\beta}_{\mathrm{g}} \overline{\mathrm{a}}_{\mathrm{g}}$ and $\underline{\mathrm{a}}_{\mathrm{ig}}$ are corresponding intercept terms, and $\beta_{\mathrm{g}} \bar{\alpha}_{\mathrm{g}}$ and $\underline{\alpha}_{\mathrm{ig}}$ are stochastic variables representing (unmeasured) household specific variation in preferences affecting minimum consumption. (We use 'underscore' and 'overscore' to symbolise disaggregate commodities and aggregate groups, respectively).

From (A.16) and (A.17) it follows that the composite minimum consumption parameters in (A.15) can be expressed in terms of the demographic effects and the preference variables as

$$
\begin{equation*}
\gamma_{i g}+\beta_{i g} \gamma_{g}=a_{i g}^{*}+c_{i g}^{*} z+\alpha_{i g}, \quad i=1, \ldots, I_{g} ; \quad g=1, \ldots, G, \tag{A.18}
\end{equation*}
$$

and their aggregates as [cf. (A.12) and (A.13)]

$$
\begin{equation*}
m+M=\sum_{g} \sum_{i} \gamma_{i g}+\sum_{g} \sum_{i} \beta_{i g} \gamma_{g}=\sum_{g} \sum_{i} a_{i g}^{*}+\sum_{g} \sum_{i} c_{i g}^{*} z+\sum_{g} \sum_{i} \alpha_{i g}, \tag{A.19}
\end{equation*}
$$

where
(A.20) $\quad \mathrm{a}_{\mathrm{ig}}^{*}=\underline{a}_{\mathrm{ig}}+\beta_{\mathrm{ig}} \beta_{\mathrm{g}} \overline{\mathrm{a}}_{\mathrm{g}}$,
(A.21) $\mathrm{c}_{\mathrm{ig}}^{*}=\mathrm{c}_{\mathrm{ig}}+\beta_{\mathrm{ig}} \beta_{\mathrm{g}} \overline{\mathrm{c}}_{\mathrm{g}}$,

$$
\begin{equation*}
\alpha_{i g}=\alpha_{i g}+\beta_{i g} \beta_{g} \bar{\alpha}_{g}, \quad i=1, \ldots, I_{g} ; \quad g=1, \ldots, G . \tag{A.22}
\end{equation*}
$$

Let now $b_{i g}$ be the marginal budget share of commodity (i, g) relative total expenditure, i.e.
(A.23) $\quad b_{i g}=\beta_{i g} \beta_{g}, \quad i=1, \ldots, I_{g} ; \quad g=1, \ldots, G$,
let a^{*}, b, α, and η denote the $I \times 1$ vectors of $a_{i g}^{*}, b_{i g}, \alpha_{i g}$, and $\eta_{i g}$ ordered first by group, second by commodity, and let C^{*} denote the $I \times M$ matrix of $c_{i g}$ similarly ordered. We can then write (A.15) as
(A.24) $\eta=a+b \xi+C z+\mu$,
where
(A.25) $a=\left(I-b t^{\prime}\right) a^{*}, \quad C=\left(I-b t^{\prime}\right) C^{*}$.
and
(A.26) $\mu=\left(I-b t^{\prime}\right) \alpha$.

Eq. (A.24) is identical to (1) in the main text, when the time subscript t is added to η and ξ.

Appendix B. Observed moments and estimated parameters

Table A1. Mean of the observed variables. The y and w variables are measured in 1000 Norwegian 1974 kroner

$\mathrm{y} 1,1$	0.9441	$\mathrm{y} 9,1$	0.9749	$\mathrm{y} 17,1$	0.7891	$\mathrm{y} 25,1$	0.5648
$\mathrm{y} 1,2$	0.9022	$\mathrm{y} 9,2$	1.0093	$\mathrm{y} 17,2$	0.8962	$\mathrm{y} 25,2$	0.5953
$\mathrm{y} 2,1$	2.4093	$\mathrm{y} 10,1$	0.6392	$\mathrm{y} 18,1$	2.4094	$\mathrm{y} 26,1$	0.7505
$\mathrm{y} 2,2$	2.4252	$\mathrm{y} 10,2$	0.6205	$\mathrm{y} 18,2$	3.6250	$\mathrm{y} 26,2$	0.8115
$\mathrm{y} 3,1$	0.6314	$\mathrm{y} 11,1$	3.5680	$\mathrm{y} 19,1$	3.3681	$\mathrm{y} 27,1$	0.4825
$\mathrm{y} 3,2$	0.6552	$\mathrm{y} 11,2$	3.6852	$\mathrm{y} 19,2$	3.6245	$\mathrm{y} 27,2$	0.6260
$\mathrm{y} 4,1$	0.2281	$\mathrm{y} 12,1$	0.8207	$\mathrm{y} 20,1$	0.9605	$\mathrm{y} 28,1$	1.1824
$\mathrm{y} 4,2$	0.2286	$\mathrm{y} 12,2$	0.7512	$\mathrm{y} 20,2$	0.8733	$\mathrm{y} 28,2$	1.2708
$\mathrm{y} 5,1$	1.1714	$\mathrm{y} 13,1$	4.4736	$\mathrm{y} 21,1$	0.4648	$\mathrm{w} 1,1$	38.0961
$\mathrm{y} 5,2$	1.2044	$\mathrm{y} 13,2$	4.8672	$\mathrm{y} 21,2$	0.6846	$\mathrm{w} 1,2$	41.9946
$\mathrm{y} 6,1$	0.3632	$\mathrm{y} 14,1$	1.4001	$\mathrm{y} 22,1$	2.6391	$\mathrm{w} 2,1$	55.1871
$\mathrm{y} 6,2$	0.3587	$\mathrm{y} 14,2$	1.4328	$\mathrm{y} 22,2$	2.9971	$\mathrm{w} 2,2$	58.5761
$\mathrm{y} 7,1$	1.7547	$\mathrm{y} 15,1$	2.1122	$\mathrm{y} 23,1$	1.3293	z 1	0.8039
$\mathrm{y} 7,2$	1.7400	$\mathrm{y} 15,2$	2.1143	$\mathrm{y} 23,2$	1.2790	z 2	2.2255
$\mathrm{y} 8,1$	1.4418	$\mathrm{y} 16,1$	1.1186	$\mathrm{y} 24,1$	0.7586		
$\mathrm{y} 8,2$	1.4214	$\mathrm{y} 16,2$	1.2683	$\mathrm{y} 24,2$	0.7613		

Table A2. Covariance matrix of the 62 observed variables. The y and w variables are measured in 1000 Norwegian 1974 kroner

	y1,1	y1,2	y2,1	y2,2	y3,1	y3,2	y4,1	y4,2
y1,1	0.427136							
yl,2	0.215846	0.361314						
y2,1	0.447133	0.338968	6.195869					
y2,2	0.330587	0.381913	2.352823	5.927368				
y3,1	0.101367	0.074592	0.484935	0.360822	0.582443			
y3,2	0.079513	0.081344	0.359615	0.311137	0.262870	0.612832		
y4,1	0.052930	0.029663	0.153327	0.106304	0.019004	0.008113	0.064346	
y4,2	0.036874	0.051156	0.166520	0.101980	0.016381	0.038021	0.021663	0.094324
y5,1	0.234593	0.185987	0.502650	0.523929	0.094047	0.070603	0.048213	0.048528
y5,2	0.175702	0.212662	0.364057	0.563827	0.064085	0.098708	0.033098	0.047947
y6,1	0.079471	0.067788	0.135215	0.202977	0.032323	0.028702	0.015086	0.014121
y6,2	0.065777	0.080854	0.172397	0.153049	0.044956	0.051698	0.008166	0.018395
y7,1	0.353961	0.242747	1.227227	1.040389	0.258460	0.138616	0.089245	0.070465
y7,2	0.312377	0.363698	0.870247	0.972351	0.232592	0.196047	0.076412	0.097277
y8,1	0.331429	0.262178	0.913087	0.750300	0.115938	0.054115	0.073660	0.071229
y8,2	0.254850	0.297154	0.682847	0.907944	0.099227	0.146415	0.055003	0.080600
y9,1	0.141597	0.119491	0.634335	0.607859	0.136841	0.170550	0.069735	0.054495
y9,2	0.144206	0.176706	0.760337	0.678932	0.130838	0.266100	0.072587	0.100262
y10,1	0.074411	0.083229	0.363942	0.240242	0.026433	-0.003523	0.040347	0.029372
y10,2	0.075877	0.094914	0.283974	0.274324	0.012733	0.021640	0.038875	0.042145
y11,1	0.608608	0.680887	1.977496	1.756145	0.500960	0.280724	0.069624	0.129389
y11,2	0.720136	0.837372	1.704445	2.405438	0.332580	0.249114	0.177646	0.154668
y12,1	0.198212	0.146368	0.641767	0.247570	0.078971	0.137662	0.045076	0.086069
y12,2	0.150846	0.177070	0.510405	0.747502	0.077012	0.118241	0.058826	0.041654
y13,1	0.367728	0.475860	1.903638	2.137532	0.403810	0.314366	0.078118	0.150814
y13,2	0.636749	0.661392	1.453831	2.287043	0.370971	0.197202	0.146464	0.074140
y14,1	0.089388	0.089491	0.224936	0.335978	0.048241	0.038289	0.017807	0.012949
y14,2	0.056190	0.082186	0.153859	0.324358	0.036292	0.043498	0.013441	0.018260
y15,1	0.260408	0.189862	1.619963	1.676250	0.193207	-0.081491	0.084808	0.062843
y15,2	0.278470	0.288308	1.915437	1.573451	0.098452	0.112788	0.123753	0.165548
y16,1	0.123534	0.121455	0.454470	0.656917	0.152683	-0.035258	0.028269	0.007255
y16,2	0.301779	0.265868	0.895446	1.091201	0.158493	0.063752	0.077476	0.103981
y17,1	0.093732	0.107370	0.407848	0.386707	0.070725	0.067025	0.038174	0.031942
y17,2	0.096436	0.126590	0.359779	0.790188	0.105674	0.094436	0.019434	-0.000075
y18,1	0.310660	0.540626	1.764707	0.514369	0.345963	0.491578	0.120769	0.262373
y18,2	0.686912	0.798792	1.104591	-0.289245	-0.266758	0.048237	0.146226	0.268858
y19,1	0.745686	0.598266	1.255188	1.237085	0.315214	0.034619	0.257504	0.109228
y19,2	0.739685	0.953740	1.540204	2.870788	0.201595	0.254546	0.299850	0.197974
y20,1	0.058885	0.047236	0.614615	0.395892	0.162397	0.044791	0.014374	-0.004469
y20,2	0.175397	0.106720	0.365211	0.527696	0.259743	0.104033	0.058696	0.025904
y21,1	0.019657	-0.055066	0.119160	-0.219854	0.129134	0.034264	0.013684	-0.000886
y21,2	0.035148	0.086750	0.305424	0.403742	0.113313	0.171832	0.061025	0.025854
y22,1	0.401503	0.451754	0.698359	1.109823	0.532398	0.327306	0.086495	0.162542
y22,2	0.488683	0.546365	1.066441	2.177611	0.773086	0.552146	0.111655	0.193024
y23,1	0.199597	0.169699	0.399393	0.524206	0.183446	0.074765	0.051995	0.047499
y 23,2	0.296106	0.236096	0.976622	1.055177	0.133732	0.159186	0.057054	0.060495
y24,1	0.075114	0.071795	0.386358	0.127214	0.102322	0.090446	0.016558	0.052296
y24,2	0.123869	0.117612	0.399091	0.435909	0.131327	0.129270	0.035111	0.048885
y25,1	0.134880	0.079410	0.131775	0.122445	0.159581	0.062275	0.032666	0.028516
y25,2	0.082998	0.070279	0.102520	0.228412	0.053773	0.078633	0.018766	-0.010712
y26,1	0.162022	0.137765	0.476244	0.479473	0.060101	-0.001384	0.036935	0.040558
y26,2	0.165238	0.166283	0.306243	0.560734	0.046018	0.038846	0.034788	0.072499
y27,1	0.145432	0.133652	0.190060	0.205906	0.054310	0.068062	0.016744	0.046049
y27,2	0.139223	0.150787	0.354245	0.344939	0.081743	0.123160	0.059581	0.057088
y28,1	0.197866	0.250193	0.531256	0.358649	0.078163	0.150698	0.054675	0.035084
y28,2	0.249810	0.297201	0.597367	0.638176	0.061511	0.137085	0.128271	0.081958
w1,1	3.686286	3.649951	14.747439	11.784499	3.770911	2.580784	0.980665	0.731203
w1,2	4.447128	4.671882	15.633292	14.028107	3.666255	2.610044	0.974740	0.839868
w2,1	8.290483	8.161745	29.708865	22.260621	5.276844	3.741777	2.168640	1.800650
w2,2	9.127864	9.299621	30.644108	24.786522	5.292704	3.649991	2.097247	1.994525
z1	0.324077	0.306573	0.642529	0.853324	0.037979	0.026310	0.062642	0.049138
z2	0.223900	0.205832	0.570418	0.531847	0.110106	0.105979	0.032476	0.052950

Table A2 cont.

	y5,1	y5,2	y6,1	y6,2	y7,1	y7,2	y8,1	y8,2
y5,1	0.484955							
y5,2	0.335040	0.528162						
y6,1	0.106057	0.075483	0.104105					
y6,2	0.072855	0.093311	0.035325	0.102894				
y7,1	0.364443	0.317306	0.099052	0.111683	1.809764			
y7,2	0.331181	0.393130	0.092386	0.143412	0.930900	1.736025		
y8,1	0.354440	0.295307	0.110413	0.082914	0.589954	0.571037	0.965470	
y8,2	0.296788	0.359653	0.089301	0.126057	0.406964	0.687808	0.530943	1.076546
y9,1	0.124535	0.083342	0.048788	0.019857	0.320583	0.326421	0.277546	0.206204
y9,2	0.082838	0.103052	0.042193	0.044460	0.508087	0.510123	0.306622	0.329679
y10,1	0.065073	0.044554	0.047463	0.021095	0.066758	0.104331	0.136601	0.136018
y10,2	0.069647	0.053835	0.056163	0.021116	0.046265	0.149589	0.146937	0.184646
y11,1	0.732257	0.679430	0.133420	0.212658	1.172686	1.262116	0.986399	1.175690
y11,2	0.757397	0.807880	0.290056	0.217034	1.275667	1.509832	1.325877	1.476556
y12,1	0.217654	0.205419	0.053381	0.093897	0.368638	0.407375	0.224308	0.337899
y12,2	0.238317	0.227555	0.086333	0.087007	0.188219	0.350962	0.236676	0.275545
y13,1	0.365884	0.493414	0.187954	0.105770	1.086846	1.297630	0.581093	0.512415
y13,2	0.478336	0.435511	0.241425	0.146591	1.341249	1.467293	0.575521	0.461947
y14,1	0.116513	0.128655	0.035929	0.037103	0.244887	0.231712	0.083741	0.146831
y14,2	0.097531	0.085607	0.031577	0.027859	0.180538	0.190753	0.047882	0.107697
y15,1	0.228798	0.226885	0.063631	0.040309	0.642562	0.576306	0.407270	0.430415
y15,2	0.187924	0.312478	0.132675	0.089840	0.763141	0.810256	0.592303	0.851553
y16,1	0.125256	0.058536	0.043718	0.033683	0.271185	0.254564	0.437794	0.298019
y16,2	0.263443	0.193268	0.107034	0.052499	0.627089	0.543818	0.344552	0.378583
y17,1	0.127928	0.108071	0.044101	0.021841	0.326347	0.255686	0.241844	0.193395
y17,2	0.152811	0.175570	0.052882	0.021186	0.357001	0.349445	0.222967	0.202988
y18,1	0.354514	0.484757	-0.047274	-0.029245	1.544741	1.154419	0.256072	0.394121
y18,2	0.815935	0.523891	0.145167	0.045506	0.438943	0.918298	0.606049	1.346081
y19,1	0.765879	0.626910	0.176933	0.075536	1.262196	1.537117	1.256256	1.054028
y19,2	0.776783	0.799447	0.267425	0.254489	1.527395	1.758876	1.132432	1.503112
y20,1	-0.010049	0.085136	0.027632	0.022539	0.149715	0.140380	0.119342	0.062917
y20,2	0.147643	0.174311	0.046835	-0.008325	0.300455	0.229587	0.173785	0.195420
y21,1	-0.049609	-0.035968	-0.021119	-0.028828	-0.119262	-0.086184	0.046299	-0.033715
y21,2	0.046303	0.009390	-0.007712	-0.000989	-0.008311	0.229414	0.044786	-0.040664
y22,1	0.498510	0.518619	0.194265	0.130526	0.492172	1.001870	0.391056	0.868533
y22,2	0.332570	0.283097	0.117525	0.172966	1.278879	1.316864	0.668035	0.844892
y23,1	0.115007	0.168626	0.067537	0.050434	0.359062	0.516310	0.240412	0.307572
y23,2	0.223148	0.258452	0.077690	0.085504	0.420812	0.488760	0.370256	0.483727
y24,1	0.117761	0.080896	0.024541	0.043754	0.160133	0.189680	0.121039	0.150371
y24,2	0.163186	0.144800	0.069045	0.051809	0.212855	0.259567	0.160677	0.201238
y25,1	0.132608	0.098576	0.045481	0.029090	0.259024	0.197265	0.223199	0.086636
y25,2	0.126628	0.073590	0.064476	0.031290	0.083884	0.208498	0.099253	0.035182
y26,1	0.153441	0.123283	0.046656	0.044614	0.295487	0.263973	0.222768	0.253732
y26,2	0.162000	0.162182	0.049600	0.037083	0.258627	0.281841	0.279300	0.265188
y27,1	0.057110	0.080569	0.046400	0.051381	0.251174	0.345190	0.231959	0.213433
y27,2	0.082204	0.127059	0.031841	0.047827	0.271875	0.243825	0.156681	0.289718
y28,1	0.145724	0.153209	0.028506	0.070240	0.376303	0.410499	0.365480	0.267437
y28,2	0.152292	0.158076	0.014421	0.041444	0.723554	0.733123	0.509301	0.418074
w1,1	4.204280	4.207836	1.062758	1.078043	9.670069	8.845030	4.589695	5.398347
w1,2	5.084901	4.906662	1.407518	1.195794	10.492962	11.436743	5.832009	6.469330
w2,1	9.547230	8.562005	2.380721	2.040070	20.454936	17.848346	10.758241	11.703213
w2,2	10.843207	9.902843	2.747409	2.323112	21.031683	20.812516	12.525737	13.375907
z1	0.448809	0.431143	0.116758	0.107830	0.635200	0.593469	0.417774	0.403947
22	0.258218	0.270234	0.071444	0.081094	0.335901	0.379850	0.303321	0.364366

Table A2 cont.

	y9,1	y9,2	y10,1	y10,2	y11,1	y 11,2	y12,1	y12,2
y9,1	1.812462							
y9,2	1.048725	2.227675						
y10,1	0.402626	0.343629	0.689307					
y10,2	0.343783	0.350653	0.552991	0.691208				
y11,1	1.336439	1.373546	0.293627	0.334665	16.084716			
y11,2	1.201851	1.728756	0.530458	0.450259	6.859487	16.067601		
y12,1	0.079275	0.277110	0.053041	0.069869	2.027074	0.870097	2.553365	
y12,2	0.312127	0.373275	0.187347	0.149672	1.592858	2.461253	0.234057	2.533371
y13,1	1.768395	1.919007	0.822483	1.005203	2.498082	3.995185	0.365755	0.815958
y13,2	1.496548	2.092350	0.461524	0.516046	1.765580	4.595734	0.260626	0.859875
y14,1	0.073141	0.105546	0.005101	0.037009	0.509808	0.481135	0.040732	-0.031063
y14,2	0.025744	0.070372	0.028001	0.068108	0.416885	0.260059	0.104693	-0.031191
y15,1	0.755208	0.990030	0.242024	0.252259	1.950618	2.799270	0.252609	0.742307
y15,2	0.607205	0.748948	0.042837	0.098836	1.698142	3.055021	0.285779	1.173184
y16,1	0.248369	0.458641	0.093007	0.054180	0.732659	1.501512	0.197610	0.356419
y16,2	0.548872	0.352137	0.124210	0.058991	1.427828	2.385702	0.028658	0.262306
y17,1	0.181657	0.220968	0.059415	0.040224	0.439596	0.835013	0.082261	0.132580
y17,2	0.243297	0.186730	-0.018306	0.036584	0.788759	1.001329	-0.019740	0.176534
y18,1	0.236730	0.404940	0.119704	0.154422	2.760425	2.316395	0.020046	-0.333032
y18,2	0.139230	0.689378	0.705800	0.506322	2.597394	7.090926	1.302234	0.829487
y19,1	0.444133	0.874229	0.499738	0.508530	4.340117	4.640512	0.689917	1.323512
y19,2	1.126975	1.677848	0.561609	0.715293	3.060600	5.837455	0.630641	1.406015
y20,1	0.340283	0.338778	0.110338	0.167184	0.982390	0.129856	0.049013	0.107437
y20,2	0.197674	0.186574	0.122654	0.152536	0.910046	1.168430	-0.026576	0.297776
y21,1	-0.021626	0.036382	0.117238	0.155086	-0.266515	-0.177794	-0.018857	-0.049729
y21,2	0.277385	0.308627	0.094730	0.119040	0.475883	0.101224	-0.029920	0.314454
y22,1	0.991696	0.990037	0.093846	0.177945	2.996817	3.625141	0.940683	1.757860
y22,2	1.107621	1.785226	-0.029612	0.033376	3.989144	5.126129	0.923942	1.418599
y23,1	0.193025	0.027792	0.212303	0.253489	1.123786	0.458085	0.229465	0.476598
y23,2	0.135059	0.530040	0.208094	0.236842	0.901609	1.309826	0.079682	0.446902
y24,1	0.143957	0.240610	0.076607	0.044409	0.499117	0.537713	0.287179	0.131811
y24,2	0.249703	0.410541	0.164482	0.179564	0.725978	0.829845	0.282345	0.290185
y25,1	-0.034928	0.219427	0.104829	0.043426	0.503914	0.321482	0.168781	0.017228
y25,2	0.144162	0.347858	0.039337	0.005882	0.468712	0.563971	0.024331	0.099671
y26,1	0.270671	0.256374	0.104194	0.081410	1.180518	0.916275	0.210210	0.132396
y26,2	0.283987	0.328194	0.130453	0.121732	1.115104	1.236383	0.196247	0.301877
y27,1	0.240424	0.389938	0.079623	0.070408	1.296183	1.284193	0.262961	0.401716
y27,2	0.212182	0.349199	0.076729	0.093717	0.745267	1.272247	0.300994	0.211781
y28,1	0.576820	0.603313	0.309592	0.379014	1.342466	1.302965	0.237965	0.632334
y28,2	0.637231	1.106493	0.342646	0.464224	1.257032	2.271035	0.216652	0.489025
w1,1	6.516722	7.570098	2.359725	2.301551	28.630329	25.744187	3.918987	6.122210
w1,2	6.785842	8.328030	3.287922	3.648857	32.067728	32.591347	3.590983	8.170610
w2,1	13.598981	15.665262	5.105025	5.225756	54.123168	54.377213	10.308591	12.719236
w2,2	13.164078	15.681642	6.470530	6.866261	59.306892	62.784618	10.460111	15.988889
z1	0.111255	0.150909	0.115328	0.107336	0.976635	1.024995	0.342344	0.264107
z2	0.185081	0.172618	0.106555	0.130044	1.129936	1.131239	0.204552	0.208609

Table A2 cont.

	y13,1	y13,2	y14,1	y14,2	y15,1	y15,2	y16,1	y16,2
y13,1	18.377960							
y13,2	10.970467	25.731114						
y14,1	0.462409	0.609248	0.561221					
y14,2	0.484263	0.496947	0.355142	0.522497				
y15,1	3.677958	2.555219	0.514514	0.547260	12.464296			
y15,2	2.607869	3.330039	0.316922	0.279522	2.724955	12.108100		
y16,1	1.303095	1.136984	0.062969	0.080167	1.659189	0.713237	2.892305	
y16,2	0.963832	0.689831	0.285469	0.261408	1.485110	1.487957	0.695272	5.657513
y17,1	1.030103	0.785381	0.106482	0.125018	0.643226	0.582223	0.379210	0.142305
y17,2	1.243407	0.868575	0.072518	0.061305	0.236826	0.323061	0.156472	0.355231
y18,1	2.346457	0.028898	0.635238	0.529393	0.898633	1.083444	0.159250	0.654645
y18,2	2.479082	2.395723	0.222403	0.104322	5.863044	2.414495	1.217064	0.975675
y 19,1	3.796453	5.615823	0.535896	0.353072	2.179635	3.117533	1.551524	1.397527
y19,2	3.214735	5.867746	0.717492	0.577115	2.249649	2.850781	1.493061	1.981300
y20,1	1.287252	1.307587	0.070694	-0.035670	0.235167	0.311829	0.240898	0.120747
y20,2	1.184726	0.875138	0.108540	0.052046	0.586984	0.329629	0.025017	0.283031
y21,1	0.717671	0.688264	0.012337	0.019490	0.174436	0.077318	0.097543	-0.013753
y21,2	0.590204	0.183180	0.046101	0.012679	0.206960	-0.010012	-0.005716	-0.217927
y22,1	2.919130	1.722117	0.250761	0.446815	2.730675	1.198363	0.900066	0.847710
y22,2	4.687050	3.385340	0.231744	0.297263	3.176651	1.885656	1.153861	1.431837
y23,1	0.362323	0.050502	-0.002713	0.114845	0.301574	0.442641	0.145825	0.098973
y23,2	0.708421	0.865132	0.145932	0.109152	-0.128443	0.840438	0.176238	0.031885
y24,1	0.427244	0.550466	0.034071	-0.000290	0.337469	0.125237	0.112418	0.078441
y24,2	0.853486	0.764415	0.075441	0.025926	0.545775	0.284474	0.107481	0.438469
y25,1	0.462977	0.556901	-0.005517	0.020256	0.228135	0.083470	0.228910	0.367177
y25,2	0.775843	1.066878	0.017120	0.000655	0.061462	0.482628	-0.019484	-0.064129
y26,1	0.669397	0.683559	0.079289	0.066557	0.463467	0.473610	0.217408	0.277903
y26,2	0.899365	0.701640	0.103233	0.080433	0.256202	0.638077	0.183816	0.322863
y27,1	0.689010	0.654250	0.058157	0.023033	0.141740	0.377014	0.312419	0.951832
y27,2	0.833525	0.608419	0.079995	0.134958	0.650007	0.808923	0.307119	0.607137
y28,1	2.598127	1.736825	0.127657	0.149552	0.634707	0.742338	0.374912	0.347007
y28,2	2.564543	2.359979	0.272991	0.139255	1.158624	1.187184	0.301534	0.724400
w1,1	31.002630	32.088318	4.046238	3.220699	14.627533	13.419459	6.318074	8.670588
w1,2	30.714094	30.913966	4.776388	4.078605	17.798661	15.385928	6.394412	10.454714
w2,1	70.195567	73.590001	8.244607	6.516796	38.284618	28.454616	15.308700	18.458664
w2,2	69.327956	71.372646	8.656623	7.069177	40.164896	30.725505	14.684609	20.347327
z1	0.760777	1.205321	0.151190	0.113973	0.144571	0.274262	0.164620	0.345005
22	0.543604	0.733229	0.161687	0.123757	0.413849	0.430484	0.181818	0.372113

Table A2 cont.

$\mathrm{y} 17,1$	$\mathrm{y} 17,2$	$\mathrm{y} 18,1$	$\mathrm{y} 18,2$	$\mathrm{y} 19,1$	$\mathrm{y} 19,2$	$\mathrm{y} 20,1$	$\mathrm{y} 20,2$

y17,1	0.865051							
y17,2	0.367976	1.454571						
y18,1	-0.550311	0.185462	42.321240					
y18,2	0.768963	-0.013830	-3.549517	70.497476				
y19,1	0.673258	0.645238	7.909460	5.207505	20.608124			
y19,2	0.638114	1.030357	6.135592	6.658274	10.405217	29.357034		
y20,1	0.006267	0.147462	0.583955	0.466577	0.447015	0.285553	2.347898	
y20,2	0.168145	0.391481	-0.006621	0.363893	0.956465	0.977820	0.600307	2.261795
y21,1	0.106903	0.088494	-0.320137	0.824378	0.503760	-0.072699	0.302099	0.035396
y21,2	-0.006190	-0.042335	0.683535	-0.527489	0.711323	0.568597	0.105872	0.100482
y22,1	0.371131	0.121386	2.766209	6.025767	2.342478	3.401348	0.351722	0.447360
y22,2	0.792467	0.958758	1.278136	4.281799	3.241626	5.111525	0.659953	0.769313
y23,1	-0.089305	0.094599	2.030875	0.283300	1.916684	1.725576	0.160994	0.259270
y23,2	0.159395	0.288974	1.026545	0.778947	0.891752	1.258133	0.244824	0.573857
y24,1	0.057953	0.075814	0.180508	0.370818	0.541892	0.967244	0.168476	0.113241
y24,2	0.126044	0.122431	-0.389258	0.404276	0.504638	1.130257	0.311695	0.345185
y25,1	0.118537	0.084199	-0.172216	0.506836	0.830379	-0.020134	0.230650	0.231495
y25,2	0.088990	0.014838	0.338749	-0.692842	0.362984	0.295944	0.096539	0.020525
y26,1	0.148857	0.176590	0.508778	0.802064	0.740666	0.644328	0.228909	0.184961
y26,2	0.132706	0.188919	0.310640	0.847627	1.160204	0.934825	0.185623	0.245007
y27,1	0.161987	0.115415	0.155463	0.624217	0.868595	1.083557	0.232944	0.128018
y27,2	0.166882	0.106315	0.853925	-0.258747	0.591342	1.322526	0.070131	0.308471
y28,1	0.036594	0.249342	1.944943	1.375464	2.114427	1.948220	0.978443	0.630812
y28,2	0.234949	0.395951	1.616977	1.554452	1.950235	2.639448	0.651421	1.018454
w1,1	3.118751	3.530035	39.384934	33.261552	41.497216	30.824930	10.483736	9.320607
w1,2	3.692583	3.926261	37.403273	48.277211	45.492534	40.375783	11.899276	10.293927
w2,1	8.872891	6.607613	71.482399	64.223625	86.841590	72.276786	15.268546	14.209903
w2,2	8.428382	7.348459	59.695613	83.538204	90.558061	83.995284	17.065770	16.845313
z1	0.248429	0.243189	0.240442	0.710125	1.154147	1.482923	-0.124171	0.002141
z2	0.009855	0.092973	1.552026	1.355742	1.490222	1.352088	0.247418	0.316117
	y21,1	y21,2	y22,1	y22,2	y23,1	y23,2	y24,1	y24,2

y21,1	2.001218							
y21,2	0.568514	4.513210						
y22,1	0.418977	0.203978	17.019875					
y22,2	0.265664	0.103799	4.401599	17.339128				
y23,1	-0.028076	0.586164	0.584499	0.706120	3.485275			
y23,2	0.176551	0.359944	0.455756	0.634920	1.509828	3.708271		
y24,1	0.014315	0.156367	-0.010384	0.446875	0.335907	0.229959	1.165016	
y24,2	0.029727	0.154654	0.443645	0.817023	0.132213	0.381762	0.560366	1.194208
y25,1	0.202059	0.054662	0.243428	0.408966	0.115674	0.196247	-0.027870	0.037229
y25,2	0.054765	0.277609	0.642708	0.132192	-0.034847	0.176379	0.047068	0.233752
y26,1	-0.058248	0.012654	0.447052	0.732792	0.213112	0.190956	0.063144	0.117082
y26,2	-0.010104	0.131641	0.395347	0.841063	0.302820	0.262988	0.030181	0.179268
y27,1	0.002356	-0.032276	1.092529	1.250773	0.262252	0.262281	0.187264	0.265382
y27,2	-0.062922	0.044349	0.600663	1.111477	0.141626	0.147606	0.142658	0.085008
y28,1	0.247618	0.224882	1.284871	1.383912	0.857122	0.642892	0.218008	0.540904
y28,2	0.311985	0.252732	0.051693	1.877583	0.499322	0.674620	0.307359	0.579492
w1,1	0.582622	2.950945	22.680083	24.247857	9.627798	10.253033	3.399450	5.453724
w1,2	0.485522	4.195854	23.951243	28.502319	9.736279	11.102947	4.320699	6.714760
w2,1	-0.954281	4.498567	40.636344	50.339330	18.488781	17.734729	7.094430	10.739445
w2,2	-1.159432	6.228433	41.308530	56.367129	19.475650	19.511045	8.625426	12.183053
z1	-0.196622	0.030881	0.468999	0.595097	0.078154	0.242472	0.078209	0.108924
z2	0.008769	0.136294	0.659226	0.661151	0.424406	0.439685	0.143195	0.199206

	y25,1	y25,2	y26,1	y26,2	y27,1	y27,2	y28,1	y28,2
y25,1	1.390736							
y25,2	-0.096901	2.131410						
y26,1	0.118172	0.042011	0.688810					
y26,2	0.196806	0.120300	0.306136	0.744907				
y27,1	0.201570	-0.016360	0.150642	0.218601	1.371087			
y27,2	-0.035738	0.016922	0.171231	0.245634	0.310263	1.775229		
y28,1	0.252655	0.060884	0.226463	0.375307	0.359730	0.226697	3.521809	
y28,2	0.556137	0.060456	0.420032	0.457922	0.336235	0.345063	2.147500	4.718570
w1,1	5.097891	2.628634	6.075730	6.030144	4.166949	3.459036	14.647653	16.070765
w1,2	5.282209	3.088428	6.128593	6.663512	5.067085	3.452541	15.896009	17.710449
w2,1	7.784461	4.162092	11.859704	12.804665	9.293750	6.687505	29.022080	26.857067
w2,2	8.517956	4.325240	12.098310	14.043105	10.209319	6.748893	32.054987	30.116651
z1	0.096989	0.273937	0.225201	0.213226	0.089884	0.196257	0.128466	0.076684
z2	0.118844	0.146145	0.238436	0.243888	0.161902	0.179226	0.317542	0.426257
	w1,1	w1,2	w2,1	w2,2	z1	z2		

w1,1•	487.977561					
w1,2	467.259940	573.080053				
w2,1	766.034038	774.003609	1626.371358			
w2,2	752.773693	890.587960	1624.143500	1851.203952		
z1	2.281886	4.551582	9.495276	12.433148	1.579200	
z2	12.660054	13.595467	20.156360	21.558213	0.078527	0.826605

Table A3. Engel functions. Marginal budget shares (b), effect of an additional child (c1), effect of an additional adult (c2), and intercept term (a). ${ }^{2}$ Standard deviations in parentheses

| Commodity group | $\mathrm{b}(\%) \mathrm{c})$ | | c 1 | | | c 2 | | a_{A} |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |
| 01. Flour and bread | 8.36 | (1.23) | 143.79 | (17.48) | 139.99 | (27.01) | 156.07 | (55.91) |
| 02. Meat and eggs | 44.17 | (5.40) | 211.19 | (74.17) | 84.94 | (115.47) | 262.24 | (236.50) |
| 03. Fish | 10.20 | (1.83) | -39.61 | (26.53) | 4.74 | (40.87) | 249.66 | (85.01) |
| 04. Canned meat and fish | 3.71 | (0.62) | 13.49 | (8.85) | 3.18 | (13.67) | 59.42 | (28.33) |
| 05. Dairy products | 5.42 | (1.32) | 235.59 | (19.26) | 228.36 | (29.62) | 269.96 | (61.74) |
| 06. Butter and margarine | 2.38 | (0.66) | 54.40 | (9.54) | 56.88 | (14.70) | 94.01 | (30.56) |
| 07. Potatoes and vegetables | 26.50 | (2.85) | 230.16 | (38.99) | 74.14 | (60.76) | 319.59 | (124.30) |
| 08. Other food | 18.31 | (2.08) | 145.16 | (28.66) | 157.26 | (44.58) | 220.25 | (91.46) |
| 09. Beverages | 41.68 | (3.47) | -146.35 | (45.45) | -299.59 | (71.48) | 81.40 | (144.41) |
| 10. Tobacco | 12.44 | (2.28) | -1.68 | (31.96) | -14.82 | (49.53) | 158.38 | (102.10) |
| 11. Clothing | 100.90 | (8.58) | 40.04 | (110.73) | 80.51 | (174.83) | -688.40 | (350.84) |
| 12. Footwear | 22.46 | (3.47) | 63.06 | (45.68) | -41.83 | (71.80) | -85.02 | (144.78) |
| 13. Housing | 128.29 | (11.15) | -85.29 | (142.89) | -851.19 | (225.96) | 1415.85 | (452.29) |
| 14. Fuel and power | 7.91 | (1.95) | 34.18 | (26.95) | 68.86 | (41.90) | 914.04 | (85.89) |
| 15. Furniture | 69.97 | (7.80) | -257.93 | (101.56) | -355.08 | (160.01) | 265.19 | (321.72) |
| 16. Household equipment | 31.98 | (4.63) | -21.82 | (61.19) | -69.69 | (96.09) | 65.63 | (194.05) |
| 17. Misc. household goods | 20.70 | (2.57) | 44.61 | (34.03) | -205.23 | (53.41) | 421.64 | (108.05) |
| 18. Motorcars, bicycles | 54.13 | (26.51) | -40.26 | (226.26) | 1062.07 | (406.38) | -2085.16 | (698.42) |
| 19. Running cost of vehicles | 114.13 | (11.25) | 155.96 | (141.75) | 252.51 | (225.06) | -1832.64 | (447.36) |
| 20. Public transport | 24.07 | (3.70) | -182.06 | (47.74) | 52.04 | (75.38) | -31.58 | (150.92) |
| 21. PTT charges | 11.81 | (4.35) | -118.64 | (58.24) | -51.40 | (91.17) | 303.98 | (184.89) |
| 22. Recreation | 91.83 | (9.14) | -181.50 | (118.64) | -352.43 | (187.05) | 13.71 | (375.81) |
| 23. Public entertainment | 24.14 | (4.72) | -50.59 | (63.34) | 220.47 | (99.10) | -127.56 | (201.25) |
| 24. Books and newspapers | 18.72 | (2.78) | -49.13 | (37.35) | -26.26 | (58.42) | 96.42 | (118.73) |
| 25. Medical care | 7.70 | (2.82) | 69.92 | (37.65) | 55.62 | (58.98) | 86.96 | (119.48) |
| 26. Personal care | 18.48 | (1.92) | 27.83 | (25.40) | 54.21 | (39.88) | -113.48 | (80.65) |
| 27. Misc. goods and services | 23.01 | (2.83) | -39.97 | (37.47) | -82.41 | (58.80) | -165.90 | (118.97) |
| 28. Restaurants,hotels etc. | 56.63 | (4.95) | -254.54 | (64.96) | -245.84 | (102.14) | -324.63 | (206.30) |
| Adding up | 100.03 | | 0.01 | | 0.01 | | 0.03 | |

${ }^{2}$ The estimated parameters have been multiplied by 1000 . Thus $\mathrm{c} 1, \mathrm{c} 2$, and a are measured in kroner and b is measured in per thousand. (Since the input data are measured in 1000 NOK so are the estimated parameters, but in this table, they are rescaled by 1000 for convenience.)

Table A4. Income-consumption relations. ${ }^{2}$ Standard deviations in parentheses

	Parameters				
Income concept	e	f 1	f 2	d 1	d 2
Income measure 1	0.514	-1.385	9.483	-2.427	0.746
	(0.051)	(0.662)	(1.043)	(2.113)	(2.129)
Income measure 2	1.099	-0.062	11.272	-13.760	-11.924
	(0.094)	(1.243)	(1.950)	(3.966)	(3.995)

[^2]Table A5. Parameters of the distribution of preference variables and measurement errors. Standard deviations in parentheses

Table A5 (Continued)

IVa Travel	$\operatorname{cov}(\alpha) / \operatorname{var}(\alpha)$	$\operatorname{var}(\mathrm{v})$
18. Motorcars, bicycles	15.025	38.136
	(6.544)	(6.734)
19. Running cost of vehicles	5.945	13.883
	(1.116)	(0.982)
20. Public transport	0.348	1.667
	(0.104)	(0.117)
Motorcars, bicycles vs	3.391	
Running cost of vehicles	(0.944)	
Motorcars, bicycles vs	-0.327	
Public transport	(0.271)	
Running cost of vehicles vs	-0.303	
Public transport	(2.207)	
IVb Recreation	$\operatorname{var}(\alpha)$	$\operatorname{var}(\mathrm{v})$
21. PTT charges	0.517	2.698
	(0.162)	(0.189)
22. Recreation	1.922	12.409
	(0.747)	(0.873)
23. Public entertainment	1.193	2.056
	(0.174)	(0.145)
24. Books and newspapers	$\begin{gathered} 0.443 \\ (0.058) \\ \hline \end{gathered}$	$\begin{gathered} 0.609 \\ (0.043) \\ \hline \end{gathered}$
V Other goods and services	$\operatorname{var}(\alpha)$	$\operatorname{var}(\mathrm{v})$
25. Medical care	-0.156	1.856
	(0.084)	(0.130)
26. Personal care	0.123	0.401
	(0.028)	(0.028)
27. Misc. goods and services	0.100	1.272
	(0.070)	(0.090)
28. Restaurants, hotels etc.	$\begin{array}{r} 1.230 \\ (1.183) \end{array}$	$\begin{gathered} 1.892 \\ (0.135) \end{gathered}$
Income measures		
Income concept	$\operatorname{cov}(\lambda) / \operatorname{var}(\lambda)$	$\operatorname{cov}(\varepsilon) / \mathrm{var}(\varepsilon)$
Income measure 1	192.504	57.728
	(16.377)	(4.354)
Income measure 2	724.866	94.521
	(57.606)	(8.416)
Income measure 1 vs	277.168	54.292
Income measure 2	(27.125)	(8.416)

Table A6. Parameters related to the distribution of latent total expenditure. Standard deviations in parentheses

Parameter	Symbol	Estimate
Variance of the permanent component of latent total expenditure	$\sigma_{x \chi}$	$\begin{aligned} & 364.583 \\ & (33.236) \end{aligned}$
Variance of the volatile component of latent total expenditure	σ_{u}	$\begin{aligned} & 14.825 \\ & (3.682) \end{aligned}$
Covariance of latent total expenditure and the number of children	$\sigma_{\chi z 1}$	$\begin{gathered} 8.705 \\ (1.378) \end{gathered}$
Covariance of latent total expenditure and the number of adults	$\sigma_{x z 2}$	$\begin{gathered} 9.906 \\ (1.075) \end{gathered}$
Expected value of the permanent component of latent total expenditure	$\boldsymbol{\Phi}_{\chi}=\boldsymbol{\Phi}_{\xi_{1}}$	$\begin{gathered} 39.964 \\ (1.130) \end{gathered}$
Expected value of latent total expenditure in the second period	$\boldsymbol{\Phi}_{\xi 1}$	$\begin{gathered} 41.377 \\ (1.212) \end{gathered}$
Growth in expected latent total expenditure from the first to the second period	$\boldsymbol{\Phi}_{\xi 2}-\boldsymbol{\Phi}_{\xi 1}$	$\begin{gathered} 1.413 \\ (0.647) \end{gathered}$
Intercept term for period 2 in the latent total expenditure process	q_{02}	$\begin{aligned} & -3.550 \\ & (1.350) \end{aligned}$
Growth factor of latent total expenditure	q_{2}	$\begin{gathered} 1.124 \\ (0.029) \end{gathered}$
Expected value of the purchase residual for cars in period 2	$\mathrm{a}_{\mathrm{B1} 18,2}$	$\begin{gathered} 1.139 \\ (0.541) \end{gathered}$
Covariance of the volatile component of latent total expenditure and the residual for car purchases in the same period	$\operatorname{cov}\left(\nu_{18, t}, u_{u}\right)$	$\begin{aligned} & 14.490 \\ & (3.460) \end{aligned}$
Covariance of the volatile component of latent total expenditure and the residual for car purchases in the next period	$\operatorname{cov}\left(\nu_{18,2}, \mathrm{u}_{1}\right)$	$\begin{aligned} & 13.144 \\ & (4.510) \end{aligned}$
Autocovariance of purchase residuals for cars	$\operatorname{cov}\left(v_{18,1}, v_{18,2}\right)$	$\begin{array}{r} -20.976 \\ (6.408) \end{array}$

Table A7. Overview of fitted models with characteristics ${ }^{2}$

	D_{U}	$\mathrm{D}_{\text {s }}$	D_{R}	D_{N}
$\mathrm{P}_{\mathrm{U}} \mathrm{M}_{\mathrm{U}}$	$\mathrm{p}=950$	$\mathrm{p}=926$	$\mathrm{p}=924$	$\mathrm{p}=923$
	DF $=1065$	DF=1089	DF=1091	DF=1092
	CHI=1660.74	$\mathrm{CHI}=1684.58$	CHI= 1685.70	CHI=1693.04
	AIC=3560.74	AIC=3536.58	AIC=3533.70	AIC=3539.04
	CAIC=8321.44	CAIC=8177.01	CAIC=8164.11	CAIC=8164.44
	CAICF=5979.40	CAICF=5897.13	CAICF=5891.12	CAICF $=5896.05$
$\mathrm{P}_{\mathrm{U}} \mathrm{M}_{\mathrm{B}}$	$\mathrm{p}=655$	$\mathrm{p}=631$	$\mathrm{p}=629$	$\mathrm{p}=628$
	DF=1360	DF=1384	DF=1386	DF=1387
	CHI $=2041.25$	CHI=2062.45	CHI $=2063.32$	$\mathrm{CHI}=2068.77$
	AIC=3351.25	AIC=3324.45	AIC=3321.32	AIC=3324.77
	CAIC=6633.63	CAIC=6486.56	CAIC $=6473.41$	CAIC=6471.85
	CAICF $=5073.00$	CAICF=4988.41	CAICF=4982.20	CAICF=4985.21
$\mathrm{P}_{\mathrm{B}} \mathrm{M}_{\mathrm{U}}$	$\mathrm{p}=683$	$\mathrm{p}=659$	$\mathrm{p}=657$	$\mathrm{p}=656$
	DF $=1332$	DF=1356	DF=1358	DF=1359
	$\mathrm{CH}=2056.03$	$\mathrm{CH}=2080.29$	CHI $=2080.96$	CHI= 2087.88
	AIC=3422.03	AIC=3398.29	AIC=3394.96	AIC=3399.88
	CAIC=6844.73	CAIC $=6700.72$	CAIC=6687.36	CAIC=6687.27
	CAICF=5153.31	CAICF=5071.63	CAICF=5065.18	CAICF=5069.61
$\mathrm{P}_{\mathrm{B}} \mathrm{M}_{\mathrm{B}}$	$\mathrm{p}=388$	$\mathrm{p}=364$	$\mathrm{P}=362$	$\mathrm{p}=361$
	DF=1627	DF=1651	DF=1653	DF=1654
	$\mathrm{CH}=2478.72$	$\mathrm{CHI}=2500.00$	$\mathrm{CH}=2500.77$	CHI=2505.98
	AIC=3254.72	AIC=3228.00	AIC=3224.77	AIC=3227.98
	CAIC=5199.09	CAIC=5052.10	CAIC $=5038.85$	CAIC=5037.05
	CAICF=4251.44	CAICF=4166.90	CAICF=4160.59	CAICF=4163.30
$\mathrm{P}_{\mathrm{B}} \mathrm{M}_{\mathrm{R}}$	$\mathrm{p}=315$	$\mathrm{p}=291$	$\mathrm{p}=289$	$\mathrm{p}=288$
	DF $=1700$	DF=1724	DF=1726	DF=1727
	CHI=2578.84	CHI $=2600.86$	CHI=2601.71	CHI=2606.13
	AIC $=3208.84$	AIC=3182.86	AIC=3179.71	AIC=3182.13
	CAIC=4787.39	CAIC=4641.14	CAIC=4627.97	CAIC=4625.38
	CAICF=4004.04	CAICF=3920.33	CAICF=3914.11	CAICF=3916.0
$\mathrm{P}_{\mathrm{R}} \mathrm{M}_{\mathrm{B}}$	$\mathrm{p}=312$	$\mathrm{p}=288$	$\mathrm{p}=286$	$\mathrm{p}=285$
	DF=1703	DF=1727	DF=1729	DF=1730
	CHI=2623.34	CHI $=2644.50$	CHI=2645.43	CHI=2650.01
	AIC=3247.34	AIC=3220.50	AIC=3217.43	AIC=3320.01
	CAIC=4810.86	CAIC=4663.75	CAIC=4650.65	CAIC=4648.22
	CAICF=4023.80	CAICF=3939.21	CAICF=3933.08	CAICF=3935.16

Table A7. (Continued)

	D_{U}	$\mathrm{D}_{\text {S }}$	D_{R}	D_{N}
$\mathrm{P}_{\mathrm{R}} \mathrm{M}_{\mathrm{R}}$	$\mathrm{p}=239$	$\mathrm{p}=215$	$\mathrm{p}=213$	$\mathrm{p}=212$
	DF=1776	DF $=1800$	DF $=1802$	DF=1803
	CHI=2713.71	CHI=2735.83	CHI=2736.74	CHI=2741.16
	AIC=3191.71	AIC $=3165.83$	AIC=3162.74	AIC=3165.16
	CAIC=4389.40	CAIC=4243.25	CAIC=4230.14	CAIC=4227.55
	CAICF=3759.96	CAICF=3676.39	CAICF=3670.24	CAICF=3672.16
$\mathrm{P}_{\mathrm{R}} \mathrm{M}_{\mathrm{D}}$	$\mathrm{p}=229$	$\mathrm{p}=205$	$\mathrm{p}=203$	$\mathrm{p}=202$
	DF=1786	DF=1810	DF=1812	DF=1813
	CHI=2895.69	CHI=2917.68	CHI=2918.52	CHI=2922.91
	AIC=3353.69	AIC $=3327.68$	AIC=3324.52	AIC=3326.91
	CAIC=4501.27	CAIC=4354.99	CAIC=4341.81	CAIC=4339.19
	CAICF=3895.17	CAICF $=3811.57$	CAICF=3805.34	CAICF=3807.24
$\mathrm{P}_{\mathrm{D}} \mathrm{M}_{\mathrm{R}}$	$\mathrm{p}=232$	$\mathrm{p}=208$	$\mathrm{p}=206$	$\mathrm{p}=205$
	DF=1783	DF=1807	DF=1809	DF=1810
	CHI=2789.66	CHI=2812.02	CHI=2812.92	CHI=2817.48
	AIC=3253.66	AIC $=3228.02$	AIC=3224.92	AIC=3227.48
	CAIC=4416.27	CAIC=4270.36	CAIC=4257.24	CAIC=4254.79
	CAICF=3820.53	CAICF=3737.27	CAICF=3731.11	CAICF=3733.21
$\mathrm{P}_{\mathrm{D}} \mathrm{M}_{\mathrm{D}}$	$\mathrm{p}=222$	$\mathrm{p}=198$	$\mathrm{p}=196$	$\mathrm{p}=195$
	DF=1793	DF=1817	DF=1819	DF=1820
	CHI=3116.64	CHI=3139.45	CHI=3140.31	CHI=3144.94
	AIC=3560.64	AIC=3535.45	AIC=3532.31	AIC=3534.94
	CAIC=4673.14	CAIC=4527.68	CAIC=4514.52	CAIC=4512.14
	CAICF=4097.57	CAICF=4014.78	CAICF=4008.57	CAICF=4010.76
$\mathrm{P}_{\mathrm{R}} \mathrm{M}_{\mathrm{R}} \mathrm{A}_{\mathrm{N}}$	$\mathrm{p}=236$	$\mathrm{p}=212$	$\mathrm{p}=210$	$\mathrm{p}=209$
	DF=1779	DF=1803	DF=1805	DF=1806
	CHI=2734.50	CHI=2756.72	CHI=2757.62	CHI=2762.47
	AIC=3206.50	AIC=3180.72	AIC=3177.62	AIC=3180.47
	CAIC=4389.16	CAIC=4243.11	$\text { CAIC }=4229.99$	CAIC=4227.83
	CAICF=3777.94	CAICF=3694.46	CAICF $=3688.30$	CAICF $=3690.63$
$\mathrm{P}_{\mathrm{R}} \mathrm{M}_{\mathrm{N}}$	$\mathrm{p}=579$			$\mathrm{p}=552$
	DF $=1436$			DF $=1463$
	CHI=2420.29			CHI=2449.22
	AIC=3578.29			AIC=3553.22
	CAIC=6479.81			CAIC=6319.44
	CAICF $=5085.44$			CAICF=4998.65

[^3]
References

Aasness, J. (1990): Consumer econometrics and Engel functions, Økonomiske doktoravhandlinger nr. 8, Department of Economics, University of Oslo.

Aasness, J., E. Biøm, and T. Skjerpen (1993a): Engel functions, panel data and latent variables, Econometrica 61, 1395-1422.

Aasness, J., E. Biørn, and T. Skjerpen (1993b): Engel functions, panel data and latent variables - with detailed results, Discussion Paper 89, Statistics Norway.

Aasness, J. and A. Rødseth (1983): Engel curves and systems of demand functions, European Economic Review 20, 95-121.

Akaike, H. (1987): Factor analysis and AIC, Psychometrika 52, 317-332.
Anderson, T.W. (1958): An introduction to multivariate statistical analysis, New York: Wiley.
Biøm, E. and E.S. Jansen (1980): Consumer demand in Norwegian households 1973-1977: a data base for micro-econometrics, Reports 80/4, Statistics Norway.

Biørn, E. and E.S. Jansen (1982): Econometrics of incomplete cross-section/time-series data. Consumer demand in Norwegian households 1975-1977, Statistics Norway.

Blundell, R., P. Pashardes, and G. Weber (1993): What do we learn about consumer demand patterns from micro data ?, American Economic Review 83, 570-597.

Bojer, H. (1977): The effect on consumption of household size and composition, European Economic Review 9, 169-193.

Bozdogan, H. (1987): Model selection and Akaikes information criterion (AIC): the general theory and its analytical extensions, Psychometrika 52, 345-370.

Cramer, J.S. (1966): Une analyse de budget de famille par composantes principales, Économie Appliquée, 19, 249-268.

Friedman, M. (1957): A theory of the consumption function, Princeton: Princeton University Press, 1957.

Griliches, Z. and J.A. Hausman (1986): Errors in variables in panel data, Journal of Econometrics 31, 93-118.

Hausman, J.A. and W.A. Taylor (1981): Panel data and unobservable individual effects, Econometrica 49, 1377-1398.

Hausman, J. A., W. K. Newey, and J. L. Powell (1995): Nonlinear errors in variables estimation of some Engel curves, Journal of Econometrics 65, 205-233.

Hsiao, C. (1989): Consistent estimation for some nonlinear errors-in-variables models, Journal of Econometrics 41, 159-185.

Hsiao, C. (1992): «Nonlinear latent variable models», in L. Matyas and P. Sevestre (eds): The Econometrics of Panel Data, Dordrecht: Kluwer Academic Publishers.

Jöreskog, K.G. (1977): Structural equation models in the social sciences: specification, estimation and testing, in P.R. Krisnaiah (ed): Applications of Statistics, Amsterdam: North Holland, 265-287.

Jöreskog, K.G. and D. Sörbom (1988): LISREL 7 - A guide to the program and applications, Chicago: SPSS Inc.

Lewbel, A. (1991): The rank of demand systems: theory and nonparametric estimation, Econometrica 59, 711-730.

Liviatan, N. (1961): Errors in variables and Engel curve analysis, Econometrica 29, 336-362.
Mundlak, Y. (1978): On the pooling of time series and cross section data, Econometrica 46, 69-85.
Summers, R. (1959): A note on least squares bias in household expenditure analysis, Eonometrica 27, 121-126.

Working, H. (1943): Statistical laws of family expenditure, Journal of the American Statistical Association 38, 43-56.

Issued in the series Discussion Papers

R. Aaberge, \emptyset. Kravdal and T. Wennemo (1989): Unobserved Heterogeneity in Models of Marriage Dissolution.
K.A. Mork, H.T. Mysen and \emptyset. Olsen (1989): Business Cycles and Oil Price Fluctuations: Some evidence for six OECD countries.
B. Bye, T. Bye and L. Lorentsen (1989): SIMEN. Studies of Industry, Environment and Energy towards 2000.
O. Bjerkholt, E. Gjelsvik and \emptyset. Olsen (1989): Gas Trade and Demand in Northwest Europe: Regulation, Bargaining and Competition.
L.S. Stambøl and K.Ø. Sørensen (1989): Migration Analysis and Regional Population Projections.
V. Christiansen (1990): A Note on the Short Run Versus Long Run Welfare Gain from a Tax Reform.
S. Glomsrød, H. Vennemo and T. Johnsen (1990): Stabilization of Emissions of CO_{2} : A Computable General Equilibrium Assessment.
J. Aasness (1990): Properties of Demand Functions for Linear Consumption Aggregates.
J.G. de Leon (1990): Empirical EDA Models to Fit and Project Time Series of Age-Specific Mortality Rates.
J.G. de Leon (1990): Recent Developments in Parity Progression Intensities in Norway. An Analysis Based on Population Register Data
R. Aaberge and T. Wennemo (1990): Non-Stationary Inflow and Duration of Unemployment
R. Aaberge, J.K. Dagsvik and S. Strøm (1990): Labor Supply, Income Distribution and Excess Burden of Personal Income Taxation in Sweden
R. Aaberge, J.K. Dagsvik and S. Strøm (1990): Labor Supply, Income Distribution and Excess Burden of Personal Income Taxation in Norway
H. Vennemo (1990): Optimal Taxation in Applied General Equilibrium Models Adopting the Armington Assumption
N.M. Stølen (1990): Is there a NAIRU in Norway?

Å. Cappelen (1991): Macroeconomic Modelling: The Norwegian Experience
J.K. Dagsvik and R. Aaberge (1991): Household Production, Consumption and Time Allocation in Peru
R. Aaberge and J.K. Dagsvik (1991): Inequality in Distribution of Hours of Work and Consumption in Peru
T.J. Klette (1991): On the Importance of R\&D and Ownership for Productivity Growth. Evidence from Norwegian Micro-Data 1976-85
K.H. Alfsen (1991): Use of Macroeconomic Models in Analysis of Environmental Problems in Norway and Consequences for Environmental Statistics
H. Vennemo (1991): An Applied General Equilibrium Assessment of the Marginal Cost of Public Funds in Norway
H. Vennemo (1991): The Marginal Cost of Public Funds: A Comment on the Literature
A. Brendemoen and H. Vennemo (1991): A climate convention and the Norwegian economy: A CGE assessment
K.A. Brekke (1991): Net National Product as a Welfare Indicator
E. Bowitz and E. Storm (1991): Will Restrictive Demand Policy Improve Public Sector Balance?
Å. Cappelen (1991): MODAG. A Medium Term Macroeconomic Model of the Norwegian Economy
B. Bye (1992): Modelling Consumers' Energy Demand
K.H. Alfsen, A. Brendemoen and S. Glomsrød (1992): Benefits of Climate Policies: Some Tentative Calculations
R. Aaberge, Xiaojie Chen, Jing Li and Xuezeng Li (1992): The Structure of Economic Inequality among Households Living in Urban Sichuan and Liaoning, 1990
K.H. Alfsen, K.A. Brekke, F. Brunvoll, H. Lurås, K. Nyborg and H.W. Sæbø (1992): Environmental Indicators
B. Bye and E. Holmøy (1992): Dynamic Equilibrium Adjustments to a Terms of Trade Disturbance
O. Aukrust (1992): The Scandinavian Contribution to National Accounting
J. Aasness, E. Eide and T. Skjerpen (1992): A Criminometric Study Using Panel Data and Latent Variables
R. Aaberge and Xuezeng Li (1992): The Trend in Income Inequality in Urban Sichuan and Liaoning, 1986-1990
J.K. Dagsvik and S. Strøm (1992): Labor Supply with Non-convex Budget Sets, Hours Restriction and Nonpecuniary Job-attributes
J.K. Dagsvik (1992): Intertemporal Discrete Choice, Random Tastes and Functional Form
H. Vennemo (1993): Tax Reforms when Utility is Composed of Additive Functions
J.K. Dagsvik (1993): Discrete and Continuous Choice, Max-stable Processes and Independence from Irrelevant Attributes
J.K. Dagsvik (1993): How Large is the Class of Generalized Extreme Value Random Utility Models?
H. Birkelund, E. Gjelsvik, M. Aaserud (1993): Carbon/ energy Taxes and the Energy Market in Western Europe
E. Bowitz (1993): Unemployment and the Growth in the Number of Recipients of Disability Benefits in Norway
L. Andreassen (1993): Theoretical and Econometric Modeling of Disequilibrium
K.A. Brekke (1993): Do Cost-Benefit Analyses favour Environmentalists?
L. Andreassen (1993): Demographic Forecasting with a Dynamic Stochastic Microsimulation Model
G.B. Asheim and K.A. Brekke (1993): Sustainability when Resource Management has Stochastic Consequences
O. Bjerkholt and Yu Zhu (1993): Living Conditions of Urban Chinese Households around 1990
R. Aaberge (1993): Theoretical Foundations of Lorenz Curve Orderings
J. Aasness, E. Biøm and T. Skjerpen (1993): Engel Functions, Panel Data, and Latent Variables - with Detailed Results

102 R. Nesbakken and S. Strøm (1993): The Choice of Space Heating System and Energy Consumption in Norwegian Households (Will be issued later)
103 A. Aaheim and K. Nyborg (1993): "Green National Product": Good Intentions, Poor Device?
104 K.H. Alfsen, H. Birkelund and M. Aaserud (1993): Secondary benefits of the EC Carbon/ Energy Tax

105 J. Aasness and B. Holtsmark (1993): Consumer Demand in a General Equilibrium Model for Environmental Analysis
106 K.-G. Lindquist (1993): The Existence of Factor Substitution in the Primary Aluminium Industry: A Multivariate Error Correction Approach on Norwegian Panel Data
107 S. Kverndokk (1994): Depletion of Fossil Fuels and the Impacts of Global Warming
108 K.A. Magnussen (1994): Precautionary Saving and OldAge Pensions
109 F. Johansen (1994): Investment and Financial Constraints: An Empirical Analysis of Norwegian Firms
110 K.A. Brekke and P. Børing (1994): The Volatility of Oil Wealth under Uncertainty about Parameter Values

111 M.J. Simpson (1994): Foreign Control and Norwegian Manufacturing Performance
112 Y. Willassen and T.J. Klette (1994): Correlated Measurement Errors, Bound on Parameters, and a Model of Producer Behavior
11
I. Svendsen (1993): Testing the Rational Expectations Hypothesis Using Norwegian Microeconomic Data Testing the REH. Using Norwegian Microeconomic Data
E. Bowitz, A. Rødseth and E. Storm (1993): Fiscal Expansion, the Budget Deficit and the Economy: Norway 1988-91
R. Aaberge, U. Colombino and S. Strøm (1993): Labor Supply in Italy Integrated Study of Price-Cost Margins and Scale Economies among Norwegian Manufacturing Establishments 1975-90
J.K. Dagsvik (1993): Choice Probabilities and Equilibrium Conditions in a Matching Market with Flexible Contracts
T. Kornstad (1993): Empirical Approaches for Analysing Consumption and Labour Supply in a Life Cycle Perspective
T. Kornstad (1993): An Empirical Life Cycle Model of Savings, Labour Supply and Consumption without Intertemporal Separability
S. Kverndokk (1993): Coalitions and Side Payments in International CO_{2} Treaties
T. Eika (1993): Wage Equations in Macro Models. Phillips Curve versus Error Correction Model Determination of Wages in Large-Scale UK Macro Models
A. Brendemoen and H. Vennemo (1993): The Marginal Cost of Funds in the Presence of External Effects K.-G. Lindquist (1993): Empirical Modelling of Norwegian Exports: A Disaggregated Approach
1 A.S. Jore, T. Skjerpen and A. Rygh Swensen (1993): Testing for Purchasing Power Parity and Interest Rate Parities on Norwegian Data
D. Wetterwald (1994): Car ownership and private car use. A microeconometric analysis based on Norwegian data
K.E. Rosendahl (1994): Does Improved Environmental Policy Enhance Economic Growth? Endogenous Growth Theory Applied to Developing Countries
115 L. Andreassen, D. Fredriksen and O. Ljones (1994): The Future Burden of Public Pension Benefits. A Microsimulation Study
116 A. Brendemoen (1994): Car Ownership Decisions in Norwegian Households.
A. Langørgen (1994): A Macromodel of Local Government Spending Behaviour in Norway
118 K.A. Brekke (1994): Utilitarism, Equivalence Scales and Logarithmic Utility
K.A. Brekke, H. Lurås and K. Nyborg (1994): Sufficient Welfare Indicators: Allowing Disagreement in Evaluations of Social Welfare
120 T.J. Klette (1994): R\&D, Scope Economies and Company Structure: A "Not-so-Fixed Effect" Model of Plant Performance
121 Y. Willassen (1994): A Generalization of Hall's Specification of the Consumption function

140 T. Skjerpen (1995): Is there a Business Cycle Component in Norwegian Macroeconomic Quarterly Time Series?

141 J.K. Dagsvik (1995): Probabilistic Choice Models for Uncertain Outcomes
142 M. Rønsen (1995): Maternal employment in Norway, A parity-specific analysis of the return to full-time and part-time work after birth
143 A. Bruvoll, S. Glomsrød and H. Vennemo (1995): The Environmental Drag on Long- term Economic Performance: Evidence from Norway
144 T. Bye and T. A. Johnsen (1995): Prospects for a Common, Deregulated Nordic Electricity Market

145 B. Bye (1995): A Dynamic Equilibrium Analysis of a Carbon Tax

146 T. O. Thoresen (1995): The Distributional Impact of the Norwegian Tax Reform Measured by Disproportionality

147 E. Holmøy and T. Hægeland (1995): Effective Rates of Assistance for Norwegian Industries
148 J. Aasness, T. Bye and H.T. Mysen (1995): Welfare Effects of Emission Taxes in Norway

149 J. Aasness, E. Biørn and Terje Skjerpen (1995):
Distribution of Preferences and Measurement Errors in a Disaggregated Expenditure System

150 E. Bowitz, T. Fæhn, L. A. Grünfeld and K. Moum (1995): Transitory Adjustment Costs and Long Term Welfare Effects of an EU-membership - The Norwegian Case

151 I. Svendsen (1995): Dynamic Modelling of Domestic Prices with Time-varying Elasticities and Rational Expectations
I. Svendsen (1995): Forward- and Backward Looking Models for Norwegian Export Prices
A. Langørgen (1995): On the Simultaneous Determination of Current Expenditure, Real Capital, Fee Income, and Public Debt in Norwegian Local Government
A. Katz and T. Bye(1995): Returns to Publicly Owned Transport Infrastructure Investment. A Cost Function/Cost Share Approach for Norway, 1971-1991
K. O. Aarbu (1995): Some Issues About the Norwegian Capital Income Imputation Model
P. Boug, K. A. Mork and T. Tjemsland (1995): Financial Deregulation and Consumer Behavior: the Norwegian Experience
B. E. Naug and R. Nymoen (1995): Import Price Formation and Pricing to Market: A Test on Norwegian Data
R. Aaberge (1995): Choosing Measures of Inequality for Empirical Applications.
T. J. Klette and S. E. Førre: Innovation and Job Creation in a Small Open Economy: Evidence from Norwegian Manufacturing Plants 1982-92
S. Holden, D. Kolsrud and B. Vikøren (1995): Noisy signals in target zone regimes: Theory and Monte Carlo experiments

Statistics Norway
Research Department P.O.B. 8131 Dep.

N-0033 Oslo

Tel.: + 47-22864500
Fax: + 47-22111238
ISSN 0803-074X

[^0]: ${ }^{2} \omega$: Mean budget share, E: Engel elasticity, P_{1} : Child elasticity, P_{2} : Adult elasticity, RV_{α} : Relative variation of preferences and RV_{v} : Relative variation of measurement errors.
 ${ }^{\mathrm{b}}$ The variance of the preference variable is negative, and hence $R V_{\alpha}$ cannot be calculated.

[^1]: *) The estimated variance of the preference variable is negative, and hence the correlation coefficients can not be calculated.

[^2]: ${ }^{2}$ Confer equation (8). d1 and d2 are intercept terms in period 1 and 2 respectively.

[^3]: The models are generated from combinations of assumptions in the dimensions P, M, A and D; see Table 1 for definitions. For each model are presented the number of estimated parameters (p), the number of degrees of freedom (DF), the chi square statistics (CHI), the Akaike information criterion (AIC), the Consistent Akaike information criterion (CAIC) and the Consistent Akaike information criterion with Fisher information (CAICF); cf. section 3 and Bozdogan (1987) for definitions.

