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ESTIMATING CHANGE IN A PROPORTION BY COMBINING MEASUREMENTS

FROM A TRUE AND A FALLIBLE CLASSIFIER.

BY

ANDERS RYGH SWENSEN

Abstract

Consider a binary classification of a large population at two points
in time. The classification is observed with error for the whole
population using a fallible classifier and without error for a random
sample using an accurate classifier. Following Tenenbein (1970), the
population proportions are estimated by poststratification according
to the fallible classifier for both the time points. Assuming a
multinomial probability model, the joint asymptotic normality of the
two estimators is demonstrated. Comparison is made with the estimator
based on the survey data only. In particular the importance of
including the same items in the samples at both time points is
discussed.

The main part of the paper will appear in Scandinavian Journal of
Statstcs. The editor, Soren Johansen, suggested several
impruvements that enhanced the quality of the paper.



1. Introduction. 

The present paper is motivated by some practical considerations on the

use of administrative registers in production of labor market

statistics. From administrative records, mainly from the social

security system, one can obtain data on whether an individual belongs

to the labor force or not. For various reasons these figures are not

accurate enough to be used as official statistics. Potential sources

of degradation are belated updating and discrepancies in the

definitions of labor market status.

In Norway labor force surveys are conducted quarterly by interviews.

By matching the survey results with the classifications of the

registers a fairly close correspondence is apparent. One may therefore

expect to obtain estimators having smaller variance than the survey

means by using the classification of the registers as a

poststratification variable.

Formally, let the result of matching the survey and the register

be { n.. }ij 	 i,j.0,1 where i denotes the classification of the survey,

j the classification of the register. Let N i , j.0,1 denote the

number of persons belonging to category j in the register. The post-

stratified estimator of the proportion of the population in state 1

is then

n 10 N 0 	n 11 	 N 1
n .o N 	 n 1 	 N (1)

where n 	 - n 	 + n 	 and N N + N.0 - 00 	 10 ' 	 n .1 = n01 4* n 11 	 0 	 1.

Estimates of the change from the previous survey, and from the



corresponding quarter last year are of considerable interest. To

evaluate the variance of these estimates one needs some knowledge

about the covariance between estimators of the form (1) taken at

various epochs.

If we assume that the N 	 units are drawn from a multinomial

distribution and can be classified on two dimensions, the stochastic

model is identical with the one treated by Tenenbein (1970), (1972).

The observations consist of two parts: n 	 units for which

the complete classification is known and N - n units for which only

the classification on the second dimension is known. Tenenbein (1970)

showed that the estimator (1) is a maximum likelihood estimator in

this sampling model. He also showed that it had an asymptotically

normal distribution and gave a nice interpretation of the asymptotic

variance.

The original motivation for introducing the model was a situation

where two measuring devices were available; one fallible where

measurements were cheap and easy to get, and another one which was

more expensive to use but gave more accurate measurements. The double

sampling procedure provides a method for estimating proportions as

defined by the accurate measuring device.The analogy to the problem at

hand is immediate. The survey is the accurate instrument, and the

administrative records are the measurements of the fallible measuring

device.

The framework can be generalized to include different variates along

the completely and incompletely classified dimensions. A fairly

substantial amount of research on this type of models has been

directed towards testing and estimating structural models. One can

mention Chen & Fienberg (1974 ,1976), Chen (1979), Espeland &

Odoroff (1985) and Palmgren (1987).
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A unifying theme of many population models with complicated schemes of

observation is the assumption of a common probability model for

each individual of the population, e. g. a Markov chain in case a

dynamic situation is considered. Assuming statistical independence

between the realizations, the distribution of the observations will be

based on this probability model and the restrictions imposed by the

scheme of observation. The model using incompletely classified data

referred to in the previous paragraph. is one example, combination of

micro and macro data in economics is another. Rosenqvist (1986)

provides a recent treatment of the latter.• 	 In our case the probabilistic model is just a multinomial

classification of each individual. The scheme of observation is more

intricate. Some individuals are observed using the accurate device at

both occasions and some using it only at one time point. For the rest

of the population only the results obtained from the fallible

classifier is available.

The paper is organized as follows. In section 2 we define the basic

setup and give the main results. Section 3 is an illustration,

discussing the importance of including the same individuals at both

time points in the part classified by the accurate measuring device.

Some technical details are collected in the appendix.
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2. The model and main results. 

To study the behavior of the estimator (1) at two different time

points we shall assume a simple multinomial model for the total

population consisting of N units. At each occasion there are four

possible states corresponding to the combinations of the

classifications of the accurate and fallible measuring device. We

denote the states ij, i,j.0,1 where i refers to the first (accurate)

dimension of the 2x2 classification 	 and 	 j to the second

(inaccurate) dimension. Hence, when considering two points in time

there are 16 combinations that must be taken into account. Let• 	 dente the probability of an individual being in state ij on the first

occasion and in state i'i' on the second. The following table

summarises the organisation of the parameters.

Second occasion

First occasion

00 	 01 	 10 	 11

00 	 p 	 P 	 P0000 	 p0001 	 0010 	 0011

01 	 p0100 	 P0101 	 P0110 	 P0111

10 	p1000	 p1001 	P1010	 P1011

11 	 p 1100 	 P1101 	 P1110 	 P1111

Note that the model above implies a closed population, i.e. there is

no immigration or emigration. We shall adopt the convention that

summing over different states is denoted by a ., e.g. p111

P 1011 	 P 1111 •

As explained in the introduction the complete classification of the

units is not known. Only partial information is available. We shall

indicate which observations are necessary to compute the

poststratified estimators. These are the natural ones for estimating

the fraction belonging to a particular state at each occasion. By

keeping track of the units between the two points in time more

information can be obtained. It is therefore possible to construct



more efficient estimators. We are, however, mainly interested in the

covariance structure of the poststratified estimator and shall not

pursue the question of efficient estimation here.

The scheme of observation may, therefore, be described as follows:

For n units the complete 2x2 classification is 	 known

at 	 both occasions. Thus the observations are nmij.. and

n M 	 'j' , i,j,is is =0,1...i 

For n units the complete 2x2 classification is known at the

first occasion. At the second occasion only the classification

on the second dimension is known. The observations are n ..

and 
nS..j." i j,j'=0,1.. 

For n
T units the complete 2x2 classification is known at the second

occasion. At the first occasion only the classification on the

second dimension is known. The observations are n T..i , j ,

and nT.j..

For n
R units only the classification on the second dimension is

known at both occasions. The observations are nR.j.. and

n R...j' , j,j'=0,1.

Let nM' n S' -nT 	-Rand n denote the 4x4 array having as elements the size- - 

of each of the four parts of the population that belongs to each of

the 16 categories, e.g. n ={ nMiji 1 j } i,j,i 	 . We assume that-M 	 1 	 ',j1=0,1

n
M' S' T 	 Rn 	 n and n are independently multinomially distributed. Note- - - 	 _

that they are only partially observed although nm may, as mentioned

above, in principle be completely observed. Letn=n+n+ n
	M 	 S 	 T'• •

hence n
R = N - n.

The parameters to be estimated are th -e relative numbers in state 1

on the first dimension at each occasion, i.e. p 	 = E 	 p1... 

and p 	 = Ei,j 	 p ijlj' 	 . We shall consider the estimators•
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' M10.. 	 3 10. •nM.O.. + n S.0 	
+

.. 	 T.0.. 	
n

R.O.+ 	 n

1... - 	

n

	 n + n
T 	

+ n RM.O.. + nS.0.. 	nM 	
+ n S

nM11.. + n S11..
n 	 + nn 	 + n S 	+.1.. 	 T.1.. 	 R.1..

n 	 + n3.1.. 	• nM 	
+ n S

	+ n
T 	

+ "R

and

n 	n.M..10 + 	T..10 	M ... 0 + 
n
S...0 4. 	"T. . .n

_.
+n 	 "M+ "• T...0 	 M 	 S 	

nT 
n R

nM..11 • T. .11 	
n + "S.

	+ n

nM...1 	 nT...1 	
nM 	 + n + nT

• • • 1 	
n R. 

R

which are exactly the poststratified estimators of the introduction.

Suppose the following limits exist as n ( and therefore also N) ....:
•

a i 	lim n. /n 	M,S and T 	 and 	 a = lim (N - n)tn.

We assume that am + as >0 and am + aT >0. 	 Using the 6-method,

see e.g Rao (1973) p.385, one can show that the estimators p
1 • •

and 13 	 are asymptotically normally distributed with mean p 1 • • •

and 	 p 	 and covariance matrix EA/n as n.. ... The computation is
..1 •

straightforward but tedious, so we only give the main results. More

details on the derivation can be found in the appendix.

The elements of E
A 

are given by

a11A 	=P l. 	(l-p 1 	) ( (1.-K1
	 —
)/(N +a ) + K 1 1( 1 + a ) )

M

where K 1 = (p 	 p
1 	

-
11.. 	 1... .1.. )2 / PO... P . ..1 	 .0..P.1..'

a22A 	 = . 	 (1-p..1. ) f ( 1 K2)/ ( + T) 	 + K 2 /( 1 + a ) )

where K = (p 	 - p 	 p 	 ) 2 / p ..0. p .. . p ... - p .1 	 ..11 	 .. 	 . 	 ...1 	 u 	 ..1'

and

) aM T+a ) + x /(1+a))
	P 	P	 ) ((i - H12 ) aMi(aM+aS ( 	 12°'12A =( p1.1. 	 1... 	 _1.

where

N12 = 1 - K1 2
/ ( P 1.1. 	 - P 1... 	 P 	 )

and

(1-p.. 	 /p . 	 )(1-p / P ...j'
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The variances a11A/n and a22A/n are those derived by Tenenbein (1970)

for the univariate case. One can consult Tenenbein's paper for a more

detailed discussion. We only mention that K
1 

and K
2
, the so-called

reliability coefficients, measure the strength between the

classifications along the two dimensions. More specifically, K 1 is the

square of the correlation coefficient of classifying a particular unit

in s the same category on both dimensions at the first occasion. The yariances,

a11A/n say, may therefore be expressed as a convex combination of the

variance between estimators based on ( 1+ a )n and ( ŒM+ ŒS ) n

completely classified observations.

Wé shall compare the estimators 'ç'), 	 and 	 , 	 with the following
1. 	 . • 	 •

simple ones which involve 	 Em, n_ and nT only:

T
151... = ( nM1 	 + n 	 )/(n... 	 Sl... 	 M + n S ) and 'a', 	.1.

"M. .1. + nT..1. )/(n + nT). These estimators are based on theM

accurate measurements, and make no use of the observations obtained

by the fallible classifier. As no, 	 and Tr.._ are

asymptotically normally distributed with mean p 	 and p 	 and1...

covariance matrix ZB/I. The elements of EB are given by

a11B
= p

1... 
(1 - p l... )/(am + as )

II/ 	 a22B 	
= p 	 (1 - p 	 )/(am + 	 and

(n
al2B 	

= 	
'1.1. 	 Pl... P..1. )ŒM/(M+ aS )(aM+ aT ).

As explained in the introduction, we are particularly interested in

%the variance of the estimators of change 0 p 1... - 1 	 The variance... 	 •

of the approximate distribution is given by a11A+ a22A -2a12A . For a

discussion of the terms a11A and a2 2A we refer to the papers by

Tenenbein (1970), (1972). Here we shall concentrate on a 	 and12A

compare it with the corresponding term, a128 of the estimated change
'

using the simple estimator.



From the results cited above it follows that

a l2B
_ 

12A
a 	 [ P 1.1. 	 - Pl... P ..1. 	 - K 12

[am/( ŒM+ ŒS )(
 M+ ŒT) - 1/( l+Œ  )

The first factor of the product on the Tight hand side is (1+a)n

times the approximate covariance of two poststratified estimators with

no units among those classified by the accurate measuring device at

both occasions ( i.e am= 0). Each term is dominated by 1 so the factor

is less than 2 in absolute value. The second factor reflects the

relative size of the various parts of the completely classified

observations.

3. An illustration: Poststratification and design of repeated surveys. 

In designing repeated surveys it is common practice to include

overlapping parts in order to reduce the variance of certain

estimates of change, e. g. between successive survey periods. When

estimating fairly stable population characteristics, this can result

in substantial gains compared to estimates based on surveys with no

common elements. The problem we want to throw some light on is how

poststratification affects this fact.

The covariance of the poststratified estimator is a complicated

function of the parameters p0000- " p1111. It may therefore be

difficult to find a simple interpretation of the variance of the

estimated change in terms of the parameters. To get an idea on this

dependence we shall therefore consider three constructed numerical

examples.

8

Let the parameters be given by:

	

0.30 	 0.05 	 0.005 0.005

	

0.05 	 0.03 	 0.005 0.005

	

0.005 	 0.005 	 0.03 	 0.05

	

0.005 	 0.005 	 0.05 	 0.40

Case 1 
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	0.35	 0.02 	 0.005 	 0.005

Case 2 
	 0.02 	 0.04 	 0.005 	 0.005

	

0.005 	 0.005 	 0.04 	 0.02

	

0.005 	 0.005 	 0.02 	 0.45

	

0.40 	 0.01 	 0.005 0.005

Case 3 
	 0.01 	 0.01 	 0.005 0.005

	

0.005 	 0.005 	 0.01 	 0.01

	

0.005 	 I 0.005 	 0.01 	 0.50 .

Note that the correspondence between the classifications increases.

Also, the 2x2 subtables corresponding to the classification of the
6

accurate measuring device are the same in all three cases. Hence

the variances and covariances of the sample means, i. e. method

B, will be identical.

To simplify the situation we shall assume that a is so large that we

need only consider the term involving am/( am+ as )( ŒM+ aT ) in the

covariance formula of the poststratified estimator. This corresponds

to a situation where the part of the population for which only the

results of the fallible measuring device are available, is large

compared to the part for which accurate measurements are taken. We

recall that the accurate classifier is the sample survey. In comparing

different rotation plans according to how precisely they allow a

change between two points in time to be measured, it is most natural

to keep the sample size fixed and introduce a parameter

for the fraction of the sample that is retained. Thus,

let the sample size at each occasion be m, and assume that rm units

are observed at both points in time. The number of distinct units is

then (2-r)m, corresponding to what we denoted by n in the previous

section. In terms of r, am/( am+ as )( am+ UT) = (2-r)r and 1/(am+ as ) =

2-r. Hence, the variance of the approximate distribution of the

estimator of change based on the sample mean is [ 2x0.55x0.45 -

2r(0.53-0.55) 2 i/m. The variance, when the estimator of change is
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based on the poststratified estimator, is ( (2 - K 1 	K 2 )x0.55x0.45 -

2rK 12 Pm. In Table 1 we have collected some quantities related to the

variance of the.estimators for the three numerical examples. K 1 , K 2

and K 12 are given in the first and second row. The 
third row shows the

correlation between the poststratified estimators using completely

overlapping samples ( i.e. r=1).

Table 1. Some quantities related to the variance of the estimators
of change.

Case 1, Case 2 ' 	 Case 3

K 1 =K 2 0.40 0.51 0.77

K 12 0.083 0.075 0.013
,,

Q PS 	 ,
0.55 0.61 0.22

Table 2 indicates the effect of varying the proportion of the common

part of repeated surveys when estimating change. All quantities

are computed as the percentage of the variance of the estimator

based on the survey mean with no common units at the two occasions

(i.e. r=0). The figures of the first and second row are based on half -

of the sample being common at both time points (i.e. r=1/2). The first

row shows the variance of the estimdtor using poststratification, the

second the variance of the survey based estimator. The variance of

the poststratified estimator when the sample contains no common units

is displayed in the third row.
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Table 2. The (relative) variance of estimators of change based on the
sample mean ( M ) and on the poststratified estimator ( PS ).
The fraction of the sample being common at both occasions is
denoted by r.

Estimator r Case 1 Case 2 Case 3

. 	 PS 0.5 44 34 . 	 21

M 0.5 55 55 r- 	55

PS 0.0 60 49 23

M 0.0 100 • 	 100 100

One conclusion to be drawn from Table 2 is that the correlation

structure of the poststratified estimator can differ substantially

from that of the mean of random samples. Furthermore, it is worth

noting that the gain using overlapping samples when

poststratification is the method of estimation, is smaller in case 3

than in case 2 and 1. This may indicate that the effect of classifying

the same elements by the accurate measuring device at both occasions

decreases as the correspondence between the two measuring devices

becomes closer. Although this conclusion is rather tentative, it has a

certain intuitive appeal: Closer correspondence between the two

measuring devices implies that the importance of the accurate

measurements diminishes, hence also the gain which may be obtained

by a skillful sampling design.



Appendix. 

We shall show how the asymptotic distributions of the estimators of

methods A and B are derived. Consider first method B.

We write the estimators

(n
M/n)(nMl... 

/nM ) +•(n 3 /n)( nS1... /n
S

)

P 1... 	 (n /n) 	 + (n /n)

(n /n)(n 	 /n ) + (n /n)(nM 	 M..1. 	 M 	 T 	 T..1.
P ..1. - 	 (n /n) 	 + (nT/n)

For simplicity of notation we define 	 - ( n 	 n 	 n
—M- 	MO.0 .' M0.1.	 M1.0.

"M1.1. 	
0.40 

' 	
^,

R)$ and define n 	 n" n and p similarly. From the central
—S —.1 — 	 —

limit theorem

12 

N( 0 ,QB  

-1 	 - 	 -1where QB is block diagonal with elements am Q, a 1s .0 and aT

where 0=D. - 	 a- is the 4x4 diagonal matrix with non-zero
P 	 - 	 P

elements equal to the elements of the vector 'a'.

The estimators 1r 	 and"15 	 are linear functions of the
1... 	 _1.

stochastic variables (nm ,n s ,nT )'. We define a 12x1 vector

w =(w..1 	 1,1''..,w1,12)' so that

W13 = w1,4 = am/ ( ate as )

w1,7 = w1,8 = a
5

1( ale aS )

and w1,i= 0 otherwise. Similarly we define w2 by setting the elements_

equal to 0 except

w2,2 = w2,4 = ŒM/( ale aT )

w2,10 = w2,12 = ŒT/( aPe aT )

1/2Then n 	 ( P 1 	- p - p 	 )' converges towards a... 	 1... 	 _1.

bivariate Gaussian random variable with mean 0 and covariance matrix

w'

ijB 	
t —1 	o t

l i,j=0,1 = — W -1 —B ' 114 	 )*—2
Remark that QB /n is the exact covariance matrix of IT 	 and p 	 .1...
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Let us now consider method A. The estimators 13, 	 and p 	 are not• •

linear functions of the stochastic 	 ' 	 ' Tvartables n 	 n 	 n and n • The
-M -5 -

6-method is based on using a linear approximation. This girogram

can be carried out in the present context. The details are rather

lengthy and tedious so we present only the main steps. Introduce the

1 x64 vector '4 with elements given by n /nM ,nS /n S , Tn /n and n /n
-M 	 - 	 - 	 -R R*

Let e = E . We can then write

f l ( e ) = Pl...

• 	

( a 11 /b 11 )c 11 	 ( a 12 /13 12 )c12 = 
n h i (Q)/N

f 2 ( 2 ) = P( a 	 ( a 	 b lc
= 	 21 /b 21 )c 21 + ' - 22

/ -
22' - 22 = 

n h 2 (2)/N

where

all= (nm/n)(09+.. • 	 +e12 )+(ns/n)(025...+828),

(n.../n)(8m 	 1+-44)44.e9+-4.e12)+InSin)(817+-44320+ e25+-+e 28 ),

T ..*... e 	 I. 	 ) ( 	 )( 	 *
13 11+(n/n)(e JJ 	 36 e+ 41 -+e 44 	 n-+- R/ 	 en-- 49 -4'

e
 52+ e5, -.443$60 ),

and

a 12 =
	+e 16 )+(ns/n)(029+...+832),

(nm/n)(8 5 ...+e..+8 s _.1312= 	 + 	
d 13+-44) 16 )+(n/n)(e '41+-44)24+ 629+-+6/32 ),

c1eb12+ (nT/We37 	 +E)40+e4t-!+848 )+(nR/n)(e53+...+e5 1 	 44364 )

with similar expressions for a 21 , b21 , c21 , a 22 , 
b22 ' c 22 .

Carrying out the differentiations and inserting we get

dh 1/de = [am (aT + a )/(am + as
)] Plo.. /P.O. 	 i=1,...

= -[aM (aT 	 a ) / ( ŒM 	 Œ5')] P 11.. 1P.1.. 	 i=5,...

= [am/(am + as )] [1- (a1
+)P 10. 	 /PO 	

, 	 i=9,...,12,. 	 .. 	
I

= [am/(am + as )] [1- (aT+4.1..a 	 ] 	 i=13,...,16,.
)P11.. 

= -[aS (aT 	 a )/(ŒM 	 aS )] P10.. /P .O.

= -(as (aT + a )/(am + US)] P 11.. /P.1. 	 i=21,...,24,

• [as /(am + as )] [1- (ŒT+ a lp 10.. /P0. 	 i=25,...,28,..

• [as/(am + as )] 	 (ŒT+ a )p 	 /P 	 I11.. 	i=29,...,32,.1..

= 04 n
-T - 10.. /P.O.. 	 , i=33,...,36,41,...,44,

UT p11• /p
.1 	 , i=37,...,40,45,...,48,.. 	 ..
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a 	 p
10.. 

/p
.0.. 	

, i=49,...,52,57,...,60,

= a p 	 /p 	 , i=53,...,56,60,...,64

	

11 •. 	 .1•.

and

dh 2 /de. . -[a(Œ5 + a )/(am + aT)] P ..10 /P •
 .0

i=1,5,9,13,
. 

-[am (as + a )/(am + aT )] P . 	
/p

... 	
-1=2,6,10,14,

	

.11 	 1

r 	 iram,‘ am + aT )1 [1- (as+ a )p ..10 /p ...0 ], i=3,7,11,15,

Cam/(am + al.)] [1- (as+ a )P ..11 /p ...1 ], i=4,8,12,16,

• aS P ..10 /P...0 	
, i=17,19,21,23,25,27,29,31,

• a p 	 /p
S 	 ..11 	 ...1 	

i=18,20,22,24,26,28,30,32,

= -(aT (as + a )/(am + a-)] P .. 	
/p

..0 	
i=33,37,41,45,

.10 	 . 

/p= -(aT (as + a )/(am	a T )] P ..11 	 ...1 	
i=34,38,42,46,

• EaT/(am + a.)] [1- (ŒŠ+ a )P ..10 /P ...0 I ' i=35 ' 39 ' 43 ' 47 '

[aT/(am + aT )] [1- (as+ a )p 	 /p..11 	 ...1 	
], 1=36,40,44,48,

ap

	

	
i=49,51,53,55,57,59,61,63,

•• 10

a P 	/P. ..	 ' i=50,52,54,56,58,60,62,64.

	

11 	 1 

By the central limit theorem

n- 1
(n - nM p)

M -M 	 -
-1
n (n - n p)

n-1/2
1-

n (n - n p)
T -T 	 T-.

n
-1
(n - n p)R -R 	 R-

N(0 ,QA )

-1
where QA is a block diagonal matrix whith matrices am Q,

a; 'Q and aQ along the diagonal. Here Q = D - p p'
P

a s

where p is the 16x1 vector having as elements
•

lexicographically ordered, and D is the diagonal matrix with the
P

elements of p on the diagonal. Since 	 =f i (4) 	 f 1 ( n-ln n-1
-  

	n1
2TER

) and '13 ..1. 	 2 - 	 2 	 M -M S -S T -T R -

	

=f (g) 	 f ( n -ln ,n-ln ,n-ln ,n-in ) it

follows by the 6-method that

	

(_ 	 P 1 	 )n-1/2 	 1.... 	 . . .

	

( p 	 _ 	 P 	 )	P. 	 _1.

converges towards a bivariate Gaussian random variable with mean 0 and
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•

covariance matrix 	 aijA }. Denote by ul , u2 , 23 and 114 the 16x1

vectors having elements dyde i , i=1,...,16; dyde i , i=17,...,32;

dh
1
	,...,/de. 	 i=3348; dh11/de. 1

  i=49,...,64. Define vectors

v 1' 	 2'v 	 3v and y4 similarly with respect to the derivatives of h 2.- - -

-1 	 -1 	 . 	 -1
Then 	 { am li D v + a u' D v 	 + a u' D va12A = p -I 	 S -2 p -2 	 T -3 p -3

	

-1 	 -1
+ a

-1 u' D v 	 - a- (ug p)(v . p ) - a (u' p)(v 1 p )-4 p -4 	 m 	 - 	 -
..1- 	 -1aT (16 	 L ) - a (4 2)(4 2 ) 1/( 1 + a ) 2

which after some straightforward calculation gives the result claimed

in section 2.
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