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MARKOV CHAINS GENERATED BY MAXIMIZING COMPONENTS OF
MULTIDIMENSIONAL EXTREMAL PROCESSES

BY

JOHN K. DAGSVIK

ABSTRACT

A multidimensional inhomogenous extremal process is defined and it is
demonstrated that it belongs to the class of pure jump Markov processes.
Let {Z.(t)} be the j-th component of the process. Let {J(t)} be a finite
state arocess defined by J(t) j if Z.(t) max Z i,(t). It is proved that
{J(t)i is an inhomogenous Markov chaiR and the traRsition probabilities of
this chain are obtained. The chain {J(t)} provides a framework for model-
ling mobility processes that are generated from intertemporal utility-
maximizing individuals.

Not to be quoted without permission from author(s). Comments welcome.



1. Introduction

The multidimensional extremal process has been defined and

examined by de Haan and Resnick 
[3) 1 , The study of extremal processes

can be motivated as follows:

Let X = (X ,X.	 ), i= 1,2,..., be a sequence of
il 12'	 im

independent identically distributed random vectors. Define the processes

U .(t) = max.
l<Lnt]Xij. 

Suppose there exists constants a	 and b
nj 

such
nj	 nj

that

(t)-b
• • •	 nm	 nm)

an2	 anm

converges weakly to a stochastic process {Z(t)}. Then {Z (t)} belongs-

to the class of multidimensional extremal processes.

, Consider a multidimensional extremal process, {Z(t)}.{Z(t),Z 2

Z (0). Define a finite state space process {J(t)} where J(t)=j	 if

Z.(t) = max Z(t).
J	 k

In the case when Uk (t)), k=1,2,... 01) are

independent extremal processes, it is shown in [1] that {J(t)} is a

Markov chain. As a consequence, the difference between two independent

extremal processes has exponentially distributed excursion times because

they are the holding times of {J(t)}. (Recall that excursion times are

the time intervals the process lies below or above a given level.)

The process {J(t)) is of substantial interest in a variety of

applications in psychology and economics. Consider the following

motivating example. Each individual of a population has the choice

between different careers. At each point in time the individuals have

the choice between j=1,2,.. 	 alternatives (states). Assume that the

) Their definition differ from the multivariate extremal process
studied by Weissman [10].

U 
1 (0-b

n1	 n2 (	 n2U 0-b

a
n1
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attractiveness of state j is measured by a latent index Z.(t) (utility)

at time t. The individual decision rule is to move to the state with

thellighestutilityatthattime.Theutilityprocess{Z*(t)},J

is considered random because not all the variables that influence the

individuals' choice are observable to the observer. From the observer's

point of view the decision process is exactly the process {J(O } .

At any given point in timé the probability of being in a particular state takes

the multinomial logit form provided Z i (t), Z 2 (t),	 are independent.

Since the logit model is consistent with a famous axiom from mathematical

psychology called "independence from irrelevant alternatives" (IIA)

(cf. [6]) it provides a behavioral justification for independent extreme

value distributed utilities. However, in many applications it may be

implausible to require the IIA property to hold. This has lead to the

development of choice models generated from general extreme value

distributed utilities, (see [7]).

In Dagsvik [1) the process {J(0) was studied in the case where

the components of {Z(t)} are independent processes. The purpose of the

present paper is to extend these results to allow for interdependent

components, ,Z.(t), j=1,2,...,m.
J

2. Preliminaries 

Let { F' t>0} be a family of multidimensional extreme value
t -

distribution functions that satisfies Y0 =1 and-

(2.1)	 G t (x ,x2 ,...,x ) = e-YG
t 

x -y,x -	 Vy,

where G
t 

= - log F
t
. Condition (2.1) implies that the univariate marginals
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-x
have the form exp{-Ce } which is the type III extreme value distribution

(see Johnson and Kotz [5]). Conditions that allow for type I and II

marginals will be considered in Section 3.

Suppose furthermore that F t /F s is a nondecreasing function in

,x 2 ,...,xm) for s<t.

Let {W(s,t)}, 0<s<t, be a family of m-dimensional vector variables

with law

(2.2)	 P(W
1	

,t 5.x l , W 2 (s,t)<x2 ,...,Wm (s,t) .5.xm )

= F (x x ...	 )/F (x ,x	 ,x)
t 1' 2 , 	s- 1 2" m

and with the property that when ( ,t) n(s,t ) =0 then W(s,t) and W(s ,t )

are independent. Let 0= t
0

 <t
1
 <t

2
 <...<t be arbitrary points in time.

n

Define a stochastic process {Z(t),t>0) recursively by

(2.3)	 Z(t) =max(Z(s),W(s,t)), s<t
4
 Z(0) =

where maximum is taken componentwise. From (2.2) and (2.3 ) we obtain the

finite dimensional marginal distribution of {Z(0):

n
(2.4) 	 PI n (z (t.)x.(1),z (t.)<x. 2

j=1	 J	 J	 2 j	 j , • • • Z (t.)‹x.(m)))ni	 3

n
n F	 .(1),u.(2),...,u.(m))/P,	 .(1), .(2),...,u.(m))

Jj=1 j	 `j -1 3

where

u.(k) = min x.(k), k=1,2,..j	 .	 .14)
i= ,2,...,n.

It is immediately seen from (2.3) that {Z(O} is nondecreasing.

We call {Z(t)} a multidimensional inhomogeneous extremal process. The-

definition presented here is a direct extension of the one-dimensional

case discussed by Weissman [9].



An immediate consequence of (2.3) is that {Z(t)} is a Markov

process. However, {Z(0) also possesses a particular "extended" Markciv
-

property stated below. For simplicity it is stated only for m=2.

Lemma 1: Let x 1 (k)x 2 (k)‘...xn (k),	 k=1,2 and let B.(k)

denote fx.(k)) or (-00 .(k)) for j=1,2,...,n- , and k1,2. We have

(2.5)	 Piz 1 (tn)Kxn (1) t )xn (2) 1(t.)EB.(1),
 j	 3

t. EB.(2), • =1
3	 J

,...,n-1).

= PIZ
1
 (t )‹x (1) t )<x (2) 1Z 	 n1)EB n(1),Z

- n	 --
t	 )EB	 2)).
n-	 n-

Proof: If x.(k)<x.
+1

 (k)	 for
J

• • • 3, and k=1 , 2 , we get

from (2.4)

n	 n.
PI n (z (t.)<x.(1),	 t.)<x.(2)}= n F, x.(1),x.

J
-

1 1
	 j	 J -	 j=1 "j	 J

2))/Ft.
J -

x.(1),	 (2))

from which the result follows immediately.

We shall now make the assumption that G
t 

is differentiable with

respect to (x ,x ,...,xn) and t. Let gt = 3Gtnt.

Theorem 1: For 0<s<t the multidimensional inhomogeneous extremal

process is a step function with only a finite number of jumps in [s,t).

Proof: This result is an extension of theorem 4.1 of [2].

Consider {Z.(0) and let EZ.(0=v.(t). By applying the time transformation



-1	 v. (t)
(T=f.	 t).e the process {VT) } Z.(f.(T)1 becomes a homogeneous3.

extremal process. This is demonstrated in [1), Lemma 3, p. 33. 	 By

theorem4.1ofWitfollowsthat{V(T)} has a finite number of jumps.

To complete the description of the inhomogeneous case we state the

transition probabilities and the holding time distribution for a bivariate

process, { i (t),Z 2 (0).

By (2.3) we realize that, given Z(s) = (x,y), there will be no jump

in (s,t) if W(s,t)<(x,y). But this event has probability F (x,y)/F 
s
(x,y).

t 

If Ts ( ,y) denotes the holding time in (x,y), we therefore have

PIT (x,y)> 	 = Ft (x,y)/F s (x,y) .

The transition probability function

t
(x
	

lx i ,y 1 ) P{z 1 (t) < x2 ,Z 2 (t)_37
	 Z 1 (s)--x ,Z ( ) ----- x2

is given by

Ft(x2,y2)/Fs(x

K (x ,y Ix ,y )=
st 	 -

x >x y >
' 	 2- l' 2

y
- 1

otherwise

3. The process J(0) 

Theorem 2: Let {Z(t)} be a multidimensional inhomogeneous extremal

process with marginal distribution F
t 

at time t that satisfies (2.1).

Define the finite state space process WO) as follows: J(t) j if

Z.(t).= max Z
k
(t).

k

Then the process J(0) is an inhomogeneous Markov chain with

transition probabilities

(3.1)

.G..(0)--9.G (0)
p. .(st)	 P(J(t)= j1J(s)=i)	 - 3 f

G9	 ' or
t

.14
TJ,



(3.2) P..(s t
11 	 '

-3.G0 3.G (0)+G (0)
t	 s	 s  

and state probabilities

(3 .3)	 P.(t) E P(J(t
3

=j) - 
3Gt

( ())

G (0 )t

where G
t
E- log F

t 
and	 denotes the partial derivative with respect to the

j-th component.

Remark- Note that when i+j the transition probabilities do not

depend on i. It is in fact this property that allows the aggregation

property of Corollary 3.

Proof: Consider first the bivariate case {Z(t)} = {Z
1
 (t),Z

2
 (t)}.

- 

Let 0<t
1
<t2<...<t

n 
be n (arbitrary) points in time and let

{t}beasubsequenceof{t.0<i<n}. Put Ei = (t	 ,t. ) and	i	 i 	 ir	 r	 r	 r

	

k	 1-' "i =(i i2 ... ik ) where i	
q 

for p<q and i 1 >1.	 The basic idea of
P 

the proof is to consider the probability Qk (ik) defined by
-n

Qkn (i 1=121 n (z 1 cy<z 2(y)ntz 2 (t) Jumps solely in Ei ..E. ....
j=1	 3	 -k

for k>1, and

n
Q

ln 
=PI n (z 1

 (t.)‹z
2
 (t.))ncz (t.)=z 2

 (t
1
 ), =2, ,...,n)).

j=1	
-	 j 

When this probability has been computed for all possible subsequences

{t.}(A{t.,1<i<n} it is easy to obtain the likelihood of

	r 	
_

Wt1),J(t2),...,J(tn)}.
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Before we start the computation of Q (i we need the following
kn -

equations

(3.4) 	 P{Z
1
 (t.)< ,Z2 (ti ) dylZ i (tk) X,Z (t ) =x, Vk<j}
 -

and

=-exp{-Gt Y,Y) Gt 	(Y,y))0 2Gt (37,0 - t. (y,y))dy, x<y
j-1 	 3-1

(3.5) 	 P{Z(t.
J ' Z 2 (t.) =y 9 tic? = , Vk<j}

= expf-Gt (y,y) Gt	(y,y)}.
j-1

Eq. (3 • 4) follows directly from (2.5) and (2.4).	 Recall that

Z
2
 (t.) > Z

2 (t. 1 ). Therefore, Z2 (t.) cannot be less than y given that
-	 3- 	 3

Z2 (ti _ 1 )=y. This means that {Z 2 (t i ) =57} can be replaced by {Z 2 (y<y)

in (3.5) (and vice versa) without altering the probability.	 Eq. (3.5)

now follows from (2.5) and (2.4).

Consider 0
-in' 

This is the probability that { 2(0) does not jump

in [t
1
 ,t ) and that Z (t.) <Z2 (t.) for j1,2,... ,n. By definition and

n	 - 	 3

the fact that {Z2 (t)} is nondecreasing it is clear that we may write

n

	i
n = fpf n tz

1
 (t.)<y , z2 (t.)<y),	 t )<y, Z2 (t 2 )cdy).

3 -	 -.3j=2

Decomposing the integrand into conditional probabilities and applying

(3.5) give
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n
Q 1n = J n

j=2
 Plz 1

 (t.) <y, Z
2
 (t.) = y Zj 	 j 	 1

•

• P{Z
11 

) <y, Z
2 (t 1 	dy}

- 

<y, Z (t0=y,Vk <

n
-Gt (y y)

1
= f-exp{ - 	 (y,y) -G	 2t. 

(y,y)))e
	t 

(y
' 
y)dy

•=2 	 3-1 

= f -exp{ - Gtn (37,0	 (y,y)dy

= i-exp{ -e-YG
 } 2c e dy - 	

	t n
 2 t

1	 t
n

where we for notational convenience write Gt instead of G(0,0).

the last step we have used (2.1) to obtain G
t

(y,y) =e-YG	 and

G
t
(y,y) =e )7

2
G
t

.

Consider next Q2n(i)'
 which is the probability that (0}2

only jumps in (t 1_ 1 t) and that Z 1
 (t.)<Z

2
 (t.) for j=1,2,...,n.

3 - 	 3

The probability that Z 1
 (t.)<Z

2
 (t.) for j=2,3 ...,n, and that

	3 - 	 j

{Z2 (t)} jumps only in (t i_ ,t i) from x into (y,y+dy) given that

Z 1 ( t 1 ) <Z2 (t 1 )x,( t 1
 <Z

2
 (t

1 )
	

'
=x is

- 

n 	 n 	 i-1
PI n (z

1
 (t.)< 	 t.)) n 	 z2 (t ) 

Edy) n (z 2
- 	 r

j=1	 r=i	 k=2

1Z 1( t 1)<x, z2 (t 1 )=x}

which by decomposition into conditional probabilities and application

of (3.4) and (3.5) give
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Q2n(i)=	 f	 E 	{z 1 (t) _<Z( t.) =371Z (t r
) 

-
< Z 2

(t)= ,Vr,i<r <

x<y j=i+1

Z
1
 (t

k
 < Z

2
 (tk

 = x Vk" 1 <k <
- 	 -

i-1
P{Z (t.) <

1 3 -
j=2

t.)

Z
1
 (t

k <- Z 2
 (tk

 =x
'
 Vk <k<i-1}P{Z 1

	 )	 (ti) E dx}

•PIZ 1 (t i)<Z (t i ) E dylZ i (tr )<Z
2
 (t = x Vr,1<r<i}

n
= f - expl - E (G, (Y,Y) -	 (Y,y)))

x<y	 j=i+1 `j	 j-1

-exp.( - G (y,y) + Gt. (y,y)}( 2 Gt. (y,y) - 2 Gt.t i
1-1	 i 	i-

Y07))dy

i-1
•exp{ - E (G, (x,x) - G(x,t.

j=2 `j	 3-1
)))•exp{ - G t1	 1

(x,x)}3 G
t	

, )dx

=- exp{ - G
t

(y,y) +	 (Y'Y))°2 t.
x<y	

n	 t.
1-1

Y,y) - t. (Y,Y))dy
1-1

7exp{ - Gt 	(x,x)},I G„ (x,x)dx

= I -exp{ -	 G
t 

-G 	)}( 2G -t
t. )e-Ydy

x<y	 n	 i-1 	
.	

1-1

-x 	•	 -x• exp{ — e 
Gt.2Gt 

e dx,
1- 1	 1

This final expression reduces to

Q 2n(i) =-	 t2
G
t.

-G
t. 

) /G
.
 G .t •	 t

1 	i 	1-1 	i-1 n

Let
G
t. 

-
t.

(3.6) 	 M. E	 1- 1 
i > 2.

G
t.
1-1



(3.9) 1+ E 	 E 	 E Mi ) .
G
t
n 	

k=1 i p=1 	 p-k

G
t 	 k

1

By the same procedure as above we obtain

G M.M.
- 2 t 1

(12n ( " j) 	G
t
n

i< j

and in the general case

(3.7)

-3 G
2 t k
	 II M. 	 .G

t
n p=1	 p

Let

n
{ n (z,(t.)<z n (t.))).

— 	 3j = 1

Then obviously

(3.8)
n

= E E Q
k=1 i

-k

because

E Q (kn
-ik

is the probability that Z 2 (ti ) > Z i (t j ), j 1,2,...,n, and that Z2(t) jumps in k

of the intervals (tj-1,tj), j=2,3,...,n. 	 Now by (3.7) and (3.8) we get

Qn

From classical algebra we have the identity

n	 k	 n
.(3.10)	 1 -I-	 Z	 E	 II M.	 = 	fl	 (1+M.)

3k=1 ik p=1 lp 	 j=2
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Moreover, by (3.6)

n 	 n • 	 t. - 2
G 	 t- + D

2
G
t.

ri( i+m. ) = 	 ( 	1-1
4

j=2 	 j=2 	 G
t.
3-1

G - 	 D G	G
t
n 

n 	 t. 	
3 2G 

t. +
. 	

2 t.	n 	3-1	 J 	 J-1
G
t.

Gt j=2
1 	 J

which by (3.9) and (3.10) implies that

( 3 . 1 1

	a
2
G
t 	 nt.

- D
2
G
t. 

; G
t.

1 n 
G
 3-1 	 3-1 Qn

G 	 j 	 G

	

t
1
	=2	 t.

The probability of (Z 1 (t)<Z 2 (t)) is found by straightforward integration

and application of (2.1) to be

(3.i2 	P{Z(t) < z(t)) = f-exp{-e-YG
t
)e--37

2
G
t

which proves (3.3).

A consequence of (3.10) and (3.12 ) is that

P{Z i (tn) Z2 (t) 	 (t i ) <Z2 (t i ), j=1,2,...,n- 11

= P{Z i (t) 5. Z 2 (t ri)1Z i (tn_ i )<Z 	 .
n-

Since this is true for any {t., j<n} it implies that {J W} is a Markov
3 	 -

chain. From (3.10) we also get

Pl z (t.)<z (t .) Iz (t. 	 ) < Z (t. 	 )} =
1 j - 2 3 	 1 3-1 - 2 3-1

Gt
3-1

D 2 G
t.
3-1  

which yields (3.2) and (3.1). Hence, the theorem is proved in the
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bivariatecasewhen 	 for j=1,2,...,n. But then the

theorem must also hold in the general bivariate case because the likelihood

of a general sample path can be expressed by joint probabilities of being

in state j , (j=1,2) at some points in time. For instance,

P[J(t )=1,J(t) = 1,J(t 3 ) = 2)

= P{J(t
1 

= 1 ,J(t2 ) = 1) - P{J(t =J(t =J tJ = 1) .

Now it is easily veryfied that the transition probabilities of OW}

satisfy the Chapman - Kolmogorov equations. Hence, there exists a

Markov chain defined by these transition probabilities. Since the

transition probabilitiesuniquely characterize a Markov process and the

likelihood Q
n can be . expressed by the transition probabilities,

the likelihood in the general (bivariate) case must also satisfy the

Markov property.

In the general case where the dimension of {Z(t)} is greater
.40

than two the theorem is proved in the same way as in Ill, p.p.

41-42. The essential property used in the rest of the proof is that

{Z.(t)
'
 max Z

kkti	
(t)) is also a bivariate extremal process. This property

1 

follows directly from assumption (2.1).

This completes the proof.

Theorem 2 tells us that we can define a discrete state space

Markov chain OW) from the continuous state Markov process {Z(t)}-

where the transition probabilities are given by (3.1) and (3.2).
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Corollary 1: The transition probabilities of the Markov chain

WO) can be expressed as

tP..(s,t) = P.( t) 	 P.(s)(s,t) ,
J	 J

where

(s,t) E corrlexp( -max Z (t)), exp(-max	 (s))) .5 G (0)	k k	 k	 t

Proof: By (3.1) and (3.3) we have

G (0)
s -tP..(s,t) = P.(	 -- P. (s)13	 3
	
c(o)t

which proves the first part of the corollary.

Since {max Z
k (0) is a univariate extremal process,it follows that

k

fexpf -max Z ( )), exp( -max Zk (t)))
k	 k

is bivariate exponentially distributed. From [5] we get

that the autocorrelation function of exp{ -max Z,(t)) at s,t is
	k 	 ""

Gs (2) / Gt 	.

This completes the proof.

The interest of Corollary 1 is that it expresses the transition

probabilities in terms of the state probabilities and a term, “s,t),

that is a measure of the temporal stability of {max Zk (t)).
k

The next . corollary concerns the transition intensities of

0(0). Recall that the transition intensities are defined by

A. .(t) = lim P..(t,t+At)	 for i+j
At- •0 

At

and

A..(t) = lim
11 At4.0

P..(t t+At )-1
11 '  

At



Corollary 2: The Markov chain WO) has transition intensities

_a . g (o)
x..(t) -  3 t

G (0 )t
for

and

-9igt“»-gt"”
11 	

= - E 	 (t) =

	

14i. 1
	

c(0)t

The excursion time of Z.(t) -max Z, (t) has distribution

P mf (Z. (T) -max Zi,(T)) >01J(s)=0
s<T<t 1_

G (0)	 t 3.00)
s- 	l' 	.= exp{ f X..(x)dx}	

G(o) exP
f ur 

 G (0) dT}s 	 T

Proof: ByTheorem 2 we get
	j	

for i+j by differentiation.
i

Notice that since

3.G (0)
= E P.(t)3 	

.-E 	 t
. G (0)

	3 	 t

we have

-E .G (0) = G (0).
t 	 t

By using this result we get the expression for X ii (t). Since {JW} is

a Markov chain the last result follows immediately. This completes the

proof.

A particular feature of {J W} is that its structure is invariant

under aggregation of states. This is a consequence of the fact that the

class of multidimensional extremal processes is invariant under maximization

of components of the process. We state this result below.
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Corollary 3: The family of Markov chains 0(0) is invariant under

aggregation of states.

As mentioned above condition (2.1) implies that the distribution

of Z.(t) is extreme value type III. It is, however, easily realized that

Theorem 2 holds for more general distributions of Z.(t). In fact we have
J

Corollary 4: Let {li(t)} be a multidimensional extremal process

with general one-dimensional marginal distributions. Let F
t 

be the

distribution of U(t) and G= .log-log F
t. 

Assume that there exists a family

of increasing functions {Tt (x),tZ0} such that Gt defined by

G (x x	 ,x) 	 G	 (x ),T (x
t 1' 2"mtt12 	 t

satisfies condition (2.1). Then Theorem 2 holds with G replaced by G.

Proof: Define {Z(0} by

2 (0 = (U (t))	 (U (t)) ...	 (U (t))).
t	 1	 't2	 '	 'tm

Then Z(t) has distribution exp(-G
t ).	 Now observe that {U 1 (t) =max U (0)

- 	 2. k Uk ( t) }

 equivalent to {Z i (t) =max Z
k
(0} because T is increasing. Hence, the

tk
claims of the corollary follow fromTheorem2 and the proof is complete.

Example 

Let G
t

=e
et

 G where e>0 is a constant and let {z*(0) be the

corresponding process. The one-dimensional version of IZ (t)) has been

studied by Tiago de Oliveira [7]. The process 1Z (t)-et) is stationary

which is easily veryfied by checking the corresponding finite dimensional

marginal distributions. Tiago de Oliveira calls this process (the one-

dimensional version) the extreme Markovian stationary process. Let

1J (t)) be the (homogeneous) Markov chain generated by {Z (0).



16

From Theorem 2 we get the state and the transition probabilities

9.G(0)
-

P . =
j	 G(0)

and

* 	 -e(t-s)
1) —(s,0

J
for

From Corollary 2 we get the holding time distribution of state i:

Pf inf (Z(T))>O1J* (s)=0
s<T<t

i	 - max Zkk+i_

= exp{ - (t-s)0( -Pi)} .

When the components i (t),Z2 (t),... are independent, then

v -x
k k

G(x) = E e
k

where vk
 = EZ 

k
	 -Ot. Hence we get

v .

e J-
P, - 	  •v

kE e
k

Thus in this case the state probabilities are multinomial logit functions

of the parameters vk .

4. Applications

The results derived above are, as mentioned, of particular

interest for applications in economics and psychology because they

provide a framework for analyzing the structure of individual discrete

decisions over time.
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Consider the analysis of individual migration careers. Let

Z.(t) be the individuals' utility of being in region j at age t . The

individual decision rule is to stay in the region with the highest

utility. Thus a move takes place each time the utility of another region

becomes higher than the utility of the region in which the individual

stays for the moment. 'The utilily Z.(t) may be a function of individual
3

characteristics as-well as characteristics of region j , for instance,

employment rate, urbanization, etc. Since only some of the variables

that influence the choice process are observable to the observer, the

utility function is random. Also the utility function may be cor-

related over time because of temporal stability in unobserved factors.

If the utilities are assumed to be extremal processes, the above

results enable us to express the transition intensities of the observed

migration process as functions of the parameters of the individuals'

utility processes. The choice of the extremal process can also be given

a behavioral justification ( f..[1]).

The above model framework can be used to discriminate between

two different explanations for observed dependence on previous migration

states. One is called "true state dependence" and the other is called

"habit persistence" or "heterogeneity".

The first explanation, "true state dependence", is that past

experience has a genuine behavioral effect in the sense that the

behavior of otherwise identical individuals who did not have the same

experience would be different in the future. The other explanation,

heterogeneity, is that individuals may differ in their propensity to

experience certain careers. If individual differences are correlated over

time and if these difference are not properly controlled,previous

experience may appear to be a determinant of future experience solely
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because it is a proxy for temporally persistent unobservables that

determine choices.

In the example at the end of section 3 the heterogeneity or habit

persistent effect is represented by the parameter (3. If e is large the

temporal stability in the unobservables is weak while when e is small the

"habit persistence" is strong. The state dependence effects may be

modelledthroughexpectedutilitiesbylettingv.depend on previous
3

realizations of the migration process.

For a more detailed discussion of these modelling issues the

reader is referred to [4).
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