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Sammendrag 

I standard lærebokteori for konsumentenes valg antas godene å være tilgjengelige i uendelig delbare 

kvanta. I mange valgsituasjoner er imidlertid godene som etterspørres kvalitative (diskrete), slike som 

varianter av differensierte produkter (transportalternativer, biler, viner, type jobb, type utdanning, 

vaskemaskiner, etc.). For slike situasjoner kan diskret valghandlingsteori (diskrete valgmodeller) 

benyttes til å analysere valgatferden til konsumentene. I standard konsumentteori kan som kjent den 

såkalte Slutsky likningen benyttes til å beregne marginale kompenserte priseffekter. Slutsky likningen 

gir sammenhengen mellom de kompenserte og de ukompenserte pris- og inntektselastisitetene, slik at 

dersom en kjenner de marginal ukompenserte pris- og inntektseffektene kan en tallfeste de tilsvarende 

marginale kompenserte effektene. 

 

I denne artikkelen utledes en aggregert Slutsky likning for diskrete valgmodeller. Det har tidligere 

ikke eksistert en tilsvarende Slutsky likning for slike modeller. Den diskrete Slutsky likningen gjør det 

dermed mulig å beregne kompenserte priselastisiteter for andelen (valgsannsynligheten) som etterspør 

et diskret alternativ på grunnlag av de tilsvarende ukompenserte pris og inntektselastisiteter. Slutsky-

ligningen i dette tilfellet skiller seg på sentrale måter fra den tilsvarende ligningen i standard 

konsumentteori. For eksempel er venstre - og høyrederiverte av de kompenserte valgsannsynlighetene 

med hensyn på pris som regel forskjellige.  

 

Til slutt diskuterer vi utvalgte spesialtilfeller. Ved hjelp av Slutsky likningen vises hvordan 

substitusjonseffekter i disse tilfellene kan beregnes via de kompenserte elastisitetene med hensyn på 

endringer i reisekostnader og reisetider. 
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1. Introduction    

The theory of compensated demand and compensating and equivalent variations is well 

developed for the case when the commodity space is infinitely divisible: see, for example, 

Hausman (1981). However, in many instances the consumer faces choice settings where the 

alternatives are discrete. These include choice between variants of a differentiated product, 

urban transportation modes, residential locations, types of education, types of child care, etc. 

In the context of discrete choice settings, one cannot apply the standard microeconomic 

textbook approach to express demand functions. The reason is that the set of feasible 

consumption alternatives is not a continuum and the utility function is not differentiable. 

Thus, the standard approach based on marginal calculus does not apply.  

 As regards welfare analysis, the standard tools of applied welfare economics are not 

directly applicable in discrete choice situations. Nevertheless, it is important to develop 

practical welfare measures in these settings also, because welfare judgments are of major 

interest in several areas, such as the choice between transportation modes, housing 

alternatives, variants of differentiated products, types of schooling, and types of childcare. In 

these areas, welfare evaluations of public policies which change prices, taxes, and quality 

attributes of some alternatives are relevant.  

A central aspect of welfare assessment is the calculation of marginal compensating 

effects. In the traditional approach to microeconomic analysis, with infinitely divisible 

quantities of goods the Slutsky equation plays a key role. The Slutsky equation, referred to as 

the “fundamental equation in value theory” by Hicks (1936), allows one to compute the 

compensating price elasticities from the corresponding uncompensated price and income 

elasticities. Specifically, marginal compensated (Hicksian) effects are used to justify key price 

indexes and they also play an important role in the analysis of optimal taxation. In the special 

case where the utility function is linear in income there are no income effects and the 

marginal compensated effects will in general be different from the corresponding 

uncompensated effects. In this case EV and CV can be readily expressed on closed form for 

(McFadden, 1999, and Niemeier, 1997). However, when utilities are non-linear in income  

one can no longer express these welfare measures and marginal compensated effects by 

simple formulas.  
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Dagsvik and Karlström (2005) obtained analytic formulas for compensated choice 

probabilities and the distribution of welfare measures such as CV and EV in discrete choice 

models when utility is non-linear in income.1 In this paper, we employ the results obtained by 

Dagsvik and Karlström (2005) to derive compensated marginal effects for discrete choice 

models and to establish a corresponding discrete Slutsky equation (discrete Slutsky equation). 

This Slutsky equation also covers a specific case of discrete/continuous choice. It turns out 

that the discrete Slutsky equation is in part analogous to the standard Slutsky equation, but 

also differs in essential ways. A remarkable feature of the compensated marginal effects in the 

discrete case is that they are usually not symmetric, as the marginal compensated effects with 

respect to a price increase versus a price decrease may be different. In a separate paper 

(Dagsvik et al., 2019), marginal compensated effects for discrete labor supply models are 

analyzed.  

An early general and seminal treatment of welfare analysis in discrete/continuous 

choice models was undertaken by Small and Rosen (1981). They seem to be the only ones 

who have previously discussed marginal compensated effects. Their treatment is, however, 

incomplete and seems partly misleading, as will be discussed further below.  

The paper is organized as follows. In Section 2 we discuss the notion of compensating 

choice and the random expenditure function in the discrete choice setting. Section 3 deals 

with joint ex-ante and ex-post compensated choice. In Section 4 we discuss marginal 

compensated effects with special reference to the Slutsky equation and in Section 5 we 

discuss some selected examples.  

 

2. Compensated discrete choice   

In discrete choice theory based on random utility representations, the notion of compensated 

demand is more complicated than in the conventional case. Also, separate treatments are 

necessary for the one-period setting and the two-period setting: that is, before (ex-ante) and 

after (ex-post) a reform is introduced. The reason for this is that in random utility models 

there is no unique deterministic correspondence between prices, expenditure, and utility 

because (indirect) utility is a random function of prices and income. The random utility 

                                                      

1 Kornstad and Thoresen (2006) and Dagsvik et al. (2009) have conducted welfare analyses based on the welfare measures 

derived in Dagsvik and Karlström (2005). 
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representation is motivated by the fact that not all variables that influence preferences are 

observable to the researcher. Some of the variables that affect preferences may even be 

random to the consumer himself. The reason is that tastes may vary in an unpredictable way 

from one moment to the next across identical choice settings due to psychological factors and 

difficulties with making a definitive assessment of the value of the alternatives. Consequently, 

the utility function, the expenditure function, CV, and EV all become interdependent random 

variables. This feature calls for a careful probabilistic analysis in the derivation of the 

respective distribution functions. 

 Consider a general setting where the consumer faces a choice between a composite 

continuous good and a set of discrete alternatives where the discrete alternatives are mutually 

exclusive. Let 0( , )jU x x  be the utility of the quantity 0x  of the composite good and the 

quantity jx associated with the discrete alternative j, j = 1, 2,…, m. Most of the time jx will be 

equal to 1 (when alternative j is chosen) or zero, but for the sake of comparison with Small 

and Rosen (1981) we shall also consider briefly the discrete/continuous case in which jx  

takes values in (0, ).  The consumer maximizes 0( , )j jU x x  subject to the budget constraint 

  0 1
,

m

j jj
x x w y

=
+ =  0,jx   0,j kx x =  ,k j   

where y denotes income, jw the price of the discrete alternative j, and the price of the 

composite indivisible good with quantity 0x  is normalized to 1. Let ( , )j jU w y  be the 

conditional indirect utility given the discrete alternative j. That is, ( , )j jU w y  is the maximum 

of 0( , )j jU x x  subject to the budget constraint 0 .j jx x w y+ =  In the pure discrete case, where 

1jx =  the indirect utility conditional on alternative j admits the form ( , ) ( ,1).j j j jU w y U y w= −  

The general formulation above covers several cases (but not all) of interest. Consider, for 

example, the choice of working in different labor market sectors, where it is understood that 

hours of work are fixed and possibly sector-specific. In this case of sectoral labor supply 

without taxes and with fixed hours of work, the conditional indirect utility can be expressed as 

( , ) ( ,1).j j j jU w y U y w= +  Thus, the function ( , )j jU w y  can be both increasing (occupational 

mobility and labor supply) and decreasing in .jw   
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Assumption 1 

The utility of alternative j has the structure ( , ) ( , ) ,j j j j jU w y v w y = +  where ( , )j jv w y  is 

a deterministic function that is strictly increasing in y and strictly monotone in jw  and 

1 2( , ,..., )m    is a stochastic vector with joint c.d.f. F that possesses a continuous probability 

density. 

 

As mentioned above, the stochastic terms are supposed to account for the effect on 

preferences from variables that are not observed by the researcher. Under Assumption 1 and if 

F is a multivariate extreme value distribution with Gumbel marginals, then the implied choice 

model becomes the Generalized Extreme Value (GEV) model (McFadden, 1978).  

Recall that the additive random utility structure assumed above, which is the same set-

up as in Dagsvik and Karlström (2005), represents no loss of generality. Bhattacharya (2015, 

2018) shows that one can obtain formulas for the distribution of CV and EV without 

assuming a separable utility structure as in Assumption 1. However, as Dagsvik (1994, 1995) 

and Joe (2001) have demonstrated, any random utility model can be approximated arbitrarily 

closely by a GEV model. Since the GEV family is a subclass of the random utility models 

generated by Assumption 1 it follows that there is no loss of generality in postulating 

Assumption 1. 

 The agent’s choice set of available alternatives may be a subset of the universal set of 

all possible alternatives. For simplicity, let {1, 2, …, m} denote the index of all possible 

alternatives. If alternative j is not available to the agent then the corresponding price, jw =   

and ( , ) / 0.j j jv w y w  =  Evidently, this represents no loss of generality. Let ( , )J w y  be the 

(Marshallian) choice function and 1( ,..., )mw w w=  the vector of prices. That is, ( , )J w y j=  if 

the discrete alternative j is chosen, given prices and income (w, y). It follows from McFadden 

(1981, pp. 212–14) that under Assumption 1 the choice probabilities are given by 

(2.1)               ( ) ( ( , ) ) ( ( , ) max ( ( , ) ))j j j j r m r r rw,y P J w y j P v w y v w y  = = = + = +  

                                    1 1 2 2 2( ( , ), ( , ) ,..., ( , ))) .j m mF u v w y u v w y v u v w y du



−

= − − −  
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We call ( , )j w y  the Marshallian (or uncompensated) choice probability of choosing 

alternative j. The corresponding conditional demand function given the discrete alternative j 

follows from Roy’s identity, namely 

(2.2)  
1

2

( , )
( , )

( , )

j j

j j j

j j

v w y
x x w y

v w y


= = −


  

where jkv , k = 1, 2, denotes the derivative with respect to component k. We note that the 

conditional demand functions defined above are deterministic since they depend only on the 

deterministic terms of the utility function. More general utility specifications for 

discrete/continuous choice are given by Dubin and McFadden (1984), Hanemann (1984) and 

Dagsvik (1994).  

Define next the conditional expenditure function ( , ),j je w u  given alternative j, by the 

relation 

   ( , ( , )) ( , ( , ))j j j j j j j j ju U w e w u v w e w u = = +   

where u is a given utility level. When ( , )jv w y  is strictly increasing in y it follows that ( , )je w u

is uniquely determined. The expenditure function (unconditional) ( , )e w u  is therefore given by 

    ( , ) min ( , ).j j
j m

e w u e w u


=   

Since the utility function depends on random taste variables the expenditure function becomes 

stochastic. The Hicksian (or compensated) conditional demand H
jx given alternative j equals 

    ( , ) ( , ( , )).H H
j j j j j j jx x w u x w e w u= =   

Let ( , )HJ w u  denote the Hicksian discrete choice function given prices and utility level (w, u). 

The concept that corresponds to (aggregate) Hicksian demand is the Hicksian (or 

compensated) choice probability. It is defined as 

              ( , ) ( ( , ) ) ( ( , ) ( , )).H H
j j jP w u P J w u j P e w u e w u= = = =   

Dagsvik and Karlström (2005, Theorem 2) have derived the formula for ( , )H
jP w u  under 

Assumption 1. They also obtained a discrete version of Shephard’s lemma for the standard 

discrete choice case and, furthermore, the distribution of the expenditure function (Theorem 

1). Another way of expressing the Hicksian choice function is as ( , ) ( , ( , )).HJ w u J w e w u=  If 
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( , )J w y  and ( , )e w u  were independent random functions, then one could derive the Hicksian 

choice probability from the relation  

        
0

( ( , ) ) ( ( , ( , )) ) ( ( , ) ) ( ( , ) ).HP J w u j P J w e w u j P J w y j P e w u dy


= = = = =    

Unfortunately, the random functions ( , )J w y  and ( , )e w u  are in general stochastically 

interdependent and therefore the equation above is not always true. In fact, we have the 

following result. 

  

Proposition 1 

 Assume that Assumption 1 holds. Then  

          ( ( , ) | ( , ) ) ( ( , ) )P J w y j e w u y P J w y j= = = =  

 only if ( , ) /j jv w y y   is independent of j and F is a multivariate extreme value c.d.f.   

 

 The proof of Proposition 1 is given in the appendix. Proposition 1 shows that even if 

the choice model is a conditional logit model the deterministic part of the utility function must 

be linear in income with a coefficient associated with income which is independent of the 

alternatives. 

 

3. Joint ex-ante choice and ex-post compensated choice  

The focus of this paper is the analysis of compensated choice behavior in the two-period 

setting where the first period is called ex-ante (before the reform is introduced) and the second 

period ex-post (after the reform has been introduced). Let the income and price of alternative j 

ex-ante be equal to ( , )jy w  and the price of alternative j ex-post be equal to .jw  Recall that we 

have adopted the convention that when an alternative j (say) does not belong to the choice set 

of the consumer, the corresponding price (relative to the individual) is equal to infinity and 

accordingly the corresponding utility is equal to minus infinity. It is assumed that the 

stochastic terms of the utility function are not affected by the reforms. This assumption is 

common in these types of welfare analysis and it simply means that the welfare effects are 

interpreted as conditional on all factors other than the actual prices (or wages) being kept 
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fixed. Under Assumption 1 we shall, for simplicity, sometimes write jv  or ( )jv y  instead of 

( , ).j jv w y  Let ( , )V w y  be the (unconditional) ex-ante indirect utility functions defined by 

(3.1)       ( , ) max ( , )j j
j m

V w y U w y


= . 

Define jY  by  

     ( ; , ) ( , ( , ))j j j j jY Y w w y e w V w y= =   

for j belonging to the ex-post choice set and define Y  by 

       ( ; , ) min ( ; , ).j j
j m

Y Y w w y Y w w y


= =  

Whereas jY  is a conditional ex-post expenditure function given alternative j, Y is the 

unconditional ex-post expenditure function that yields the income required to maintain the ex-

post utility level equal to the ex-ante utility level. The corresponding compensating variation 

measure is defined by .CV Y y= −  Alternatively, Y can be obtained as the solution to the 

equation 

      ( , ) ( , ).jV w y V w Y=   

We have now defined the theoretical concepts that are necessary for deriving analytic 

results that are analogous to the one-period expenditure function and Hicksian demands. Let

( , , ; , , )HQ j k z w w y  be the joint probability of choosing alternative j ex-ante, alternative k ex-

post, and { }Y z  when the ex-post maximum utility is equal to the ex-ante maximum utility. 

Thus,   

              ( , , ; , , ) ( ( , ) max ( , ) ( , ) max ( , ), )H

j j r r r k k r r rQ j k z w w z P U w z U w y U w Y U w Y Y z= = = =                

for 0.z   For notational simplicity we shall, most of the time, write ( , , )HQ j k z  instead of 

( , , ; , , ).HQ j k z w w y  Let ( , ) ( , , ),H HQ j k Q j k=   which is the joint compensated (Hicksian) 

probability of choosing alternative j ex-ante and alternative k ex-post (which means that the 

respective utility levels of the chosen alternatives before and after the reform are the same). 

Let  

( , , ) ( ( ; , ) ( ; , ))H H
j j j jQ Q w y w P Y w w y Y w w y= = =   

which is the probability of choosing alternative j ex-post conditional on the ex-post utility 

level being equal to the ex-ante utility level. Evidently, 

  
0

( , ).H H
j r

Q Q r j


=  
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If ( , )V w y  were exogenous one could obtain H

jQ from ( , )H

jP w u  because in this case one would 

have that ( , , ) ( , ( , )),H H

j jQ w w y EP w V w y=  where the expectation is taken with respect to ( , ).V w y  

However, Proposition 1 implies that the latter equation does not hold because ( , )V w y  and 

{ ( , )}j je w u  depend on the same random taste shifters { }j and in this sense ( , )V w y  is 

endogenous.  

 

4. The discrete Slutsky equation  

We start with a brief review of the Slutsky relation in standard consumer theory. Let ( , )jd p y

denote the (Marshallian) demand of commodity j as a function of prices and income (p, y) and 

let ( , )H
jd p u  denote the corresponding Hicksian demand function where u is the utility level 

and ( , )e p u  the corresponding expenditure function. The Hicksian demand function is not 

directly observable because it depends on the unobservable utility level. However, Slutsky 

(1915) showed how the marginal Hicksian demands can be obtained from the corresponding 

marginal Marshallian demands through the so-called Slutsky equation given by    

(4.1)            ( , ( , )) / ( , ) / ( , ( , )) ( , ( , )) /H
j k j k k jd p e p u p d p u p d p e p u d p e p u y.  =   −    

This equation allows one to compute the unobserved marginal compensated demands with 

respect to price changes by using the corresponding Marshallian demands (Varian, 1992). 

Consider next the two-period discrete case. This is more complicated because the 

preferences are stochastic and the ex-ante indirect utility is endogenous, as discussed above. 

Define, for positive j and k,  

        
0

( , , ) ( , )
lim

k

H H

k k k

w
j j j

Q w w y w y

w w w

 +



 −
=

 −
  and  

0

( , , ) ( , )
lim .

k

H H

k k k

w
j j j

Q w w y w y

w w w

 −



 −
=

 −
 

The expressions above are the right and left derivatives of ( , , )H

kQ w w y  with respect to the ex-

post price of alternative j. They correspond to the right and left marginal compensated effects 

of the choice probability of alternative k resulting from a price increase or a price decrease, 

respectively, of alternative j. As we shall see below, it turns out that in general one has 

/ /k j k jw w + −     , which means that in general the derivative /j kw   does not exist.  
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Theorem 1 (discrete Slutsky equation) 

 Assume that Assumption 1 holds with ( , )j jv w y  that is continuously differentiable and 

decreasing in 
jw  for all j. Then 

                 ,

H

j j j

j

j j

x
w w y

  +  
= − 

  
     ,

H

j j

j jw w

 − 
=

 
 

 
/

/

H
jk k

j j k

v y

w w v y

 +   
= 

   
  and  

H

k k

j jw w

 − 
=

 
 

for ,k j , 0,j k  where 

  
/

.
/

j j

j

j

v w
x

v y

 
= −

 
 

  

The proof of Theorem 1 is given in the appendix. Recall that in the conventional 

continuous case the demand for good j is given by Roy’s identity. Hence, jx has the 

interpretation as the conditional demand, given the choice j. Accordingly, we realize that only 

the equation determining /H

j jw+   is similar to the standard Slutsky equation in (4.1) with 

income effect given by / .j jx y    

In many applications preferences are assumed to depend on non-pecuniary and 

alternative specific attributes. For example, in analysis of urban travel behavior attributes such 

as “on-vehicle times” and “out-of-vehicle times” play a major role. The results of Theorem 1 

or Corollary 1 can also be applied to calculate marginal compensating effects with respect to 

selected non-pecuniary attributes simply by replacing 
jw  with the selected attribute in the 

formulas of Theorem 1/Corollary 1. 

Surprisingly, the corresponding Slutsky equation for price decreases is different in that 

the marginal compensated price effect is equal to the marginal uncompensated price effect. In 

order to understand why, let us, for simplicity, consider the binary case with two alternatives. 

The argument in the general case with many alternatives is similar. Consider first the case 

where 
2w  increases to 

2 2 ,w w  whereas 
1w  remains unchanged. Then (1,2) 0HQ =  because 

there is nothing to gain by switching from alternative 1 to alternative 2. Define
2y by the 

relation 
2 2 2 2 2( , ) ( , ).v w y v w y=  Consider next the case where the agent chooses alternative 2 ex-
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ante and ex-post given that utility is kept constant. In this case expenditure Y is determined by 

2 2 2 2( , ) ( , )U w y U w Y= , which implies that 
2.Y y=  We therefore obtain that  

(4.2)          1 1 2 2 2 2 2 1 1 2(2,2) ( ( , ) ( , ) ( , ) ( , )).HQ P U w y U w y U w y U w y=  =    

Evidently, 
2y y , which implies that 

1 1 2 1 1( , ) ( , ).U w y U w y  Consequently, (4.2) reduces to 

       2 2 2 1 1 2(2,2) ( ( , ) ( , ))HQ P U w y U w y=   

so that 

(4.3)      2 2 2 2( , , ) ( , ) (1,2) (2,2) ( , ) (2,2) ( , )H H H HQ w w y w y Q Q w y Q w y  − = + − = −  

       
2 2 2 1 1 2 2 2 2 2( ( , ) ( , )) ( , ) ( , ) ( , )P U w y U w y w y w y w y  =  − = −  

where 
1 2( , ).w w w=  Consider next the case where 

2 2.w w  Then, evidently, 2(2,2)HQ =  

because there is nothing to gain by switching to alternative 1. Furthermore, if alternative 1 

was chosen ex-ante the agent may switch to alternative 2 ex-post. This will happen if  

    
2 2 1 1 2 2 1 1{ ( , ) ( , ) ( , ) ( , )}.U w y U w y U w Y U w Y =    

The latter event implies that 

            
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2{ ( , ) ( , ), ( , ) ( , )} { ( , ) ( , ), ( , ) ( , )}U w Y U w y U w Y U w y v w Y v w y v w Y v w y       

which is equivalent to 
2{ ( , )}.Y y y  Consequently, it follows that  

(4.4)     2 2 1 1 2 2 1 1(1,2) ( ( , ) ( , ) ( , ) ( , ))HQ P U w y U w y U w Y U w Y=  =    

     
1 1 2 2 2 2 2 2 1 1 2 2( ( , ) ( , ), ( , )} ( ( , ) ( , ) ( , )).P U w y U w Y Y y y P U w y U w y U w y= =  =     

Accordingly, (4.4) yields 

(4.5) 2 2 2 2 1 1 2 2 2 2( , , ) ( , ) (1,2) ( ( , ) ( , ) ( , )) ( , ) ( , ).H HQ w w y w y Q P U w y U w y U w y w y w y  − = =   = −   

We note that the final expressions in (4.3) and (4.5) differ in an important way. The 

expression in (4.5) is equal to the own marginal uncompensated price effect. In the former 

case in (4.3) the corresponding expression is similar apart from the fact that income is 

replaced by 
2 .y  (For the sake of interpretation, note that by implicity differentiation and Roy’s 

identity it follows that 
2 2 2/ ).y w x  =  Thus, in the case of a price increase the own marginal 

compensated price effect is obtained by substituting income with 
2y  in the formula for the 

corresponding marginal uncompensated price effect. This means that  an income effect is 

present, represented by 
2 .y  This is due to the fact that when the price of alternative 2 increases 

the marginal own compensated price effect equals 2(2,2) ,HQ −  whereas the marginal own 

compensated price effect equals (1,2)HQ  when the price of alternative 2 decreases. 
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The asymmetry in the Slutsky equation is not restricted to the case where utility is 

additively separable in a deterministic and a stochastic term. The essential difference from the 

separable case is that in the non-separable case 
2y  may be stochastic and determined by 

2 2 2 2 2 2 2( , , ) ( , , ).U w y U w y =  Still the argument above, with minor modification, goes through. 

Section 5 we demonstrate that the asymmetry in the Slutsky equation also may occur in the 

standard textbook model of labor force participation in the presence of non-linear taxes.  

We note above that in some cases, such as in models of labor suppy and occupational 

mobility, the utility function is increasing in prices (wage rates). By symmetry the result in 

next corollary follows readily from Theorem 1. 

 

Corollary 1 

 Assume that Assumption 1 holds with ( , )j jv w y  that is continuously differentiable and 

increasing in 
jw  for all j. Then 

                 ,

H

j j j

j

j j

x
w w y

  −  
= + 

  
     ,

H

j j

j jw w

 + 
=

 
 

 
/

/

H
jk k

j j k

v y

w w v y

 −   
= 

   
  and  

H

k k

j jw w

 + 
=

 
 

for ,k j , 0,j k  where 

  
/

.
/

j j

j

j

v w
x

v y

 
=

 
 

 

From Theorem 1 the next corollary is also immediate. 

 

Corollary 2 

Assume that Assumption 1 holds with ( , ) ( )j j jv w y y w= −  for some function ( )y  that 

is independent of j. Then 

            ,

H

j j j

j jw w y

  +  
= −

  
  ,

H

j j

j jw w

 − 
=

 
 

 
H

k k

j jw w

 + 
=

 
    and    

H

k k

j jw w

 − 
=

 
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for ,k j , 0.j k   

 

 As mentioned above, the case of discrete labor supply models (e.g. van Soest, 1995, 

and Dagsvik and Strøm, 2006) is analyzed in a separate paper (Dagsvik et al., 2019). The 

reason is that this case does not immediately fit into the framework considered here because 

the price (wage rate) is the same for all alternatives (different hours of work schedules).  

 Consider next the discrete/continuous case where the conditional demand functions are 

determined by Roy’s identity, as explained above. Let ,j j jX x =  where 1x  is given by (2.2). 

That is, jX is the unconditional (aggregate) demand for alternative j in the case of 

discrete/continuous choice. For the conditional demands the direct marginal effect must 

obviously satisfy the conventional Slutsky equation: that is, 

  .

H
j j j

j

j j

x x x
x

w w y

  
= − 

  
  

Furthermore, since kx does not depend on jw  for ,k j it follows that / 0.H
k jx w  =  We 

therefore obtain the relation 

  

H H H
j j j

j j

k k k

X x
x

w w w




   
=  + 

  
  

and the next corollary follows from Theorem 1. 

 

 Corollary 3 

 Under Assumption 1 it follows that  

              ,

H

j j j

j

j j

X X X
x

w w y

+  
= − 

  
     ,

H

j j j

j

j j

X X x
X

w w y

−  
= − 

  
 

  
/

/

H
jk k

j j k

v yX X

w w v y

+   
= 

   
  and  

H

k k

j j

X X

w w

− 
=

 
 

for .k j  

 

 We observe that the relations in Corollary 3 differ in important ways from the 

corresponding (misleading) relations given in Small and Rosen (1981, pp. 116–18). 
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5. Special cases   

Example 1: Urban travel demand  

This example is taken from McFadden (1981, pp. 242–245). McFadden and his associates 

analyzed work-trip choice with four travel modes (bus, auto alone, rapid transit (BART), 

carpool) in the San Francisco Bay Area. One of the models they estimated was a multinomial 

logit model where the systematic part of the utility function of individual i was assumed to 

have the form 

(5.1)        
1 1 2 2( , ) ,

j

j j j j j

w
v w y Z Z

y
   = + + +  1 0 =   

where y  is the wage rate, 
jw  is the cost of alternative j, 

1 jZ  is “on-vehicle time” of 

alternative j, 
2 jZ  is “access time” of alternative j, and { },j , 1 , and 2  are unknown 

parameters. Train and McFadden (1978) have provided a theoretical justification of the utility 

as a function of the wage rate. Another justification is that if hours of work is given (such as 

full-time or part-time hours), then the wage rate is equal to the wage income, apart from a 

multiplicative constant.2 The estimates of these parameters are given in Table 5.2, p. 244, in 

McFadden (1981). Below we give the uncompensated and compensated elasticities with 

respect to traveling costs and traveling times. Policy reforms that involve changes in traveling 

times may be implemented by reducing or increasing the number of transits and bus stops or 

transfers.  

From (5.1) it follows that 

(5.2) 
2

( ),
j j

j r rr
w w

y y

 



= − −


  (1 )

j

j j

jw y

 
 


= −


    and    .

k jk

jw y

 
= −


  

Corollary 2 and (5.2) therefore imply the following compensated price elasticities: 

 
log

,
log

H

j

r rr j
j

w
w y

 


+




=


      

log
,

log

H
k jk

j

w

w y

 +
= −


  

 
log

(1 )
log

H

j j

j

j

w

w y

 


−
= −


  and   

log

log

H
j jk

j

w

w y

 −
= −


  

for .k j  From the above results it follows that 

                                                      

2 In most jobs, hours of work are fixed, possibly job-specific, and determined by institutional regulations or the nature of the 

jobs. 
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(5.3a)          
log log

( )
log log

H H

j j

r j r

rj j

w w
w w y

  


+ − 
− = −

 
    

 and  

(5.3b)         
( )log log

.
log log

H H
j k jk k

j j

w w

w w y

  + − − 
− =

 
  

Similarly, it follows that the compensated elasticities with respect to traveling times are given 

by 

      
log

,
log

H

j s sj

r rr j
sj j

Z
w

Z w

 


+




=


    

log
,

log

H
s k sj jk

sj j

w Z

Z w

 +
= −


 

      
log

(1 ),
log

H

j

s s j j

sj

Z
Z


 

−
= −


        

log
,

log

H

k
s s j j

sj

Z
Z


 

−
= −


  

(5.4a)         
log log

( )
log log

H H

j j s
r j r

r jsj sj j

w w
Z Z w

  


+ −



 
− = −

 
   

and  

 (5.4b)        
( )log log

.
log log

H H
s sj j k jk k

sj sj j

Z w w

Z Z w

  + − − 
− =

 
 

From (5.3a, b) and (5.4a, b) we realize that the difference between the right and left marginal 

compensated elasticities may be substantial. 

 

Example 2: Labor force participation with non-linear taxes 

Consider the following model of labor force participation of married women. The women face 

the choice of working full-time (alternative 2) h with wage income ,w  or not working 

(alternative 1). Hours of work h is normalized to 1. Let a  represent the disutility of fixed 

costs of working, y is non-labor income (husband’s income) and ( , )f w y  the function that 

transforms gross income labor income w and nonlabor income y to income after taxes. We 

assume that ( , )f w y  is continuously differentiable. The utility of working is given by 

(5.5a)  2 2

(( ( , ) 1)f w y
U a






−
= − + +   

and the utility of not working is given by 

(5.5b)  1 1

( (0, ) 1)f y
U






−
= +  
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where   and 0   are parameters and , 1,2,j j =  are random errors. When 0 =  (5.5a, b) 

become 

  2 log ( , )U a f w y= − +  and   1 1log (0, ) .U f y = +  

Note that in this case utility is increasing in wage income. This implies that the right marginal 

compensated wage effects are equal to the corresponding uncompensated wage effects 

whereas the left marginal compensated wage effects differ from the corresponding 

uncompensated effects. Let 2  be the probability of participation. In the special case where 

the error terms are independent with standard Gumbel c.d.f. exp( exp( ))x− − , then the 

probability of participation 
2  (say) becomes 

  2

1
.

1 exp( ( (0, ) 1) / (( ( , )) 1) / )a f y f w y 


   
=

+ + − − −
  

Furthermore, it follows from (5.5a, b) and Corollary 1 that  

  12 2
1 2 2( ( , )) ( , ) (1 ),

H

f w y f w y
w w

 
  

+
− 

= = −
 

   

  2

y


=


 1 1

2 2 2 2( ( , ) ( , ) (0, ) (0, ))(1 )f w y f w y f y f y   − − − −   

and we therefore obtain that   

  
1

2 2 2 2 2
2 2

2 2

( , ) / (0, ) (0, )
(1 ).

( , ) / ( , )

H v w y w f y f y

w w v w y y y f w y

   
 

− −     
= −  = −

    
 

Thus, in this case 

(5.6)  2 2 2 2

2

( , ) /

( , ) /

H H v w y w

w w v w y y y

  − +    
− = 

    
 

  
1 1

1 2 2
2 2

2

( , )( ( , ) ( , ) (0, ) (0, ))
(1 ) .

( , )

f w y f w y f w y f y f y

f w y

 
 

− −  −
= −


  

When 1 =  the formula in (5.6) reduces to 

(5.7)  2 2 1 2 2
2 2

2

( , )( ( , ) (0, ))
(1 ) .

( , )

H H f w y f w y f y

w w f w y

  
 

− +     −
− = −

 
  

The relation in (5.7) shows that even when utility is linear in disposable income the left and 

right marginal compensated wage effects are different if taxes are non-linear. If wife and 

husband are taxed separately, then 
2 2( , ) (0, ) 0f w y f y − = , implying that the left and right marginal 

compensated wage effects are equal. 



19 

Example 3: The standard labor force participation model with non-linear taxes  

 

Here we consider the labor force participation of married women when the model is assumed 

to be the standard textbook one where the worker is allowed to choose any level of continuous 

hours of work (subject to an upper limit on hours). Let h  denote hours of work and 
2w  the 

wage rate. We assume that the function ( , ),f wh y  which transforms labor income 2hw  and 

non-labor income y to income after taxes, is strictly concave in the wage rate 
2.w  In this case 

it follows that the woman would choose to work if 
2 1 1(0, )w f y w   and choose not to work 

otherwise, where 1w  is the woman’s reservation wage (marginal rate of substitution at zero 

hours of work). In empirical applications it is necessary to represent the wage rate and the 

reservation wage by instrument variable equations. To this end assume that   

          2 2 2log w z = +     and   
1 1 1log w z = +   

where 1z  and 2z  are the respective systematic parts of the log wage and log reservation wage 

equations that depend on suitable covariates, and 1  and 2  are zero mean random variables, 

possibly correlated, and independent of 1z  and 2 .z  Let F  be the c.d.f. of 
1 2. −  It thus 

follows that the probability of participation becomes 

(5.8)            
2 2 1 2 1 1 1 2 1( log (0, ) ) (log (0, ) ).P z f y z F f y z z   = + +  + = + −   

From (5.8) it follows that 

(5.9)               2
1 2 1

2

(log (0, ) )F f y z z
z

 = + −


   

and     

(5.10)               2 12
1 2 1

1

(0, )
(log (0, ) ) .

(0, )

f y
F f y z z

y f y

  = + −
 

  

Hence, (5.9), (5.10) and Corollary 1 imply, with 1 1v z=  and 
2 1 2log (0, ) ,v f y z= +  that 

            2 2

2 2

H

z z

 + 
=

 
   and    2

2

0.
H

z

−
=


  

Recall that the reservation wage does not depend on income. Thus, when the wage rate 

decreases the utility of the chosen alternative remains constant if the marginal wage rate at 

zero hours of work, 
1 2(0, ) ,f y w  remains constant, which is obtained by a suitable increase of 
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income. This means that neither the reservartion wage nor the marginal wage rate at zero 

hours of work changes, implying that the corresponding marginal effect is zero when 

12(0, ) 0.f y   If, however, 12 (0, ) 0f y = , then the marginal compensated wage effect equals the 

corresponding uncompensated effect given in (5.9). 

In the current Norwegian tax system wives and husbands are taxed separately, so 

12(0, ) 0.f y =  In the previous Norwegian tax system, however, wives and husbands were taxed 

jointly when the wife’s income was sufficiently low. Thus, in this latter case the function that 

transforms gross income to disposable income has the form ( , ) ( )f hw y g hw y= + , which 

implies that 
12(0, ) ( ).f y g y =   

 

6. Conclusions 

In this paper we have discussed marginal compensated effects in discrete choice models and 

we have established the Slutsky equation for such models. As we have seen, the discrete 

Slutsky equation has the special feature that marginal compensated price effects in the case of 

a price increase differ from marginal compensated price effects in the case of a price decrease.  
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Appendix  

Lemma 1 

Let ( , ) ( , ) ,j j jU x y v x y = + 1,2,..., ,j m= with random error terms { }j  that have joint c.d.f. F 

with deterministic terms { ( , )}jv w y  that are strictly increasing in y. For simplicity, write ( , )j j jv v w y=  

for the ex ante systematic part of the utility function and let w  be the vector of ex post prices. Then  

(i) (max ( , ) ( , ) max ( , ) ( , ) , )r m r r j j r m r r k kP U w y U w y U w Y U w Y du Y dz = = =    

       
1 2( ( ),..., ,..., ( , ), ( )) ( , )jk j k m k kF u z u v u v w z u z v w dz du = − − − −  

for j ky y y ,  ,k j k, j > 0, and  

(ii) (max ( , ) ( , ) max ( , ) , )r r r j j r r r jP U w y U w y U w Y du Y y= =  =   

       
1( ( ),..., ,..., ( ))j j j m jF u y u v u y du = − − −  

where ( ) max( , ( , ))j j j jz v v w z =  and jy  is determined by ( , ).j j j jv v w y=   

 

Proof of Lemma 1: 

Consider first the proof of (i). Let J  and J denote the ex-ante and ex-post choice given that the ex-ante 

and ex-post utility levels of the chosen alternatives are equal. Let F be the joint c.d.f. of 
1 2( , ,..., ).m    

For notational convenience, let ( , )r r rU U w y=  and ( ) ( , ).r r rU Y U w Y=  We have that 

      {1,2} 1 2 2 1{ 1, 2} {max ,max ( ) ( ) }.r r r rJ J U U U Y U Y U = =    =
 

 

For alternative 1 to be the most preferred alternative ex-ante and alternative 2 the most preferred alter-

native ex-post, one must have 2 1 2( ) .U Y U U=   Hence, we must have that 2.Y y  Furthermore, since 

alternative 2 is the most preferred one ex-post, 2 1( ) ( ),U Y U Y  which implies that 1 1( )U Y U  and 

1.Y y  Accordingly, the event { 1, 2}J J= =  has positive probability only if 1 2.y y  Moreover, the 

event 2 1{ ( ) }U z U=
 
implies that 1 1 2 1{ ( ) , }.U z U U U 

 
Accordingly, the relation above yields 

 {1,2} 1 2{ 1, 2, } {max max( , ( )) ( )}.r r rJ J Y z U U z U U z= = =   =  

Thus, the corresponding probabilities are therefore given by 

 1( 1, , [ , ), ( ))P J J k Y z z z U u,u u= =  +   +   

1 2 2 1(max ,max ( ) ( ), ( , ), ( , )) ( )r r r rP U u U Y U Y Y z z z U u u u o u =    +   +  +   

 1 2 2 2 1(max ,max ( ) , ( ) ( ), ( , )) ( )r r r rP U u U z u U z u U z z U u u u o u =     +   +  +   

{1,2} 2 2 1(max max( , ( )) , ( ) ( ), ( , )) ( )r r rP U U z u U z u U z z U u u u o u=    +  + +   

{1,2} 2 2 1(max ( ( ) ) , ( ) ( ), ( , )) ( )r r rP z u U z u U z z U u u u o u = +    +  + +   
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 1 1 2 2 3( , ( , ), ( ),..., ( ))mF u v u v w z u z u z u = − − − −    

1 1 2 2 3( , ( , ), ( ),..., ( )) ( )mF u v u v w z z u z u z u o u − − − + − −  +   

12 1 2 2 3 2( , ( , ), ( ),..., ( )) ( ) ( ) .mF u v u v w y u z u z v z u+o z u = − − − −      

This proves (i) of Lemma A1. Consider now the second part (ii). We have that 

 (max max ( , ) , )r j r j r j r r jP U U U w Y du Y y    =  

 (max max ( , ) )r j r j r j r r jP U U U w y du =     

 (max ( ( )) )r j r r j j jP y v du  = +  +   

 
1( ( ),..., ,..., ( ))j j j m jF u y u v u y du, = − − −  

which proves the second part. 

               Q.E.D. 

  

Lemma 2 

 Let 
1 2, ,..., ,mb b b  be positive constants and 1 2( , ,..., )mF x x x  a multivariate c.d.f. defined on 

mR  

that possesses a p.d.f. Assume that F satisfies the partial differential equation 

 
1 2 1 2

1 2

( , ,..., ) ( , ,..., )
( , ,..., )

m j m k
j m

kj k

F u x u x u x b F u x u x u x b
P x x x

x x

 + + +  + + +
=

 
   

for some positive function 
1 2( , ,..., ) (0,1),j mP x x x   defined on .mR  Then F must have the form 

    1 1 2 2

1 2( , ,..., ) ( ( , ,..., ))m mb xb x b x

mF x x x G e e e −− −
=   

where : (0, ) [0,1]  →  is a strictly decreasing function and 
1 2( , ,..., ) :[0, ) [0, )m

mG z z z  →   is a 

strictly decreasing and linear homogenous function. In other words, F is a multivariate extreme value 

c.d.f. (Resnick, 1987). 

 

Proof of Lemma 2: 

Assume first that 1jb =  for all j. By applying the method of Lagrange for solving partial differential 

equations (Sneddon, 1957), the first stage is to solve the differentical equation  

    j

j

du
P

dx
=   

which yields  

(A.1)    
1 2( , ,..., )j m ju Q x x x C− =   

for all j, where /j j jQ x P  =  and 
jC  is a constant. The equation in (A.1) implies that  
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1 2 1 1 2 1 1 1 2( , ,..., ) ( , ,..., ) ( , ,..., ) .j m m j m jQ x x x Q x x x C C Q x x x c= + − = +   

Then it follows that the solution of the differentical equation in Lemma 2 in this case must satisfy 

1 1 2 1 2( ( , ,..., ), ( , ,..., )) 0j m mu Q x x x F u x u x u x − + + + =  for some arbitrary continuously differentia-

ble function   in two variables. The latter equation implies that  

(A.2) 1 2 1 1 2( , ,..., ) ( exp ( , ,..., )).u

m j mF u x u x u x e Q x x x −+ + + =   

for some suitable positive and continuously differential function [0,1].j   Evidently, 
j  must be 

strictly decreasing and independent of j because the left hand side of (A.2) is a c.d.f. that is independent 

of j. With no loss of generality we can rewrite (A.2) as  

(A.3) 1 2

1 2( , ,..., ) ( ( , ,..., ))mxx xu

mF u x u x u x e G e e e −− −−+ + + =  

where 
1 2 1 1 2( , ,..., ) exp ( log , log ,..., log ).m mG z z z Q z z z= − −  Eq. (A.3) implies that  

 1 2 1 2( ( , ,..., )) ( ( , ,..., ))m mu x xu x u x x xuG e e e e G e e e − − −− − − − − −−=  

which yields  

  1 2 1 2( , ,..., ) ( , ,..., )m mu x xu x u x x xuG e e e e G e e e
− − −− − − − − −−=  

and thus establishes linear homogeneity of G. Furthermore, we realize that in the general case the partial 

differential equation in Lemma 2 with 1jb   must have the solution  

 1 1 2 2

1 2( , ,..., ) ( ( , ,..., )).m mb xb x b x

mF x x x G e e e −− −
=  

          Q.E.D. 

   

Proof of Proposition 1: 

Note first that  

  ( , )j je w u y    ( , ) .j j jv w y u+    

Let , 1,2,..., ,ky k m=  be positive real numbers. Then the relation above implies that 

  1 1 1 2 2 2( ( , ) , ( , ) ,..., ( , )m m mP e w u y e w u y e w u)> y    

  1 1 1 1 2 2 2 2( ( , ) , ( , ) ,..., ( , ) ).m m m mP v w y u v w y u v w y u  = +  +  +   

Accordingly,  

(A.4)  ( ( , ) ) (max ( ( , ) ) )k m k k kP e w u y P v w y u = +   

  1 1 2 2( ( , ), ( , ),..., ( , ))M MF u v w y u v w y u v w y= − − −  

and 

(A.5)  ( ( , ) , ( , ) ) (min ( , ) ( , ) )k m k k j jP J w y j e w u dy P e w u e w u dy=  = =    
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1 1 2 2 2( ( , ), ( , ),..., ( , )) ( , ) .j m m j jF u v w y u v w y u v w y v w y dy= − − −  

From (A.4) and (A.5) it follows that 

 (A.6)     
1 1 2 2 2

1 1 2 2 21

( ( , ), ( , ),..., ( , )) ( , )
( ( , ) | ( , ) ) .

( ( , ), ( , ),..., ( , )) ( , )

j M m j j

m

r M m r jr

F u v w y u v w y u v w y v w y
P J w y j e w u y

F u v w y u v w y u v w y v w y
=

 − − −
= = =

 − − −
 

Since the choice probability ( ( , ) )P J w y j=  is independent of u it follows from Lemma 2 with 

2( , )j j jb v w y=  that F must have the form 

            1 1 2 2

1 2( , ,..., ) ( ( , ,..., )).m mb xb x b x

mF x x x G e e e −− −
=  

But since F is the joint c.d.f. of the vector of random error terms Assumption 1 implies that 

2( , )j j jb v w y=  must be a constant, independent of j. 

           Q.E.D. 

Let 
jy be determined by ( , ) ( , ).j j j j jv w y v w y=  That is, 

jy  is the ex-post income that en-

sures that the deterministic parts of the ex-ante utility and ex-post utility of alternative j are 

equal. If alternative j belongs to the ex ante choice set but not the ex post choice set, we define 

.jy =   If alternative j belongs to the ex post choice set but not the ex ante choice set, we define

0.jy =  

 

 

Lemma 3 

Under Assumption 1 the Hicksian (compensated) choice probability of changing from 

alternative j to alternative k is given by3 

(A.7)  1 2( , ) ( ( ), ( ),..., ( )) ( , )

j

k

y

H
jk m k k

y

Q j k H z z z v w dz  = −  

when ,k j  j, k > 0, ,j ky y  where ( ) max( ( , ), ( , ))r r r r rz v w y v w z =  for all r. Furthermore, when  

j = k, then 

(A.8)  
1 2( , ) ( ( ), ( ),..., ( )).H

j j j m jQ j j H y y y  =  

When j ky y , j k ,   j, k > 0, then ( ) 0HQ j,k .=   

 

                                                      

3 There is an error in the corresponding formula for ( , )HQ j j  in Theorem 4 in Dagsvik and Karlström (2005). 
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Lemma 3 implies that ( , ) 0HQ j k =  when ,j j r rw w w w =  for , ,r j k  .k kw w  Suppose 

that *( , ) ( )r r r rv w y v y w= −  for all r where *

rv  is an increasing function. Then, under the assump-

tions of Theorem 1 it follows that for ,j k   

 
1 2( ( ), ( ),..., ( ))

( , )

j

k

y

j mH

ky

H z z z dz
Q j k

w

  
=

     and ( , ) ( , )H

jQ j j w y=  

when .j ky y  Thus, we realize that the integrand of the integral in the expression for ( , )HQ j k

in this case can be obtained from the Marshallian choice probabilities as functions of the deter-

ministic functions { ( )}.r z    

 Lemma 3 has originally been derived by Dagsvik and Karlström (2005). In this paper 

we provide a simplified proof given in the appendix. Note that ( , )HQ j j  given in (A.8) has the 

same structure as a choice probability, namely the probability of choosing alternative j when 

the utility of alternative j equals ( ) ,j jz +  j = 1, 2, …, m. 

. .  

Proof of Lemma 3:   

From Lemma 1(i) (with the same notation as in Lemma 1) it follows that 

(A.9) ( , , [ , ))P J j J k Y z z z= =  +   

 2 1 3( ) ( ( ),.., ( ), ( ),..., ( )) ( ).k k jk k k mv w ,z z F u z u v w ,z u z u z du +o z  


−

 =  − − − −    

Furthermore, we know that  

 1 2 1 2( , ,..., ) ( max ( )) ( , ,.., ) .j m j j r r r j mH v v v P v v F x v x v x v dx 


−

  + = + = − − −   

Evidently, differentiation under the integral above is allowed in this case, which yields that  

            
2 1 2 3( , ) ( ( ), ( ), ( ),.., ( ))k k jk k mv w z zH z v w ,z z z   −   

 2 1( ) ( ( ), ( ),.., ( ))k k jk k k mv w ,z z F x z x v w ,z x z dx 


−

 =  − − −   

 ( 1, , [ , )) ( ).P J J k Y z z z o z= = =  +  +   

Furthermore, since alternative 1 is chosen ex ante and alternative 2 ex post it must be the case that 

( , ) ( , )j j j jU w y U w Y  and ( , ) ( , )k k k kU w Y U w y  implying that ( , ) ( , )j j j jv w y v w Y  and 

( , ) ( , ).k k k kv w Y v w y  Hence, it must be true that the probability in (A.9) wanished unless 
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.k jy Y y   By integrating (A.9) with respect to z between ky  and 
jy  yields (A.7). The relation in  

(A.8) follows from Lemma 1 (ii).  

                                     Q.E.D. 

 

Proof of Theorem 1: 

By assumption ( )r rv w ,y  is strictly decreasing in prices and strictly increasing in income. Let the price 

of alternative j increase from jw  to 
j j jw w w= +  where jw  is small and positive. Then, ( )j jy w y  

and ry y=  for .r j  Hence, it follows from Lemma 2 that ( , ) 0HQ r j =  for .r j  Furthermore, from 

the definition of ( )jy u  it follows that ( , ( )) ( , )j j j jv u y u v w y=  for any given real u. By implicit differ-

entiation of the latter equation with respect to u yields 

(A.10)  
1 1

2 2

( ) ( , )
.

( , )

j j j j j j

j j j j j

y w y v w y v

w w v w y v

  
= = − = −

  
 

where ( ).j j jy y w=  Since ,jy y  max ( ( , ), ( , )) ( , )r r r r r j r r jv w y v w y v w y=  and we get from Lemma 2 

and (A.10) that 

(A.11)     
1 1 2 2( , ) ( , ) ( ( , ), ( , ),..., ( , ),.., ( , ))H H

j j j j j j j m m j

r

Q r j Q j j H v w y v w y v w y v w y  − = − =   

     
1 1 2 2( ( , ), ( , ),..., ( , ))j m mH v w y v w y v w y−  

        1 1 2 2 2

( )
( ( , ), ( , ),... ( , ),.., ( , )) ( , ) ( )

j j

jr j j m m r r j j

r jj

y w
H v w y v w y v w y v w y v w y w o w

w 


 =  + 


       

1 1 2 2 1

1 1 2 2

2

( ( , ), ( , ),..., ( , )) ( , )
( ( , ), ( , ),..., ( , )) ( )

( , )

j m m j j

jj m m j j

j j

H v w y v w y v w y v w y
H v w y v w y v w y w o w

y v w y

  
= −  +  

 
         

1 1 2 2 1 1 2 2 1

2

( ( , ), ( , ),..., ( , )) ( ( , ), ( , ),..., ( , )) ( , )
( )

( , )

j m m j m m j j

j j

j j j

H v w y v w y v w y H v w y v w y v w y v w y
w o w

w y v w y

   
= −   + 

 

  
1

2

.
j j j j j j

j j j j

y v

w w y w v y

       
= +  = − 

    
  

Since 

  
0

( , )
lim

j

HH

jj r

w
j j

Q r j

w w

+

 →

 −
=  

   


 

the first part of the theorem follows from (A.11).  

 Consider next the corresponding cross price effects. That is, we consider the marginal compen-

sated effect on k  when .k j  We have that ( , ) 0HQ r k =  for r j  and ( , ) 0.HQ j k   From Lemma 2 

we obtain that 
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(A.12)          

( )

1 1 2( , ) ( ( , ),.., ( , ),.., ( , ),.., ( , )) ( , )

j jy w

H
jk j j k k m m k k

y

Q j k H v w x v w y v w x v w x v w x dx = −   

which together with (A.10) imply that  

(A.13)       
1 1 2( , ) ( ( , ),..., ( , )) ( , )( ( ) ) ( )H

jk m m k k j j jQ j k H v w y v w y v w y y w y o w = − − +      

        =
1 1 2

1

( ( , ),..., ( , )) ( , )( ( ) )
( )

( , )

k m m k k j j

j

j k j

H v w y v w y v w y y w y
o w

v w y w

  −
− + 

 
   

        
22

1 2

( ) ( , )( , )
( ) ( ).

( , ) ( , )

j j j k k jk k k k
j j

j j k j j j k

y w w v w y wv w y
o w o w

w v w y w w v w y

     
= −   +  =  + 

   
     

Furthermore, it follows that 

(A.14)  ( , ) .H
kQ k k =   

From (A.12) and (A.13) it thus follows that  

 2

0 0
2

( , ) ( , ) ( , )( , )
lim lim .

( , )j j

H H H H

k k k k k

w w
j j j j j k

Q j k Q k k v w yQ j k

w w w w v w y

  +

 →  →

   + − 
= = =  

      

  

 Consider next the case where jw is negative. Then it follows that jy y  so that

( ) ( )r j r ry v w ,y =  implying that ( , ) .H
jQ j j =  From Lemma 3 we get that  

    1 1 2) ( ( , ),.., ( , ),.., ( , ),.., ( , )) ( , )( ( )) ( )H
rj j j k k m m j j j j jQ (r, j H v w y v w y v w y v w y v w x y y w o w = − − +   

      1 1 2( ( , ),.., ( , ),.., ( , )) ( , ) ( ) ( )rj j j m m j j j j j jH v w y v w y v w y v w y w y w o w  =  +    

      
2 1

1 1

2

( , ) ( , )
( ( , ),.., ( , ),.., ( , )) ( )

( , )

j j j j j

kj j j m m j

j j

v w y w v w y
H v w y v w y v w y o w

v w y

 
= −  + 


 

     1 1 1( ( , ),.., ( , ),.., ( , )) ( , ) ( ).kj j j m m j j j jH v w x v w y v w y w v w y o w = −  +   

Consequently, we obtain that  

 ( , ) ( , )H H
j

r r j

Q r j Q r j


− =    

 1 1 1( ( , ),.., ( , ),.., ( , )) ( , ) ( )rj j j m m j j j j

r j

H v w x v w y v w y w v w y o w


 = −  +   

 1 1 1( ( , ),.., ( , ),.., ( , )) ( , ) ( )kj j j m m j j j j

k j

H v w x v w y v w y w v w y o w


 = −  +   

 ( ) ( )
jk

j j j j

k j j j

w o w w o w
w w






= −  +  =  + 

 
   

which implies that  
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  .

H
j j

j jw w

  
=

 
  

We also have that ( , ) 0HQ j k =  when ,k j  and that 

 1 1 1 1 1 1( , ) ( ( , ),.., ( , ), ( , ), ( , ),..., ( , )).H
k j j j j j j m mQ k k H v w y v w y v w y v w y v w y− − + +
=   

Therefore, we get that 

   ( , ) ( , )H H
k k

r

Q r k Q k k − = −   

 1 1( ( , ),.., ( , ),..., ( , )) .k j j m m kH v w y v w y v w y = −    

By first order Taylor expansion the last expression becomes    

 1 1 2 2 1( ( , ), ( , ),..., ( , )) ( , ) ( ) ( )
k j

kj m m j j j j j

j

w
H v w y v w y v w y v w y w o w o w

w

 
   +  = + 


 

which implies that 

  .
H

k k

j jw w

  
=

 
          

                Q.E.D. 

 


