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Introduction

The theoretical basis for tests of composite hypotheses is presented
in most textbooks of mathematical statistics. As applied to the coefficients
of a regression equation these results can be stated quite elegantly for the
general class of linear hypotheses (i.e. where the n regression coefficients
satisfy k € m linear equations). The main problem is that the methods are
not applied in many cases where they are clearly called for. Often a set of
binary variables is introduced into a regression to represent some qualitative
factor. If one asks whether this factor has a significant influence on the
dependent variable the answer can only be given by a composite test. The
errors estimated for the coefficients of individual binary variables are not
very interesting in this situation. Again, one may be confident that either
x and x2 both appear in a regression or they are both absent. In this case
also, a composite test is needed. Still another situation which require a
composite test arises from hypotheses that some or all coefficients of an
equation estimated from one sample are equal (in the vector sense) to a similar
set of coefficients estimated from a different sample. Of course all these
examples can be fitted into the framework of general linear hypotheses and
pressed through the general test procedures. But it is often possible to
define and calculate identical tests in terms of magnitudes that are both
easier to understand heuristically and easier to calculate.

This note explains the simplifications which can be made for a large
class of composite tests. While not as inclusive as the class of all linear

hypotheses, it contains enough recurrent problems to be worth special attention.

The General Theory

First a brief review of the test of a general linear hypothesis. (This
discussion depends heavily on A.M. Mood, Introduction to the Theory of
Statistics, pp 301-307.)

The regression model is:

(1) y = alxl + 8%, + eeee + anxn + u

f(u) = N(0, OE)' (Assume for the present that all variables are

measured as deviations from their means.)



The null hypothesis is:

o
C118'1+c12a2+ ”"+clnan = bl
c..a. + a_. + +c.a = bo
2171 T Co2% T ot T ¥ TP
(2) |
o
= <
oklal + ckza2 + ceee + Cknan bk s k<n .

Or in matrix notation: Ca = bo.

This null hypothesis can be viewed as a set of k linear constraints on the
coefficients of (1) or they can be viewed as defining equations for a new set
of k parameters (call them boyi=1,2.... k) which are, by null
hypothesis equal to b_fL’, i=1,2 .... k. If the constraints in (2) are
ignored +then the b's defined by b = Ca are simply a particular transformatim
of the a's., If model (1) is estimated from a sample the estimates of the a's,
2 (a column vector), imply a set of estimates for the b's, call it o = C& .
The test of the null hypothesis amounts to an evaluation of the probability of
the deviations, b - b°, if the null hypothesis is true. Since the new para-
meters are linear functions of the a's, the estimated variance - covariance
matrix for the 's can be derived simply from the one for the &'s. ILet X
denote the Txn matrix of observed values of the xi’s and Y denote the Tx1
vector of observed values of y (y and the x's are measured from their
respective sample means). The variance - covariance matrix for the 8&'s is
estimated by (X'X)“lsi and the estimated variance - covariance matrix for the

8's 1s [0(x'x)-1cY 52 , where:

Y1y - vIx(x'x) Iy
T =-=n -1

sﬁ = £ $2/(T-n-1)

The familiar, and classical, procedure for testing a hypothesis about
a normally distributed statistic, say z, is to form the ratio: (z'-zo)/ s, =
"t", where z° is the hypothesised value of z and s, is the estimated
standard error of 2z. This procedure yields a statistic which is distributed
as "t" under the null hypothesis and can be tested against critical values
from published tables. It is also the case that a "t" distributed variable
when squared has the F distribution with one degree of freedom in the

"numerator" and as many degrees of freedom in the denominator as has the



corresponding "t". The critical values of F in the one degree of freedom
case can be seen in published tables to be equal to the square of the
corresponding critical values of "t". If the statistic above is squared

it can be written:

mcn2 - Fl = (z - zo) (si)_l (z - zo).

In the composite test, of which the simple test above can be viewed

as a limiting case, the F~test statistic can be written:s

(% - v°)! [c(x'x)‘l c'sﬂ -l(B - 1v°)

k

(3) B, =

By this argument the F-test is seen to be a straight-forward k-variable
analog of the familiar "t"-test with loss of information about the signs of
the deviations from hypothesis (as a consequence the crifical values of T
correspond to equivalent two-tailed "t" tests).

The same test statistic is more commonly written as:

| = (& - v°) [C(X'X)'lcil -1(13 - v°)
(4) B, = 32

In this latter expression the quadratic form in the numerator measures
the difference in the rosidual sum of squares (in the dimension of the
dependent variable) between the unrestricted model (1) and the restricted model
where the coefficients are required to satisfy (2). This portion of the sum of
squares is divided by k, th2 number of degrees of freedom lost by satisfying
(2). The resulting mean square is then compared in ratio with the mean square
residual from the unrestricted equation. Looking at the statistic in this way
brings out the analogy with the F-ratios used in more simple analysis of

variance problems.

A Special Case

Consider the special case where the null hypothesis is simply that
a; = Oy i =n-k+1l,n-k+2 ... n. In terms of the general linear
hypothesis +this amounts to specifying =0, and C = [b, Ié]’ where Ik is

the k-rowed identity matrix and is preceded in C by n-k columns of k zeroes.



Straight-forward evaluation of F, involves inverting a k x k matrix

(the lower-right k x k partitioi of (X'X)~1) and calculation of a quadratic
form. Since that quadratic form measures, finally, the difference in residual
sum of squares between the restricted and unrestricted models, why not evaluate
that difference by re-estimating equation (1) with the last k variables left
out? This crude-but-effective expedient yields the same sum of squares plus
a bonus in the form of estimates of a, i=1y2 .... n=ky, i.e. the estimated
parameters where the null hypothesis is assumed to hold. The procedure for
carrying out the test mentioned above can be summarized simply:

1) estimate the unrestricted model: ¥y o=ax + ay%, + eee + a X, + U,

and evaluste Z8° (sum of estimated squared residuals).

; ; . = ! 1 1
2) estimate the restricted model: y alXy +ahk, + e.o b Bl X o+
a2
and evaluate Z4° .,
A
Zuz— Zﬁz T «=n -1
3) evaluate F = .
k T-n-1 Zu2 X

If each of the sums in the expression for F is divided by 2y2 (remember

that y is measured from its mean) then F can be written simply as:

(L-R®) -(1-8) T-n-1 _ R -R% T-n
(1 - R%) K 1 - ®? X

(5) F

where R' and R are the multiple correlation coefficients in the restricted
and the unrestricted model respectively. In some cases this form may be more
convenient.

If k is very small relative to n the more general procedure may be
more economical, particular if the work is to be done on a desk calculator.
On the other hand if the estimation of the unrestricted model is carried out
on a desk machine most calculating schemes permit evaluation of the sum of
squared residuals at any stage of the one-variable-at-a-time reduction process.
It is possible to have the same intermediate information provided by a high-
speed computor since they usually use similar algorithms. But even without
that feature the cost of re-estimation of the restricted equation is not very
large, a major consideration is that the same program can be used for both
the restricted and unrestricted equations. Moreover the lengthy calculation

of moments does not have to be repeated.



The following mathematical argument establishes the equivalence
between the general test procedure and the procedure suggested for the special
case discussed above.

Iet the matrix of observations on the X, X, be partitioned into
l}l, Xé}, where X contains the first n-k varlables and X2 the last k. The
vector of estlmated coefficients, &, is conformably partitioned into f}.

Let Y denote the T x 1 vector of observed values of y (measured'™ a2

from the mean of y). The unrestricted a's are estimated bys

- -1 -
a ! i !
2 xlxl XX, xlﬂ
. = o 9 and
! ! !
32 X2X1 X2X2 X2Y
— . .
R
) ) XlY
£0° = Y'Y - [_éi’ aé] .
: !
X2Y
If 8, = O is assumed to hold in the restricted equation then
the last k wvariables can be ignored and the estimates for a, are simply:
8 - (xx)Vrwy, and
1 11 1
282 - y'r- Ay .
11
PN &'2 2 . .
The difference, ZIU'" - ZQ", is evidently measured by:
= (A1 o & t ty !
Q = &g 31) XlY + a2X2Y .
Now let M, = - X (X )'l 1;1, (a T x T matrix) and
B = (X ) 'X2 y (an n-k x k matrix).

With these definitions it is easily verified thats

- -1 -1 -1 -1

1 ! ! ! 1 - !

XX, XX, (xlxl) + B(XZM:LXZ) B!, B(Xlexz)
-1 4 -1

[ 1 - / !

XX, XK, (Xé’M X ) ) (X2M1X2) .

Using this inverse +he unrestricted estimates can be written:

¥ i - 1 -1 1 A _ o 24
8 31 B(XMX,)™" (XQY) 8, - 3B &,
= == ’
A 1 - 1 ~
8, (XleXz) (x 1 Y) a,



-1
s v o Ryt = v oo v ' 1
since X2Y B XlY X2Y xle(xlxl) XlY

-1
= ! - 1 !
XZ(I Xl(Xlxl) Xl) Y

- Xy

Consequently, @1 - ﬁl = = Bﬁz and
- - 2RIY! Aty t
Q = -&BWY + A

= a;_(XéY - B'X]’_Y)

= Ay - Xéxl(xixl)'l X1¥)
ot

= 81(xJX)) 8, .

In this final form Q is shown to be equal to a quadratic form involving
the estimated coefficierts of the last k variables and the inverse of the
lower right-hand k x k partition of the inverse matrix (ef+ numerator

of (4) ).

Adaptation of the special case

The preceding section explained a simple device for evaluating
the composite hypothesis that a set of coefficients are all equal to zero.
That case is a common one although it is probably used more often than is
Justified. A slightly more general case can be handled almost as easily.
Consider the null hypothesis:

a = b i=n-k+1, n-k+2,....,n-

o)

1 i’

I.e. the last k coefficients in the regression equation are hypothesised

to be equal to a given set of numbers (b's). This case can be turned into
the earlie. one u, transforming the dependent variable according to:

n 0
Yy, = y- Z (x104)
i=n=k+1 17
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In terms of this transformed variable the equivalent hypothesis holds that
the coefficients of the last k variables are equal to zero and the test
procedures outlined above can be applied. The transformation can be made
either before or after the moments are computed depending on convenience.
(The dependent variable need not be transformed for the unrestricted equation
since the sum of squared residuals will be the same for y as for Yo but
of course RZ will be different.)

As another example consider the hypothesis that the last k
coefficients are equal, i.e. :

seceoe = a ]

®nktl T Cnke2 T n
For this hypothesis define a new variable:

n

X = % .
n+l femoiel b

Then compare the estimated residual sum of squares from the regression models:

n .
vy = i£1 a;x, + u (unrestricted)
and
n~k \ :
- { .
y = iil alx, + &l .x . + u (restricted)

It is trivially true that any general linear hypothesis can be turned
into what is here called a special case by a suitable linear transformation
of variables. The main point of the discussion above is that in many useful
cases the transformation is quite simple and provides a practical alternative

to the general procedure.

A Digression on "Constant Terms" in Regression Models

Regression analysis is commonly treated as a special branch of
statistical analysis having to do with relations among variables. A logical
desire to separate analysis of the relation between variables from the
question of the absolute level of the variables has given rise to a convention
of measuring variables from an origin chosen to coincide with the mean value
of the variables involved. This convention is usually applied in the computing

algorithms for obtaining estimates as well as in the theory. Typically
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the "normal equations" are written in terms of the sums of squares and products
of variables measured from their means. As a second step the so-called
constant term is estimated by the additional condition that the regression
surface must pass through the point representing the mean of all variables.
This second step must be paralleled by a special procedure for obtaining the
estimated sampling error of the constant term if that is needed.

This special treatment of one of the parameters in the model is not
dictated by any mathematical or statistical necessity. If a '"wariable" which
always takes the value 1 (this does stretch the use of language somewhat )
is introduced into the regression equation having as its coefficient what is
usually called the constant term, it is then obvious that the "“constant" can
be treated symmetrically with all other coefficients in the regression. The
normal equations will now be written in terms of the sums of squares and
products measured from zero as the origin and there will be one additional
equation and also one additional term in each equation. If the new variable is
denoted x5 = 1 (call it the identity variable) then all regréssion equations

can be written in the form Za,xi +u . In a limiting case where y = aoxo + U,

i
the estimate of ay is simply ﬁo = Zyy/T =y . Moreover the estimated
sampling error of ﬁo when ordinary regression formulae are used is:
2
z(y-ag)
S = —-——o"— , the ordinary expression for the sampling error of
o) T(T-1)

an estimated mean.

The impression is widesprcad that the constant term and its sampling
distribution are intrinsically different from the other coefficients in a
regression, and that no one is ever really interested in the constant term.

In many cases one may be properly interested in the "“slope" of a relationship
to the exclusion of the "level® but there are cases where the reverse is true.

Consider the model:
y = a+bx +u

where b is the parameter of primary interest and wu is distributed with
zero mean but a variance which is proportional to x2 (u is hetero-scedastic).

The model:

y/x = a(l/x) +b + uk

is equivalent to the other model except that now the residual, u/x,; is homo-
scedastic and therefore the parameters can be estimated more efficiently.

However b remains the parameter of interest and now it appears as the constant
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term. Apparently even if one is only interested in slopes, he may sometimes
need to know the sampling error of a nominal constant term.
Besides permitting symmetrical treatment of all parameters in the

regression equation, the introduction of x., facilitates the development of

regression analysis as a generalization frog the case of a variable distributed
with a constant mean to the case of a variable with a shifting mean. Altern-
atively the constant mean case can be treated as a special case of regression
analysis.

What is more important, all the foregoing discussion of composite tests
can be re~-read dropping the assumption that all variables are measured from
their means if the identity variable is added to the list of variables in the
model. The constant temm, ays is just like all the other parameters and can
be tested (or not tested) jointly with other parameters. No special treatment
is required. With the introduction of the identity variable it becomes easier
to present, in the next section, some further adaptations of‘the testing
procedure .

In situations where the sample means for the x's have a broader
significance, as they would if the sample were drawn by some random process
from a stable population, there is some sense in treating the "“constant term"
asymmetrically. Or, it may be more convenient to do so when, for example,
the estimates are used to form conditional prediction intervals. It may be

useful, in such cases, to transform the estimated equation of conditional

expectation:
A A ~ A
= e 000 +
y dg%, + 8%, + azxz + 8%,
into the alternate form:
A — — A — A —
§ = 5 +’é,l(x1-xl) + a2(x2-x2) F oeeee + an(xn xn) )

where ¥, §i, 35 cene §£ are the sample means.,

The variance - covariance among the ﬁi, i=1y2y o+seynny are the same for both
forms, the estimated variance of ¥y is simply Sﬁ/T!, and the Cov ( ¥, ﬁi) =
0, i=142, euss n. While this form may often be useful as a convenience, it
should not be allowed to obscure the basic symmetry of all parameters in

the equation of conditional expectation.
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Some Further Adaptations of the Special Case of the Linear Hypothesis

Consider the problem of testing the hypothesis that the same regression
model holds for two distinct sub-populations given a sample from each population,
On the assumption that the error variance, 06?’ is the same in both populations
the test can be carried out in a simple manner by adapting the techniques set
out above. The "unrestricted" model for the combined sample (all coefficients

are allowed to be different for the two sub-samples) can be writtens:

n n
(6) v = 4, Z a,.x. + d, I a, . X, + U
li:O ili 2i=O i27i
where dl and d2 are binary variables defined according tos
-_?1 ' d2 take values
1 0 for members of the first sub-sample, and
0 1 for members of the second sub-sample.

(Note that the indentity variable, X is now included in the model and so

the variables no longer need be measured as deviations from means.)

A trivial transformation of the model above provides:

n n
y = iEO 8% * 4, iEO (aiz - ail)xi + U .

In this form the null hypothesis can be stated as:
(aiZ-ail)=bi=o’ i=O’ 1, 2,....,11.

It is now obvious that the M"restricted" model can be estimated from the combined

sample by fitting:

n
- 1 t
(1) v = iZ alx, +u

The “restricted" sum of squares is Zﬁ'z. The "unrestricted" sum of squares,

Zlﬁz, can be evaluated most easily by fitting:

n
y = iio a; 1% + uy to the first sub-sample, and
: to th d sub 1

Yy = iio ai2xi + U, o the second sub-sample.

A2 2 A2
Then ZIU Zﬁl + Zu2 .
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Recapitulating, the procedure for testing the difference between two

sample regressions is:
n
l, Fit the model y = I a,x, +u to:
i=0 + 4
a. the T; observations from sub-population 1 (this yields

Zﬁ% with T,-n-1 degrees of freedom)

1
b. the T, observations from sub-population 2 (this yields
Zﬁg with T,-n-1 degrees of freedom)

c. the T;+T, observations in the total sample (this yields
zQ'2 with Tla-Tz-n-l degrees of freedom).

2. Form the test statistic:

"l A2 A2
1= . - - -
F=Zu Zul 23u2.Tl+’l‘2 2n 2
Zﬁi + Zﬁé n+1

(Note that for the limiting case of n=0 this expression is equal to the
square of the "t" test statistic for the difference between two sample means
given that they come from populations with equal variance.)

It is clear how this procedure can be extended to cases where more
than two population regressions are compared.

The restricted and unrestricted models above represent two extremes,
either all n+ 1 coefficients are the same or all are different. There are
a large number of intermediate models between these extremes in which some
coefficients are allowed to differ and some are not. It will be instructive
to examine one of these intermediate models. A commonly encountered one is
where all the "slopes" (ai, i=1y 2ye4.4y n) are required to be the same for

both sub-populations but the intercept (ao) is allowed to differ, i.e.:

n
= " L]
(8) ¥y dlablxo + d2a02x2 + iii aixi + u
Rewritten in the form:
) ' ) n 1
(8a) ¥ = apxg + (agy =8y ), + AL T

the model is easily recognized as the case of a "dummy" or binary variable
providing a shift in the level of the regression surface for members of
population 2. Given Zﬁﬁ'z evaluated from this model the following hypotheses

can be tested:
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1. The hypothesis that the "intercepts" are different under
the assumption that the "slopes" are all the same can be tested
by a comparison between £G'"2 and z%'? (i.e. the hypothesis
that (a02 - a01) = 0 which can also be tested by a simple

"M test on the coefficient of the binary variable in (8a)).

2. The hypothesis that all "slopes" are different under the assumption
that the "intercepts" are different can be tested by a comparison

between Z{"?2 and (2.

Each of the intermediate models can be compared in a similar way with
the extreme models or with other intermediate models. Each such comparison
involved a different hypothesis and implies a particular choice of restricted
and unrestricted sub-spaces in the total parameter space. It is not the case
that any pair of models formed by placing restrictions on (6) can be properly
compared. To be valid the more restricted model must contain all the
restrictions present in the less restricted model plus some additional ones
(i.e, the more restricted sub=-space must be wholly contained in the less
restricted sub-space). There are computational shortcuts available for
estimation of the intermediate models. These shortcuts are particularly heip;-
ful when more than 2 sub-populations are being compared. For a thorough
discussion of these shortcuts see "On a Class of Regressions using Binary or
'"Dummy ' variables" by H. Watts (Memorandum of the Oslo University Instituie

of Economics).

On the Use of R2 in Regression Analysis

Most elementary statistical textbooks, in a chapter on regression and

correlation, define a statistic R, (or R2), which is called the coefficient of
multiple correlation (determination). One formula for this statistic is:

A A A 2
:(y - By = Bgx) = eeee - anxn)

Rz-x x by = 1- 2
VR 2@y - 7)

The corresponding R is simply the positive square root of this expression.
A common locution for explaining the meaning of R2 is: '"“the proportion of
the variance of y which is 'explained' by the regression on the x's".

On the other hand, a model of normal linear regression is completely

specified by the coefficients (ai's) in the equation of conditional expectation,
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E(y) = La,x, s together with the conditional variance, 052,. It is evident
that R or Rg is not necessary for specifying a regression model. Indeed
it is impossible to associate a value of R2 with a specific regression model
for the simple reason that, in the absence of information about the distribution
of the x's, the unconditional or marginal variance of y cannot be inferred.
R can be made as large (small) as desired by choosing x's which make the
sample variance of y sufficiently large (small),

Even with a given set of values for the x's (or with a given
distribution), triviel changes in the statement of a regression model can

effect the value of RZ. Consider the models:
8. Y o= agXy t agx; + U, f(u) : ¥(0y0~) , and

b. y o+ kx; = agxy + (al-l-k)xl + u, f(u) : N(0,0=)
For all intents and purposes the two models are equivalent for any specified
value of k. With a given sample the two models yield identical estimates of
the parameters a

0
predictions of y. However by choosing |k| sufficiently large, R? can be

’ al, and o=. Either can be used for forming conditional
brought arbitrarily close to 1. Similarly, as k is brought close to ays
R2 approaches O.

It can be protested that the R2's are not comparable between the two
models just discussed and indeed they are not since the "dependent" variable
is not the same in the two cases. But the non-comparability has not been
recognized widely enough. Students, and an occasional scholar, may prefer
a8 regression which sets consumption as a linear function of income over an
equivalent one which places saving (= income - consumption) as a linear
function of income simply because the former typically provides a higher Rz.

The foregoing remarks would almost justify a crash program to stamp
out the use of R2 in regression analysis. Short of taking that drastic step,
it is possible to sharpen this widely used tool. RZ can be interpreted as an
indicator, or index of the closeness of fit of a regression. As an index it
has the desirable property of taking values between zero and one. The extremes
correspond to explanation of none or all of the variation in the dependent
variable. ILike most indices; it does not permit valid comparisons unless
the base of the index is comparable. The base in the case of R2 is the sample
variation of the dependent variablej different R?'s are comparable if the
base is held constant. Within a given sample of observations on y and

xl, x2, x3,..., X » many regression models can be estimated. Of these, the set
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of models which use y as the dependent variable have, by definition, the same
unconditional variance for the dependent varigble and the Rz's for these
models are therefore comparable. The same statement can be made for the set
of models which use log(y) (or 1/y, or y-x2/2). If one wishes to compare
two models which use different dependent variables, say y and log(y),

then he cannot rely on the R2's as usually computed. In this particular
case he must first decide whether he wants to compare the two regressions in
terms of their absolute or percentage deviations. Whichever comparison is
chosen one set of residuals must be transformed into the other basis and
then the mean-square error (or some other criterion)can be evaluated for both
and compared.

A less strict notion of comparability might be invoked to permit
comparisons between samples. It is still essential that the same dependent
variable enter the base but the sample variance of that variable need not be
exactly the same. The sample variance could be different because of sampling
variation in the wu's even if the values for the set of x's is the same for
both samples. A more common case is where the two samples are obtained from
the same population by the same sampling procedure and where there is a
multivariate distribution of the x's (with finite variance) in that population.
In this case the difference in the sample variance of y on account of
different x's can again be attributed to sampling and the Rz’s probably
remain "comparable enough" for rough comparisons. It is in this sense that
continued exposure to a certain kind of sample and basic model or set of models
may establish norms for evaluation of additional R2's of the same type.

The preceding discussion should be sufficient to emphasize the relative nature
of such norms.

The notion of comparability between Rz's should be refined further
in the case where a single sample is involved. The sample consists of
observations on y and x., Xyseees X o Suppose that the following three

0
alternative regression models are estimated from the sample.

) 3
(9a y = 5 a;x, + w
k
(9v) vy = 'EO a;x, + Uy k<n , and
i =
(9) :
9¢ y = ax. + I a.x. + .
O O i=k+1 1 1 u3

The R2's associated with the three models in the given sample can be denoted

R%, R%, and R% respectively.
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R% is necessarily at least as large as the larger of Rg and Rg.

If R2 is interpreted as an index of fit then model (9a) will never produce
a poorer fit than (9b) or (9¢) and will usually fit better. It is possible
t0 test whether the difference between Ri and, say, Rg is larger than can
be attributed to chance. That is equivalent to testing the hypothesis that
the last n-k of the x's make no net contribution to the explanation of ¥
or that their coefficients are all equal to zero. The comparison of R1 and
Rg implicitly refers to a similar tgst on th; variables left out of (9b).
What about the comparison between R2 and R3 ? It meets the requirements
for comparability that were set out earlier but it does not correspond to any
linear hypothesis about the regression coefficients. Yet there is some meaning
to the statement that (9b) fits better than (9c) if Rg > Rg . Probably
one would prefer to use (9b) rather than (9c) for making predictions about ¥
if he were faced with a choice between the two and could not use (9a). But
there is not, at least at present, a theoretical basis for meking a test based

on that comparison.

Multiple-Partial Correlation Coefficients

In line with the discussion of the proper use of R2 in regression
analysis, a recent statistical innovation should be in’croduced.1 Partial
correlation coefficients have long been available for measuring the degree of
association between two variables considered net of the relation each may

have with one or more other variables. Thus can be

y‘Xl/X2X3 200Xy
described as the proportion of the residual variation of y after regression
on  Xps Xzsees; X Which is "explained" by the residual of x; after
regression on Xp» X3 9000y Xy o The ordinary partial correlation can be
defined bys

R2 ~ R + T 2
y'xlxz o .X 'X2X3 oo ox y’xl/x2}(3 .o .Xn (l - R 2 3 .. .x
or 2 } 2
2 ‘X1X2 X .X .szj oo uxn
-xkx.”x 1_¥
y’X2X3 ) -X

1) See "Partial Trace Correlation Theory", Cowles Foundation Discussion Paper
No. 97 (Mimeographed).
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By simple extension define:

g2 - ®°
(10) &2 A b M Y el k42" X
y'xl"z"'xk/ 41 k42 0 1 - Rz. N
DT R T, LR

This statistic can be called the Multiple-Partial Correlation (squared).

It bears the same relation to the ordinary partial correlation coefficient as
the multiple correlation coefficient bears to the simple correlation coefficient.
In terms of the R2's for the three models discussed in the preceding section

two multiple-partial correlations can be calculated. They are:

2 2 2 2 2
R = (RS -RZ)/(1 -RS) = MPR
y’xlxzcon}ck/xk+l)ﬁ{+2-coxn 1 3 3 b'c
2 2 2 2 2
R = (RS -RS)/ (1 -R5) = MPR%]|b
y xk+ixk+2...xn/xlx2...xk 1772 2 |

The discussion of R2 has implicitly assumed that the identity
variable, Xy "belongs; in the regression equation. That assumption is
typically made when R™'s are defined for regression models, If, in line
with the earlier discussion of "constant terms", the inclusion of x., is to

0

be regarded as an open question +then the statistic that is usually called R2

should be written as a multiple-partial correlation, i.e. as:

Rz.x foex o " (by convention) Rz.x iy
A R R A A i AR

Also X, should be added to the list of variables "partialled out" in the
multiple-partial correlations defined above.

It is probably unwise to propose an alteration in the notation for R2
at this time, but the fact that the conventional R2 assumes that X has
been partialled out should be kept in mind. This is of prime importance
whenever models that do not include X, are used. In tgose cases the sum of
squares of y around zero may be used as the base of R~ instead of the sum
of squares around the mean.l

A test of the hypothesis that a multiple-partial correlation coefficient

is equal to zero corresponds to a composite hypothesis that a subset of

1) Estimated residuals in models without constant terms will not, in general,

have a zero mean. Nevertheless, Zuz (not zul - Tifz) is the proper sum

to compare with Zyz.
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regression coefficients is equal to zero. Thus the hypothesis that
MPEﬁkC = 0 corresponds to the hypothesis that a; = Oy 1y 294449 ko It has
been shown earlier that this hypothesis can be tested by computing the test

statistic:
ks PR
F - b ,Cf'So
k,Tnl l_Ri k

By virtue of the definition of the multiple-partial correlation that statistic

can as well be written:

2
MPRblc T-n-1

Tl T T el ,
C

It should be re=-emphasized that the remarks about R2 have relevance
only in terms of the basic regression model where the only random variable is
the "residuwal", u. Since that model has nothing to say about the distribution
of the x's +that appear in the equation for the expected value of y, nothing
can be inferred about the unconditional variance of y in the population.
Consequently R2 (multiple or multiple-partial) has no meaning within the
framework of the model. Nevertheless it is possible to define Rz as a simple
statistic which describes a feature of a sample which does have a specific
set of xi values associated with it. It is questionable whether they should
be computed in applications of the regression model. But if they are, and it
is common practice to do so, then it is essential that they be used sensibly.
R2 can be interpreted as a descriptive index of fit or as the complement of
a standardized measure of the residual variance. As such, if the base of
the index or the basis of standardization is kept in view, they can be of
some use.

The practice of computing R2's probably derives from a superficially
gimilar but distinct model in which y and the x's are jointly distributed
according to some multi-variate density function. In such models the R2’s
have more theoretical significance. Indeed, if the joint distribution is

normal there is & direct theoretical counterpart of sample Rz.
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Test - O - Grams

Within the constraints placed on the use of R2 in regression analysis,
a graphical method is available for representing a group of several comparable
R2's, In a rectangular diagram let the vertical axis be labelled RS and
graduated from O to 1. The horizontal axis is labeled "degrees of freedom"
(n) and is graduated from O to T (see figure 1). On this diagram plot
points with coordinates (n,Rz) where R° is the sample R® for & particular

model and n is the number of coefficients estimated in the model. For

Figure 1

73]

e AAA

0 i ’2 .3 21. é s000c0 e n IREREEY] T—l T

example, point A 4n the diagram might represent the model:

vy = agX, + u (xo is the identity variable so
—2 2 2 2
R =1 -3(yH)/ " = 157/ Iy),

B might represent:

2 2 2
Y o= oagx) +ayx, +u (RB=1-(211' /2y°)), and

AB might represent:

2 2 2
= i 1" n 1n = - "
y = aox0+alxl+azx2+u (RAB =1 (Zu /Zy ))

Connecting lines may be drawn between points if the model
represented by the point farther to the left can be viewed as a linearly
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restricted version of the model represented by the point to the right.

The slope of the line is then a measure of the "cost" of the restrictions in
terms of R2 per degree of freedom. Thus +the diagram shows lines connecting
the point AB with A, B, and the origin (the origin corresponds to the model

y = u). There are also lines to join A and B to the origin. There is,
however, no line between A and B.

Multiple-partial correlations can be inferred roughly from the diagram
by comparing the vertical distance between two points (if they can be validly
joined by a connecting line or lines) with the vertical distance between the
lower of the points and the upper boundary of the diagram (the line R2 =1).

FP-Ratio's can also be evaluated on the diagram by a comparison of
slopes. The F-Ratio for testing the hypothesis that all three coefficients
in the third model (AB) are equal to zero is:

2
Ryp/ 3

(1-85,)/(2-3)

=

Fs 03

That quentity can be represented as the ratio of the slope of the line from
the origin, O, to AB to the slope of the line from AB to O' in the upper
right-hand corner. Similarly the test of the hypothesis that a®" =a! =0

1 2

regardless of the value of ag can be evaluated by the ratio of the slope of

the line A, AB +to the slope of the line AB, O'. In terms of the angles
shown in figure 2, F = tan(@l)/tan(ez)

Figure 2

°1

O'

A

In the example, Zy2 was the base for all the R2’s, but the base
could have been I (y - 532 and the ordinates of the points A, B, and AB

oould have been, respectively:
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2

R . ’ R R ] and
y Xl/XO y XZXB/XO

2
. /x. °

VX %o¥3/%g
This 1is the more conventional case where the fact that the Rz’s are partial
with respect to x,. is ignored. (In this case the horizontal axis would only
extend to T - 1.)

As another alternative the ordinates of A, B, and C could have

0

represented, respectively:

2

Ry-x Jxx,x. Ry oxx [xx, % and
1/*0%4™s5 - T

R2 .

y°x1X2x3/on4X5

This would imply using the residuals from a regression on Xq x4, and x5

as a base. (The degrees of freedom would only extend to T -3 in this case.)
The pattern of points in a test-o-gram can provide some clues about

the degree and nature of interdependence among the estimated coefficients.

Let point C in the following diagrams represent some multiple regression

model (call it model C). Points A and B represent models which contain non-

overlapping subsets of the variables in C and which, taken together, exhaust

the 1list of variables in C (call the subsets X, and Xy . It is clear that

point C must lie above, or on a par with, the higher of the points A and B.

If the estimates of the coefficients of xa and Xy are independent in model C,

then the test-o-gram representation of the three models will show a perfect

parallelogram as in figure 3.

Figure 3

Where the subsets of coefficients are not independent +the pattern may
resemble figure 4 or figure 5. In figure 4, C is much higher than the
combined heights of A and B. In figure 5, C is not much higher than either

A or B. These examples correspond to the multi-variable extensions of positive
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and negative covariances between pairs of estimated coefficients. In the

multi-variable context it is probably more precise to say that x, and X,

Figure 4 Figure 5

complement each other if the pattern resembles figure 4, and that they
compete with each other in “explaining" y if the pattern is more like
figure 5.

General purpose test-o-gram forms can be constructed by changing
the horizontal axis to measure degrees-of-freedom-used as a proportion of
the total degrees of freedom (it could be labeled n/T). Several standard
forms with different ranges for n/T and R2 would avoid the problem of
finding all points in a very small segment of the diagram. For convenience
a few of the rays which pass through 0' (i.e. the lines generated by
R2 = 1l-a+anfl as a is varied) can be ruled on the diagram to facilitate
graphical evaluation of F-ratios.

Use of the test-o-gram is entirely a matter of convenience, it adds
nothing to what can be learned from a simple list of residual sums of squares
together with corresponding degrees of freedom. But it can convey that
information efficiently and in a form that permits simultaneous consideration

of several comparable models.,
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