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Introduction

The theoretical basis for tests of composite hypotheses is presented

in most textbooks of mathematical statistics. AS applied to the coefficients

of a regression equation these results can be stated quite elegantly for the

general class of anear hypotheses (i.e, where the n regression coefficients

satisfy 1:1;m anear equations). The main problem is that the methods are

not applied in many cases where they are clearly called for. Often a set of

binary variables is introduced into a regression to represent some qualitative

factor. If one asks whether this factor has a significant influence on the

dependent variable the answer can only be given by a composite test. The

errors estimated for the coefficients of individual binary variables are not

very interesting in this situation. Again, one may be confident that either

X and x2 
both appear in a regression or they are both absent. In this case

also, a composite test is needed. Still another situation which require a

composite test arises from hypotheses that some or all coefficients of an

equation estimated from one sample are equal (in the vector sense) to a similar

set of coefficients estimated from a different sample. Of course all these

examples can be fitted into the framework of general linear hypotheses and

pressed through the general test procedures. But it is often possible to

define and calculate identical tests in terms of magnitudes that are both

easier to understand heuristically and easier to calculate.

This note explains the simplifications which can be made for a large

class of composite tests. While not as inclusive as the class of all linear

bypotheses, it contains enough recurrent problems to be worth special attention.

The General Theory

First a brief review of the test of a general linear hypothesis. (This

discussion depends heavily on AX. Mood, IntroguatiotaAttiLIIILLA
Statistics, pp 301-307.)

The regression model is:

(1) y = aixi + aix2 +	 + anxn +u

f(u) = N(0, a—). (Assume for the present that all variables are

measured as aeviations from their means.)
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The null h othesis is:
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Or in matrix notation: Ca . b° .

This null hypothesis can be viewed as a set of k linear constraints on the

coefficients of (1) or they can be viewed as defining equations for a new set

of k parameters (call them bi , i . 1, 2 .... k) which are, by null

hypothesis equal to b (j!, i = 1, 2 .... k. If the constraints in (2) are

ignored then the bls defined by b = Ca are simply a particular transformation

of the a's. If model (1) is estimated from a sample the estimates of the a's,

g, (a column vector), imply a set of estimates for the b's, call it 't = Cg, .

The test of the null hypothesis amounts to an evaluation of the probability of

the deviations, 	b°, if the null hypothesis is true. Since the new para-

meters are linear functions of the als, the estimated variance- covariance

matrix for the t's can be derived simply from the one for the als. Let X

denote the Txn matrix of observed values of the x.'s and Y denote the Tx1

vector of observed values of y (y and the x's are measured from their

respective sample means). The variance covariance matrix for the fits is

estimated by (X IX) -13 .122 and the estimated variance-. covariance matrix for the

ts is c(xtx)_1c ijC su2 , where

2 A2 / 	 YIY - YIX(XIX) IXIYS = u /(T-n-l)
T - n I

The familiar, and classical, procedure for testing a hypothesis about

a normally distributed statistic, say z, is to form the ratio: (z -z° )/ sz =

"t", where z ° is the hypothesised value of z and s z is the estimated

standard error of z. This procedure yields a statistic which is distributed

as "t" under the null hypothesis and can be tested against critical values

fram published tables. It is also the case that a "t" distributed variable

when squared has the F distribution with one degree of freedom in the
tinumerator" and as many degrees of freedom in the denominator as has the
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corresponding "t". The critical values of F in the one degree of freedom

case can be seen in published tables to be equal to the square of the

corresponding critical values of "t". If the statistic above is squared

it can be written:

oN / 2 N -1 /
	Z 	 Z 	 •"t"2 . F	 .--... (z 	 ) ks ) 	 k 	

ON
I 

In the composite test, of which the simple test above can be viewed

as a limiting case, the F-test statistic can be written:

(3) Fk  

op kno -1 cfs21
	  bO)    

k

By this argument the F-test is seen to be a straight-forward ki-,variable
analog of the familiar "t"-test with loss of information about the signs of

the deviations from hypothesis (as a consequence the critical values of F

correspond to equivalent two-tailed "t" tests).

The same test statistic is MOTS commonly written as:

(4

-1
b ° )!LC(XIX) -1 CI 	 Cg - b° )k

In this latter expression the quadratic form in the numerator measures

the diffeTence in the rosidual sum of squares (in the dimension of the

dependent variable) between the unrestricted model (1) and the restricted model

where the coefficients are required to satisfy (2). This portion of the sum of

squares is divided by k, the number of degrees of freedom lost by satisfying

(2). The resulting mean square is then compared in ratio with the mean square

residual from the unrestricted equation. Looking at the statistic in this way

brings out the analogy with the F-ratios used in more simple analysis of

variance problems.

A Special Case

Consider the special case where the null hypothesis is simply that

ai = 0, i = n-k+ 1, 	 2 .... n. In terms of the general linear
hypothesis this amounts to specifying 1P. 0, and C . 	 where Ik is
the k-rowed identity matrix and is preceded in C by n-k columns of k zeroes.
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Straight-forward evaluation of Fk involves invertinga kxk matrix

(the lower-right k x k partition of (K 1 X) -1) and calculation of a quadratic

form. Since that quadratic form measures, finally, the difference in residual

sum of squares between the restricted and unrestricted models, why not evaluate

that difference by re-estimating equation (1) with the last k variables left

out? This crude-but-effective expedient yields the same sum of squares plus

abonusintheformofestimatesofa.,i = 1, 2 	 n-k, i.e. the estimated

parameters where the null h °thesis is assumed to hold. The procedure for

carrying out the test mentioned above can be summarized simply:

1) estimate the unrestricted model: y = a
1 x1

+ a
2 x2

+	 + anxn + u,

and evaluate Eu (sum of estimated squared residuals).

2) estimate the restricted model: y = aitxi + 84x2 +	 + ant s.kxn_k + u,

and evaluate E 2 .

3) evaluate Fkl
T-n-1 Eu

2 k

If each of the sums in the expression for F is divided by Ey
2 

(remember

that y is measured from its mean) then F can be written simply as:

(5) 
1 -I 2LI T-n-1 

(1 -	 k

R2 
-

2 
T -n- 1 •

I R2
k 

where Rf and R are the multiple correlation coefficients in the restricted

and the unrestricted model respectively. In some cases this form may be more

convenient.

If k is very small relative to n the more general procedure may be

more economical, particular if the work is to be done on a desk calculator.

On the other hand if the estimation of the unrestricted model is carried out

on a desk machine most calculating schemes permit evaluation of the sum of

squared residuals at any stage of the onevariable-at-a-time reduction process.

It is possible to have the same intermediate information provided by a high-

speed computer since they usually use similar algorithms. But even without

that feature the cost of re-estimation of the restricted equation is not very

large, a major consideration is that the same program can be used for both

the restricted and unrestricted equations. Moreover the lengthy calculation

of moments does not have to be repeated.

E 2 zû2 	T n 1 •
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The following mathematical argument establishes the equivalence

between the general test procedure and the procedure suggested for the special

case discussed above.

Letthematrixofobservationsonthex.,X / be partitioned into

xl , X21 where Xi contains the first n-k variables and X 2t he last k. The
L.	 1
vector of estimated coefficients, a, is conformably partitioned into

g2
Let Y denote the T x 1 vector of observed values of y (measured - -

from the mean of y). The unrestricted a's are estimated by:

If a
2 

= 0 is assumed to hold in the restricted equation then

the last k variables can be ignored and the estimates for a
1 

are simply:

1
-

g = (XIX
1

1
) XIY	 and

1 	 1

ot2
Zu •

A
The differcnce, Eul

2
	Eq

2
, is evidently measured by:

= (al - 	 ) XIY	 .   

Now let TIT
1

- x
11
(xlx

1 )
-1 XI
 1

(a T x T matrix) and      

B =
1
 ) XIX

2 1
 (an n-k x k matrix).1	 1 

With these definitions it is easily verified that:

-1 \-1
--(XIX1 ) -1 + B(911X 2 ) 13 1 y

-1(XpiX2 ) Bi

B(X?iX2)-1

(X?iiX2)-1   

Using this inverse +he unrestricted estimates can be written:

- BWITI
1 

X
2 )

-1 (KT
1
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2 	 2 	
a
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- B
2

(KIM X ) -1 (Xqflif)
2 1 2 	 2 1

g 1
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since Xg BtX1Y 	 Xg X2C1(XIX1 ) -1 XIY

• x(i - X
1
 (XIX

1 rl X') Y2 	 1 	 1

• Xpyr

Consequently, 	 -11 	Bå,
2 

and

Q, = -1n3IXIY 4- gAtY
2 1 	 2 2

- IT)

= ggp q(1 (XIX1 ) -1 T. )

'• 6440C242.Y)

= lå.'(41,11X2 ) R2

In this final form Q is shown to be equal to a quadratic form involving

the estimated coeff1crts of the last k variables and the inverse of the

lower right-hand k x k partition of the inverse matrix (cf. numerator

of (4) ).

Adaptation of the special case

The preceding section explained a simple device for evaluating

the composite hypothesis that a set of coefficients are all equal to zero.

That case is a common one although it is probably used more often than is

justified. A slightly more general case can be handled almost as easily.

Consider the null h othesis:

= bo f i n-k+1,

I • e • the last k coefficients in the regression equation are hypothesised

to be equal to a given set of numbers (b's). This case can be turned into

th é  one transforming the dependent variable according to:

n
(xib:(?) .

i=n-k+1o
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In terms of this transformed variable the equivalent hypothesis holds that

the coefficients of the last k variables are equal to zero and the test

procedures outlined above can be applied. The transformation can be made

either before or after the moments are computed depending on convenience.

(The dependent variable need not be transformed for the unrestricted equation

since the sum of squared residuals will be the same for y as for yo , but

of course R2 will be different.)

As another example consider the hypothesis that the last k

coefficients are equal, i.e.

= anan-k+1	 -k+2
0 .. 0 0 . an

For this hypothesis define a new variable:

n
xn+l	 E xi •

Then compare the estimated residual sum of squares from the regression models:

n
y = E a.x. + u	 (unrestricted)

i=l

and
n-lc

Y = E a.tx, + at x 	 + ul 	 (restricted)
i=1 	 n+1 n+1

It is trivially true that any general linear hypothesis can be turned

into what is here called a special case by a suitable linear transformation

of variables. The main point of the discussion ab ove is that in many useful

cases the transformation is quite simple and provides a practical alternative

to the general procedure.

A Digression on "Constant Terms" in Regression Models

Regression analysis is commonly treated as a special branch of

statistical analysis having to do vri th relations among variables. A logical

desire to separate analysis of the relation between variables from the

question of the absolute level of the variables has given rise to a convention

of measuring variables from an origin chosen to coincide with the mean value

of the variables involved. This convention is usually applied in the computing

algorithms for obtaining estimates as well as in the theory. Typically

i=n-k+1



11

the "normal equations" are written in terms of the sums of squares and products

of variables measured from their means. As a second step the so-called

constant term is estimated by the additional condition that the regression

surface must pass through the point representing the mean of all variables.

This second step must be paralleled by a special procedure for obtaining the

estimated sampling error of the constant term if that is needed.

This special treatment of one of the parameters in the model is not

dictated by any mathematical or statistical necessity. If a "variable" which

always takes the value 1 (this does stretch the use of language somewhat)

is introduced into the regression equation having as its coefficient what is

usually called the constant term, it is then obvious that the "constant" can

be treated symmetrically with all other coefficients in the regression. The

normal equations will now be written in terms of the St= of squares and

products measured from zero as the origin and there will be ane additional

equation and also one additional term in each equation. If the new variable is

denoted x0 .1= 1 (call it the identity variable) then all regression equations

can be written in the form Ea
i
x
. 
+ u • In a limiting case where y = a0 x0 + u,

the estimate of a
0
 is simply g 	 Zy/T 	 . Moreover the estimated
 0

sampling error of go when ordinary regression formulae are used is:

‘2'
(y- a

0
)

sa 	 1 the ordinary expression for the sampling error of
0 	 T(T-l)

an estimated mean.

The impression is widespread that the constant term and its sampling

distribution are intrinsically different fram the other coefficients in a

regression, and that no one is ever really interested in the constant term.

In many cases one may be properly interested in the "slope" of a relationship

to the exclusion of the "level" but there are cases where the reverse is true.

Consider the model;

y = a + bx + u

where b is the parameter of primary interest and u is distributed with
/zero mean but a variance which is proportional to x2 ku is hetero-scedastic).

The model:

= a( 1/x) + b + uix

is equivalent to the other model except that now the residual, u/x, is hamo-

soedastic and therefore the parameters can be estimated more efficiently.

However b remains the parameter of interest and now it appears as the constant
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term. Apparently even if one is only interested in slopes, he may sometimes

need to know the sampling error of a nominal constant term.

Besides permitting symmetrical treatment of all parameters in the

regression equation, the introduction of xo facilitates the development of

regression analysis as a generalization fram the case of a variable distributed

with a constant mean to the case of a variable with a shifting mean. Altern-

atively the constant mean case can be treated as a special case of regression

analysis.

What is more important, all the foregoing discussion of composite tests

can be re-read dropping the assumption that all variables are measured from

their means if the identity variable is added to the list of variables in the

model. The constant term, a0
 is just like all the other parameters and can

be tested (or not tested) jointly with other parameters. No special treatment

is required. With the introduction of the identity variable it becomes easier

to present, in the next section, some further adaptations of the testing

procedure.

In situations wlere the sample means for the xls have a broader

significance, as they would if the sample were drawn by some random process

from a stable population, there is some sense in treating the "constant term"

asymmetrically. Or, it may be more convenient to do so when, for example,

the estimates are used to form conditional prediction intervals. It may be

useful, in such cases, to transform the estimated equation of conditional

expectation:

A
y = 0 x0 + 1

x
1 

+ a.
2
x
2 

+ 	 'A
u
x
n

into the alternate form:

2 -7 +
	 +an(xn --xn 9Sr = 	 + 'Yx]. -561 ) +

where —y —x1 , x2 
. 	 —xn are 

the sample means,

The variance -covariance among the lg., i = 1, 2, ...,n, are the same for both
2

forms, the estimated variance of y is simply Su/T, and the Coy( 7, gi ) =
0, i =1,2, 	 n. While this form may often be useful as a convenience, it

should not be allowed to obscure the basic symmetry of all parameters in

the equation of conditional expectation.



Some Further Adaptations of the Special Case of the Linear Hypothesis

Consider the problem of testing the hypothesis that the same regression

model holds for two distinct sub-populations given a sample from each population.

On the assumption that the error variance, 51-2 , is the same in both populations

the test can be carried out in a simple manner by adapting the techniques set

out above. The "unrestricted" model for the combined sample (all coefficients

are allowed to be different for the two sub-samples) can be written:

n 	 n
(6) y = dl 1=0

E a. 	
1

x + d E a. x + u,
11 i 	 2 . =y 12 i

where d1 and d2 are binary variables 
defined according to:

d
1	

d
2 take values

0 	 for members of the first sub-sample, and

0 	 1 	 for members of the second sub-sample.

(Note that the indentity variable, xo is now included in the model and so

the variables no longer need be measured as deviations from means.)

A trivial transformation of the model above provides:

n 	 n
y = E a., 	 d 	 E (a. - a )x + u

i=0 11 i 	 2 i,o 12 	 il i

In this form the null hrpothesis can be stated as:

(a. 2 '- a.il ) ?=-10. = 0 II i = Of 1, 2,...., n •
1 

It is now obvious that the "restricted" model can be estimated from the combined

sample by fitting:

n
(7) y = E a!x. + ut .

i=0 1 1

The "restricted" sum of squares is Eq ,2 . The "unrestricted" sum of squares,

Zg2 , can be evaluated most easily by fitting:

n
= E a. x. + u1 

to the first sub-sample, and
i=0 Jii

n
y = E a. x. + u2 to the second sub-sample.

1=0 12 1

Then Zu 2
	 2

1 + 2
2 

•
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Recapitulating, the procedure for testing the difference between two

sample regressions is:
n

1. Fit the model y = E a.x. + u to:
i=0	 1

a. the T 1 observations from sub-population 1 (this yields

Eq. with T 1-n-1 degrees of freedom)

b. the T2 observations from sub-population 2 (this yields

Eft,22 with T2 -n-1 degrees of freedom)

C. the T1 + T2 observations in the total sample (this yields

Eal 2 with T1
+ T

2
-n-1 degrees of freedom).

2. Form the test statistic:

E a ,2 	 E A2 	A2- Eu2 T1 + T2 - 2n 2
F   • 	A2	 2Eu + E;	 n + 1

1

(Note that for the limiting case of n= 0 this expression is equal to the

square of the "t" test statistic for the difference between two sample means

given that they come from populations with equal variance.)

It is clear how this procedure can be extended to cases where more

than two population regressions are compared.

The restricted and unrestricted models above represent two extremes,

either all n+1 coefficients are the saine or all are different. There are

a large number of intermediate models between these extremes in which some

coefficients are allowed to differ and some are not. It will be instructive

to examine one of these intermediate models. A commonly encountered one is

where all the "slopes" (aiy •=3 iy 21...., n) are required to be the same for

both sub-populations but the intercept (at ) is allowed to differ, i.e.:

( 8 )
n

= d1a01x0 + 
d2

a
02x2 

+ E a.x. + u 1 t .
i=1

Rewritten in the form:

( 8a)	 y
n

= a01 x0 + (a02 - a01)d2x0 + E a.x. + uff
i=1

the model is easily recognized as the case of a "d -ummy" or binary variable

providing a shift in the level of the regression surface for members of

population 2. Given E 2 evaluated from this model the following hypotheses

can be tested:
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1. The hypothesis that the "intercepts" are different under

the assumption that the "slopes" are all the same can be tested

by a comparison between Eefi 2 and EV 2 (i.e. the hypothesis

that (a
02 

- a
01

) = 0 which can also be tested by a simple

"t" test on the coefficient of the binary variable in (8a)).

2. The hypothesis that all "slopes" are different under the assumption

that the "intercepts" are different can be tested by a comparison

between nu 2 and Ei1.2 .

Each of the intermediate models can be compared in a similar way with

the extreme models or with other intermediate models. Each such comparison

involved a different hypothesis and implies a particular choice of restricted

and unrestricted slib-spaces in the total parameter space. It is not the case

that any pair of models formed by placing restrictions on (6) can be properly

compared. To be valid the more restricted model must contain all the

restrictions present in the less restricted model plus some additional ones

(i.e. the more restricted sub-space must be wholly contained in the less

restricted sub-space). There are computational shortcuts available for

estimation of the intermediate models. These shortcuts are particularly help-

ful when more than 2 sub-populations are being compared. For a thorough

discussion of these shortcuts see "On a Class of Regressions using Binary or

I DImmay f variables" by H. Watts (Memorandum of the Oslo University Institute

of Economics).

On the Use of R2 in Regression Analysis

Most elementary statistical textbooks, in a chapter on regression and
\

correlation, define a statistic R, (or R2 ), which is called the coefficient of

multiple correlation (determination). One formula for this statistic is:

R2
y ix

1 
,x

2y
 • • • an

goxo - a1x1 • • • •   

The corresponding R is simply the positive square root of this expression.

A common locution for explaining the meaning of R2 is: "the proportion of
the variance of y which is 'explained' by the regression on the

On the other hand, a model of normal linear regression is completely

specified by the coefficients (ai ls) in the equation of conditional expectatior,
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E(y) 	 Ea,x, , together with the conditional variance, a-2 I. It is evident3. a.
2that R or R2 is not necessary for specifying a regression. model. Indeed

it is impossible to associate a value of R2 with a specific regression model

for the simple reason that, in the absence of information about the distribution

of the x's, the unconditional or marginal variance of y cannot be inferred.

R.2 can be made as large (small) as desired by choosing x's which make the

sample variance of y sufficiently large (small).

Even with a given set of values for the x's (or with a given

distribution), trivial changes in the statement of a regression model can

effect the value of R2 . Consider the models:

a. Y 	 a0x6 + aixi + u 1 f(u) 	 )0—) , and

b. y + loci 	aoxo + (ai + k)xi + u 	 f(u) N(0,o—)

For all intents and purposes the two models are equivalent for any specified

value of k. With a given sample the two models yield identical estimates of

the parameters ao , al , and a-. Either can be used for forming conditional

predictions of y. However by choosing Lk sufficiently large, R.2 can be

brought arbitrarily close to 1. Similarly, as k is brought close to a l ,

R,2 approaches O.

It can be protested that the R2 Is are not comparable between the two

models just discussed and indeed they are not since the "dependent" variable

is not the same in the two cases. But the non-comparability has not been

recognized widely enough. Students, and an occasional scholar, may prefer

a regression which sets consumption as a linear function of income over an

equivalent one which places saving (a income - consumption) as a linear

function of income simply because the former typically provides a higher R
2

.

The foregoing remarks would almost justify a crash program to stamp

out the use of R
2 

in regression analysis. Short of taking that drastic step,

it is possible to sharpen this widely used tool. R2 can be interpreted as an

indicator, or index of the closeness of fit of a regression. As an index it

has the desirable property of taking values between zero and one. The extremes

correspond to explanation of none or all of the variation in the dependent

variable. Like most indices, it does not permit valid comparisons unless

the base of the index is comparable. The base in the case of R2 is the sample

variation of the dependent variable; different R2 's are comparable if the

base is held constant. Within a given sample of observations on y and

x
1 

x
2
, x

31
... 1 x

n1
 many regression models can be estimated. Of these, the set
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of models which use y as the dependent variable have , by definition, the same

unconditional variance for the dependent variable and the R2 's for these

models axe therefore comparable. The same statement can be made for the set

of models which use log(y) (or 1/y, or y-x2/2). If one wishes to compare

two models which use different dependent variables, say y and log(y),

then he cannot rely on the R2 's as usually computed. In this particular

case he must first decide whether he wants to compare the two regressions in

terms of their absolute or percentage deviations. Whichever comparison is

chosen one set of residuals must be transformed into the other basis and

then the mean-square error (or some other criterion)can be evaluated for both

and compared.

A less strict notion of comparability might be invoked to permit

comparisons between samples. It is still essential that the same dependent

variable enter the base but the sample variance of that variable need not be

exactly the same. The sample variance could be different because of sampling

variation in the u's even if the values for the set of x's is the same for

both samples. A more common case is where the two samples are obtained from

the same population by the same sampling procedure and where there is a

multivariate distribution of the x's (with finite variance) in that population.

In this case the difference in the sample variance of y on account of

different x's can again be attributed to sampling and the R's probably

remain "comparable enough" for rough comparisons. It is in this sense that

continued exposure to a certain kind of sample and basic model or set of models

may establish norms for evaluation of additional R2 's of the same type.

The preceding discussion should be sufficient to emphasize the relative nature

of such norms.

The notion of comparability between R2 's should be refined further

in the case where a single sample is involved. The sample consists of

observations on y and xo , xl ,..., X. Suppose that the following three

alternative regression models are estimated from the sample.

n
(9a) y = 	 E a.x. + u1•

k
(9b) Y = E a.x. + u2 	 k < n , and

n
(9c) 	 y E

0 0 	 a.x. + u3
i=k+1 1 1

The R2 Is associated with the three models in the given sample can be denoted
R2i, R22, and R32 respective ly .
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R2 is necessarily at least as large as the larger of R2 and R2 .1	 2	 3
If R2 is interpreted as an index of fit then model (9a) will never produce

a poorer fit than (9b) or (9c) and will usually fit better. It is possible

to test whether the difference between R2
1
 and, say, R

2
2 

is larger than can

be attributed to chance. That is equivalent to testing the hypothesis that

the last n-k of the x's make no net contribution to the explanation of y

or that their coefficients are all equal to zero. The comparison of R.2 and

R2 implicitly refers to a similar test on the variables left out of (9b).
3

Mat about the comparison between R22 and 
R3
2 ? It meets the requirements

for comparability that were set out earlier but it does not correspond to any

linear hypothesis about the regression coefficients. Yet there is some meaning

to the statement that (9b) fits better than (9c) if R2 :* R2 . Probably2	 3
one would prefer to use (9.0 rather than (9c) for making predictions about y

if he were faced with a choice between the two and could not use (9a). But

there is not, at least at present, a theoretical basis for making a test based

on that comparison.

Multiple-Partial Correlation Coefficients

In line with the discussion of the proper use of R2 
in regression

analysis, a recent statistical innovation should be introduced. 1)
Partial

correlation coefficients have long been available for measuring the degree of

association between two variables considered net of the relation each may

have with one or more other variables. Thus r
2

can be
y•X1X 2X3 9 • • I 9 Xn

described as the proportion of the residual variation of y after regression

on x2 , x3 ,..., xn which is "explained" by the residual of xl after

regression on x2 , x3,..., xn . The ordinary partial correlation can be

defined by:

R2 R2 r2	 2y•x1x2 ...xn 	y ax2x3 • • .xn	 "xl/x2x3."'n (1 - Ry •x2x3 • .

or
R2 - R2

y .xix2 • . .xn n
y dix x • • sx2 3 r

2
y •	 x • • .xxi/x2	 n	 1 R

2
y .x2x3 . • .xn

1) See "Partial Trace Correlation The 	 Cowles Foundation Discussion Paper
No. 97 (Mimeographed).
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By simple extension define:
R
2

- R
2

y ex1x2 . • .xn Y .xk+lxk+2 • ••xn(10) 	 R2y.xix2 . .x.x.x+1 +2 ••••xn 1 - R
2

y.xk+lxk+2 • •
 øxn

This statistic can be called the Multiple-Partial Correlation (squared).

It bears the same relation to the ordinary partial correlation coefficient as

the multiple correlation coefficient bears to the simple correlation coefficient.

In terms of the R
2
's for the three models discussed in the preceding section

two multiple-partial correlations can be calculated. They are:

	R2 	 2 	 2
y•xix2 ...x. 	 . 	 = 	 - 	 )/(1. 	 P 2 )

x k+1
x
 x+2."- 	

CR 	 R
n 	 1 	

3 	 - -3 = M P R2b I c
2

	

y 	
N

	

R2 	 = (R2 - R)/ (1 - R
2 ) = MP R2c lb. . 	 x.xlc+1x k+2 •x xn/ 1 2 . • •Dck

The discussion of R
2 

has implicitly assumed that the identity

variable, x0 "belongs" in the regression equation. That assumption is

typically made when R2l s are defined for regression models. If, in line

with the earlier discussion of "constant terms", the inclusion of xo is to

R2 = (by convention) R
2

y .xIx2 • • .xn
/x

0 	
y .xix2 • . .xn

Also x
0
 should be added to the list of variables "partialkdout" in the

multiple-partial correlations defined above.

It is probably unwise to propose an alteration in the notation for R

at this time, but the fact that the conventional R
2 

assumes that x0 has

been partialled out should be kept in mind. This is of prime importance

whenever models that do not include x0 are 
used. In those cases the sum of

squares of y around zero may be used as the base of R,2 instead of the sum

of squares around the mean • l)

A test of the hypothesis that a multiple-partial correlation coefficient

is equal to zero corresponds to a composite hypothesis that a subset of

1) Estimated residuals in models without constant terms will not, in general,

have a zero mean. Nevertheless, Eu2 (not Eu2 - T172 ) is the proper sum
to compare with Ey2.

be regarded as an open question then the statistic that is usually called R
2

should be written as a multiple-partial correlation, i.e. as:
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regression coefficients is equal to zero. Thus the hypothesis that

11111 0 =000rreSIDWAStothellypothesisthata.=.0, 1,	 k. It has

been shown earlier that this hypothesis can be tested by computing the test

statistic:

R2 -R2 
T -n-1

F
k,T-n-1 

. 	1	 3  	

(cf. (5)).2
1 R	 k

1

By virtue of the definition of the multiple-partial correlation that statistic

can as well be written:

2MPRIp ts_
•F

k,T-n-1	 21 - MPRb i c

T - n - 1

k

It should be re-emphasized that the remarks about R
2 

have relevance

only in terms of the basic regression model where the only random variable is

the "residual", u. Since that model has nothing to say about the distribution

of the x's that appear in the equation for the expected value of y, nothing

can be inferred about the unconditional variance of y in the population.

Consequently R
2 (multiple or multiple-partial) has no meaning within the

framework of the model. Nevertheless it is possible to define R
2 

as a simple

statistic which describes a feature of a sample which does have a specific

set of x, values associated with it. It is questionable whether they should 

be computed in applications of the regression model. But if they are, and it

is common practice to do so, then it is essential that they be used sensibly.

R2 can be interpreted as a descriptive index of fit or as the complement of

a standardized measure of the residual variance. As such, if the base of

the index or the basis of standardization is kept in view, they can be of

some use.

The practice of computing R2 's probably derives fram a superficially

similar but distinct model in which y and the x's are jointly distributed

according to some multi-variate density function. In such models the R2 I s

have more theoretical significance. Indeed, if the joint distribution is

normal there is a direct theoretical counterpart of sample R2 .
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Test - 0- Grams

Within the constraints placed on the use of R
2 

in regression analysis,

a graphical method is available for representing a group of several comparable

R2 ts. In a rectangular diagram let the vertical axis be labelled R2 and

graduated fram 0 to 1. The horizontal axis is labeled "degrees of freedom"

(n) and is graduated fram 0 to T (see figure 1). On this diagram plot

points with coordinates (n f R
2
 ) where R

2 
is the sample R

2 
for a particular

model and n is the number of coefficients estimated in the =del. For

ernsirpleç, point A in the diagram might represent the model:

Y	 a x + u0 0	 (x0 is the identity variable so

—	 —2R 	 1 - gy-y) 2 Ey2	T y	 Ey2 ) ,
A

B might represent:

2
y	 + a2x2 +	 (RB 1 - E ul

2
/ E y2 )), and

AB might represent:

2y = a"x0 + a"x1 + a"x2	 (Ru"	 = I - Eu"2 /Ey2 )).0	 1	 2	 a

Connecting lines may be drawn between points if the model

represented by the point farther to the left can be viewed as a linearly



2
F3, T-3 = 

R/ 3

(1-RA2B MT -3 )
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restricted version of the model represented by the point to the right.

The slope of the line is then a measure of the "cost" of the restrictions in

terms of R2 
per degree of freedam. Thus the diagram shows lines connecting

the point AB with A, B, and the origin (the origin corresponds to the model

y = u). There are also lines to join A and B to the origin. There is,

however, no line between A and B.

Multiple-partial correlations can be inferred roughly from the diagram

by comparing the vertical distance between two points (if they can be validly

joined by a connecting line or lines) with the vertical distance between the

lower of the points and the upper boundary of the diagram (the line R2 = 1).

F-Ratio's can also be evaluated on the diagram by a comparison of

slopes. The F-Ratio for testing the hypothesis that all three coefficients

in the third model (0) are equal to zero is:

That quantity can be represented as the ratio of the slope of the line from

the origin, 0, to AB to the slope of the line from AB to 0' in the upper

right-hand corner. Similarly the test of the hypothesis that a7 = a = 0

regardless of the value of ag can be evaluated by the ratio of the slope of

the line A, AB to the slope of the line AB, 0 1 . In terms of the angles

shown in figure 2, F = tan(91 )/tan(92 )

Figure 2

O

In the example, Ey
2 

was the base for all the R2 's, but the base

could have been E (y y) and the ordinates of the points A, B, and AB

oould have been, respectively:
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R
2 	

/ 	 R
2 and R2

y•xi/xo 	 rx2x3/
	 ,X
0

/y •xlx2x3ix0

This is the more conventional case where the fact that the R
2
fs are partial

with respect to xo is ignored. (In this case the horizontal axis would only
extend to T 1.)

As another alternative the ordinates of A, B, and C could have

represented, respectively:

R2 	 v2 	
, and R2y .xibcox4x5 R2aud

 Y.x1x2x00x4x5

This would imply using the residuals from a regression on xo , x4 , and x5
as a base. (The degrees of freedom would only extend to T 	 in this case.)

The pattern of points in a test-o-gram can provide some clues about

the degree and nature of interdependence among the estimated coefficients.

Let point C in the following diagrams represent some multiple regression

model (call it model C). Points A and B represent models which contain non

overlapping subsets of the variables in C and which, taken together, exhaust

the list of variables in C (call the subsets xa and x
b . It is clear that

point C must lie above, or an a par with, the higher of the points A and B.

If the estimates of the coefficients of x
a 

and xb are independent in model C,

then the test-o-gram representation of the three models will show a perfect

parallelogram as in figure 3.

Figure 3

0 	
___________ 	  

n

Where the subse13of coefficients are not independent the pattern may

resemble figure 4 or figure 5. In figure 4, C is much higher than the

combined heights of Å and B. In figure 5, C is not much higher than either

A or B. These examples correspond to the multi-variable extensions of positive
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and negative covariances between pairs of estimated coefficients. In the

multi-variable context it is probably more precise to say that x a and xb

Figure 4
	

Figure 5  

n	 n

complement each other if the pattern resembles figure 4, and that they

compete with each other in "explaining" y if the pattern is more like

figure 5.
General purpose test-o-gram forms can be constructed by changing

the horizontal axis to measure degrees-of-freedom-used as a proportion of

the total degrees of freedom (it could be labeled nA). Several standard

forms with different ranges for n/t and R
2 

would avoid the problem of

finding all points in a very small segment of the diagram. For convenience

a few of the rays which pass through 0 1 (i.e. the lines generated by

R2 . 1 - a + an/T as a is varied) can be ruled on the diagram to facilitate

graphical evaluation of F-ratios.

Use of the test-o-gram is entirely a matter of convenience, it adds

nothing to what can be learned from a simple list of residual sums of squares

together with corresponding degrees of freedom. But it can convey that

information efficiently and in a form that permits simultaneous consideration

of several comparable models.
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