Notater

Statistisk sentralbyrå

8. juli, 1993

Soil erosion and economic growth in Nicaragua

by

Mario A. De Franco**, Solveig Glomsrød*, Henning Høie*, Torgeir Johnsen* and Eduardo Marín Castillo***

> Forskningsavdelingen Seksjon for ressurs og miljøanalyser

* Natural Resource Division, Research Department, Central Bureau of Statistics, Oslo, Norway

** Instituto Centroamericano de Administracion de Empresas, Managua, Nicaragua

*** MARIN y ASOCIADOS, Consultores Epecializados, Managua, Nicaragua

93/22

CONTENT

Summary	3
1. Introduction	4
2. Soil erosion	6
2.1 Natural conditions determining the rate of erosion	6
2.2 Soil loss and productivity loss	7
2.3 Barriers to erosion control	8
3. Integrating macroeconomic and environmental policy	9
4. Economic development and erosion	12
4.1 Erosion cost assessments	13
4.2 Consistent erosion cost estimates	15
5. Soil Erosion in Nicaragua	16
5.1 General description of the country and the agricultural activity	16
5.2. Estimates of erosion and erosion induced decline in soil productivity	19
6. Integration of environmental variables in economic analyses.	28
6.1. The soil erosion submodel	29
7. The AGE [Applied General Equilibrium] model for Nicaragua.	31
8. Scenario analysis: Impact of soil erosion on economic growth.	33
9. Conclusions	40
References:	41
Appendix 1. Erosion map	43
Appendix 2. Annual yield by crop and region 1966-1992	44
Appendix 3. Density factors	50
Appendix 4. Use of pesticides and fertilizer.	51
Appendix 5. Equation listing for the general equilibrium model	54

Summary

This report deals with the problem of soil erosion in Nicaragua and its economic implications. Soil loss is proceeding at a rapid rate. In some regions more than 2 cm of topsoil is lost every year. Erosion has both on-site and off-site effects, but in this report we discuss only the onsite effects. The major on-site effect of erosion is a decline in soil productivity. The present situation in Nicaragua is unfavourable for soil conservation efforts. Insecure land tenure, conflict about ownership of land together with credit market failure indicate that a considerable part of current soil loss may undermine future income generation.

We have analysed the macroeconomic effects of the current erosion induced reduction in agricultural productivity by means of a general equilibrium model for the Nicaraguan economy. We find that after a period of 10 years, gross domestic product (GDP) and private consumption are reduced by 14.5 and 13.7 percent respectively compared to a baseline scenario without productivity loss. Investment is reduced by almost 24 percent. Production in the agricultural sectors is reduced due to both direct and indirect effects through interaction with the rest of the economy. Sesame, beans and maize experience the largest reductions in production. Production in non-agricultural sectors is also reduced because rising food prices and wage level increases the general domestic cost level. Demand for labour in the formal sector decreases by 25 percent.

At the outset, the basis for making an integrated economy-environment analysis is weak. This is valid in most countries, as the statistics on the environment first has to be established. In Nicaragua, also the modelling of the national economy is in its beginning. However, the early creation of a framework for an integrated analysis provides several methodological and political advantages. First, a model framework might discipline the collection of the environmental statistics, focusing from the beginning on information that is relevant for policy decisions. Second, the results of the analyses might initiate a dialogue between the parts of the administration dealing with economic affairs and with the environment respectively. Normally, this dialogue is difficult to establish before the link between the two policy areas is quantified. Like many other developing countries, Nicaragua is today facing an economic crisis that makes a dialogue on long term environmental problems difficult to sustain.

However, an integrated analyses might contribute by illustrating that environmental protection can increase traditionally measured economic growth, as may be the case in Nicaragua where the natural production capital is degrading rapidly.

1. Introduction

Agriculture has an important position in the economy of Nicaragua. 25-30 percent of the gross domestic product is generated in this sector, occupying around half the working population. Export crops provide roughly 70 percent of foreign exchange (INEC, 1991). The strategy for development of the agricultural sector is important, because the country has rich soil resources and the present technology is inefficient, leaving a considerable potential for growth.

Unfortunately, the fertile soils of Nicaragua are threatened by erosion. Erosion is loss of soil by flooding or wind (further discussed in part 2.1). The rate of erosion depends on several natural conditions like soil type, climate/rainfall and topography. However, the prevailing social and economic conditions are also important for determining the degree of erosion.

Nicaragua has large plains with fertile, volcanic agricultural land on the north-western Pacific coast. In the 1950's and 60's, during a period of rapid expansion of export crop production, in particular of cotton and livestock production, small-scale farmers were expelled from the lowlands to hilly areas for subsistence cultivation of mainly maize and beans. Two aspects make this event critical for soil degradation. The peasants continued to apply their traditional lowland technology to steep terrains where they primarily grow basic grains like maize and beans. Annual crops like maise and beans expose the soil to erosion to a higher degree than forest and perennial crops. This accelerated the process of soil degradation in Nicaragua. Also, population growth increased the pressure on these vulnerable parts of the land. According to Blaikie (1985), many developing countries have experienced similar migration due to the same causes and with the same consequences in terms of soil degradation.

In Nicaragua, soil degradation has been studied on a national level (Marin, 1991). 33 percent of the agricultural land is moderately to seriously degraded by hydrological erosion. On hilly

hinterlands in central Nicaragua where maize and beans are cultivated, continued use of prevailing technology might ruin land productivity within 2-3 decades.

As in most cases concerning soil quality and management, the information on erosion is developed and presented on maps. This is convenient when considering soil conservation measures directed at a local farming level. But, a problem with maps is that they are difficult to use when decisions concerning general economic policy and laws are to be taken. These decisions do have an impact on erosion, but to what extent? Due to the lack of information about the links between economic policy in general and the degradation of soil resources, the erosion problem is usually neglected within the context of economic policy decision making.

This paper describes an attempt to include the interrelation between soil erosion and economic activity as described in an applied general equilibrium (AGE) model for Nicaragua. In this model, 12 agricultural activities are specified. Land use is currently degrading the soil and economic forecasting will overestimate future growth if no adjustments are made for declining productivity. Annual productivity loss by sector (crop) is assessed and more realistic growth perspectives are generated.

Also, the scale of erosion measured as soil loss in tons is estimated within the model framework. Land use represented by output of different crops is broken down on regional levels to account for variations in soil characteristics, topography and climate. The soil loss is estimated as a linear function of land use by region.

The AGE model was developed at Instituto Centroamericano de Administración de Empresas (INCAE). A version incorporating soil erosion was developed in cooperation between INCAE and the Central Bureau of Statistics of Norway (CBS), funded by The Norwegian Agency for Foreign Cooperation and Development (NORAD).

The report is organized as follows: Section 2 contains a brief introduction to soil erosion and some reasons why soil conservation measures usually are not implemented. Section 3 focuses on some important reasons for linking environmental aspects to macroeconomic policy, while section 4 comments on a few studies dealing with the cost of soil erosion on a national

level. Then follows a description of the erosion problem in Nicaragua (section 5). The environmental submodel for soil loss is described in section 6. The general equilibrium modelling framework is presented in section 7. Finally in section 8 we describe the simulations of the macroeconomic effects of a reduction in productivity due to erosion.

2. Soil erosion

Soil erosion can be defined as detachment and removal of soil by wind and moving water. In this process, the structure of the soil is normally deteriorated. It is common to distinguish between on-site and off-site effects of erosion. On-site effects refer to the effects where soil is removed. Off-site effects involves the impact of soil depositions such as clogging of waterways, pollution, and siltation and increased flooding of lower land. This work is limited to analyses of the on-site effects of water erosion.

2.1 Natural conditions determining the rate of erosion.

Water erosion occurs when rainfall exceeds the soil's capacity to let water infiltrate the ground, forcing the water to run off on the surface. Surface flooding is therefore crucial for the magnitude of soil erosion. Under continuous vegetation the soil's capacity to absorb water is high. The high content of organic matter and roots create a structure of macropores for the water to infiltrate. In addition, litter, roots and stems impede the water speed, facilitating infiltration. Vegetation covering the soil reduces the kinetic energy of the raindrops before hitting the soil, thereby protecting the soil structure. Forest is the most efficient soil cover. Clearing forests initiates rapid erosion. In addition to rainfall, other natural factors affect the erosion rate. Steep land accelerate the surface flooding, and soil consisting of fine particles (loam, silt) are more easily eroded than coarse soil. Thus, for a particular vegetation cover, the erosion rates vary according to climate, topography and type of soil.

Soil erosion is a process that is inherent in nature, but the rate of erosion has been drastically increased by intensified agricultural activity. Under undisturbed vegetation there is normally a balance between soil erosion and the soil formation processes. Cultivation of the land usually interrupts this balance, because the vegetation cover is reduced. Consequently, erosion

will often increase beyond the soil formation rate under cultivation (accelerated erosion). According to Lal (1987), the current rate of global erosion is roughly 10 times higher than the natural rate.

The amount of soil and characteristics of the soil profile decides how fast soil loss affects the productivity of land. Lal (1987) gives an overview of variables determining erosion and erosion induced productivity losses.

2.2 Soil loss and productivity loss

The on-site economic impacts of soil loss is due to yield reductions. There are several factors that can make soil productivity fall. In the following, we briefly mention some dominant hypothesis, based on Lal (1987).

The soil provides the growth medium for the plants. As soil and nutrients are removed, the *rooting depth* for the plants is reduced. The consequence of this is more severe on shallow soils which are predominant on sloping land, than on deep soils.

Drought stress is particularly serious in eroded uplands. *Water holding capacity* is reduced by the selective depletion of organic matter and fine particulated clay contents. In the U.S., The National Soil Erosion - Soil Productivity Research Committee (1981) concluded that the main reason for productivity loss by erosion is loss of plant-available soil water. As the topsoil is lost, the subsoil is exposed. This soil normally has poorer structure and is more compact. *Water infiltration capacity is reduced*, which in turn may lead to increased surface runoff and accelerated erosion. Consequently, erosion increases the frequency, duration and intensity of drought.

The rate of soil loss, characteristics of the soil profile, climate and crop grown decide how much soil erosion lowers the productivity of land. There are different views as to whether the cause of productivity loss is primarily due to the reduction in plant-available water, to reduced or unstable supply of nutrients due to a decreased water storage capacity, or nutrients loss as such. It is important to note that several phenomena prevalent in the tropics make soil degradation a more serious concern there than in temperate regions. The typical rainfall in tropical regions is more concentrated in time and heavier than in temperate regions. Also, the tropical soils are usually more fragile, containing less organic matter. Seasonal abundance of water easily generate floods, and the water storage capacity is a limiting factor in dry periods.

2.3 Barriers to erosion control

Through runoff of soil and water, the farmer looses productivity of his land. In addition, the erosion can have negative impact on the productivity on farming in lower areas due to increased seasonal surface flooding. Erosion also has negative off-site effects due to soil deposits in waterways. It is easy to see that an individual farmer has no incentive to care about the off-site erosion costs, but why is he not engaged in soil conservation to prevent degradation of his own land and income potential? There are several reasons that may explain such a behaviour. Below we mention some barriers to long term investments in soil conservation which are likely to affect the Nicaraguan peasants - in particular the poor - in their soil management practise.

- Soil degradation is a cumulative process, implying relatively small year to year changes. These are hard to detect when crop yields in any case vary considerably due to management, plagues, precipitation and other factors. Increasing drought problems may be blamed on less rainfall instead of increasing loss of water through surface runoff and associated reduction of water storage capacity.

- Technological improvements may hide the impact of soil degradation. In Nicaragua, fertilizer and pesticides were strongly subsidized during the 1980's. The increase of inputs may have boosted yields and possibly masked the impact of erosion.

- Even if farmers were aware of the degradation and knew how to prevent it, it might be regarded as too costly for the farmer to change technology. The costs are immediate, while the benefits will be spread out over a long time horizon. The discount rate may in particular be high for poor farmers. In their case, a delay in consumption to invest in soil conservation means less food, at times even starvation.

- Even farmers that are motivated and able to invest in soil conservation may hesitate due to insecure property conditions. Several factors have made property conditions insecure in Nicaragua. In recent past, peasants were forced to leave the land that were occupied by big landowners for export production. During the contra war, hundred thousands of people fled from battle areas. Today, the ownership of land is in many places insecure due to unsettled political struggle over the rights to former confiscated land and to some extent also the land distributed to the 120 000 families in the land reform during 1985-1989.

- An additional reason why property rights may be seen as insecure, is that the present economic policy after 1990 has cut down on credit to small peasants usually short of liquidity, reducing their potential to produce and generate income even when an income potential is present. Thus, a likely outcome of the current credit shortage might for many peasants be to abandon the land.

- The credit shortage in itself makes it harder to switch to less erosive crops even when this is more profitable for the farmer. Annual crops (staple food) are more erosive than perennial crops (coffee, fruit trees) under the prevailing cultivation practice. However, perennial crops will not produce yields until after several years. Credit would make a shift more feasible. Unfortunately, the least credit worthy peasants are in fact the small peasants cultivating the most erosive crops in the least appropriate topographic areas.

3. Integrating macroeconomic and environmental policy

Nicaragua is facing an accelerated deforestation which if continued at the present rate could eliminate the forest resources within the next 30 years. Also, widespread application of unsustainable techniques in agricultural production degrade the future resource base. According to the Medium-term Development Strategy 1992-1996 for Nicaragua (Government of Nicaragua, 1992) the driving forces behind the deforestation are 1) the lack of alternative use of forest resources, 2) low productivity in the campesino agriculture, 3) land tenure

instability and 4) the lack of employment opportunity in other sectors. In various ways, the degradation or conservation of forests and soil is interwoven with the institutional framework and general economic policy.

In section 2.3 we discussed how small farmers may perceive and respond to the erosion problem and how institutional factors like insecure land tenure and distortions in the credit market may undermine improvements in soil management. The relationship between prices on agricultural products and land management is also important. Prices determine the income from cultivation of different crops on a particular site. The farmers select crop and technology based on information on prices. Perennial crops (coffee, fruit trees) are less erosive than annual crops (maize, beans, root crops). Consequently, product prices and production costs affect the rate of erosion. Furthermore, the prices that directly determine the income in agricultural sectors depend on the whole price vector of the economy. The exchange rate is an important price influencing the profitability of export crops. The alternative cost of labour affects labour intensive crops more than others.

Also, any measure to deal with the erosion problem transforms the economic picture by introducing new technologies and associated level of costs. A new equilibrium including appropriate soil conservation technologies, will reflect the change in use of input factors, including land, agrochemicals and labour. It turns out that any regulations or pricing policy, tax policy or environmental policy has impact on the loss of soil and in turn on the growth potential. These linkages are the main reason for integrating land erosion within a framework of an economic model.

Deforestation is closely linked to the erosion problem, initiating rapid erosion in fragile areas and increasing the surface flooding in lower areas. Migration to agricultural frontiers is a phenomenon which is closely related to the general income level and the alternative employment opportunities. Low wages encourage clearing of land. On the other hand, available virgin land by itself is an employment alternative, moderating a fall in wages in the formal sector when there is surplus of labour. Thus, large scale migration to the frontier contributes to keep up the cost of labour in the rest of the economy. Deforestation clearly interacts with the development of the national economy and should ideally be studied as a functional part of it. Due to lack of data, this study is unfortunately not covering the special aspects of deforestation.

One of the advantages of using a macroeconomic model as a basis for this kind of analysis is that it takes into account indirect effects and not only the direct effects. This implies that the effect of policies directed at other sectors than the agricultural sector, but which influence activity levels in the agricultural sectors, are included in the analysis. By stimulating production in the manufacturing sectors, demand for agricultural products will also increase. The mechanisms in the general equilibrium model will ensure that these effects are taken into account.

The National strategy plan (Government of Nicaragua, 1992) explicitly says that the economic policy should take into account the impact on the environment. However, so far there exists no system of information relating national economic policy for Nicaragua to the environment in quantitative terms.

At the outset, the basis for making integrated economy-environment analyses is weak. This is valid in most countries, as the statistics on the environment first has to be established. In Nicaragua, also the modelling of the national economy is in its beginning. However, the early creation of a framework for an integrated analysis provides several methodological and political advantages. First, a model framework might discipline the collection of the environmental statistics, focusing from the beginning on information that is relevant for policy decisions. Second, the results of the analyses might initiate a dialogue between the parts of the administration dealing with economic affairs and with the environment respectively. Normally, this dialogue is difficult to establish before the link between the two policy areas is quantified. Economic crisis like that of Nicaragua today make a dialogue on rather long term environmental problems difficult to sustain. However, an integrated analyses might contribute by illustrating that environmental protection can increase traditionally measured economic growth, as may be the case in Nicaragua where the natural production capital is degrading rapidly.

In this report we link soil loss and soil productivity to a model of economic activity and underlying policy decisions. The purpose is to provide a basis for a more comprehensive approach to studies of growth strategies for Nicaragua in the light of these feedbacks from the environment to the economy.

4. Economic development and erosion

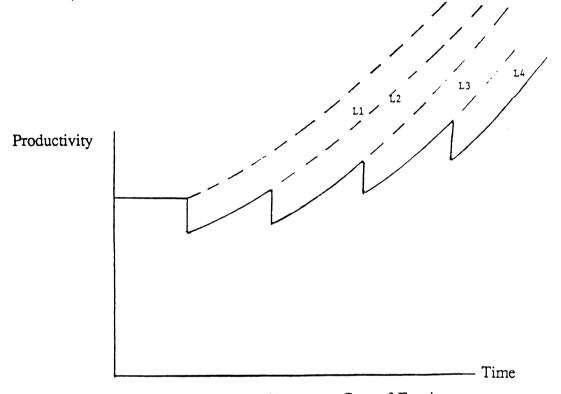
Erosion is enhanced by credit market failures and absence of a secure land tenure regime characteristic of many less developed countries. Erosion may in turn undermine development efforts. Typically, erosion represents an inherent negative technological change in the production performed by the poorest part of the population who live on the most fragile land. This may contribute to sustain widespread poverty, holding a considerable part of the population below a life standard which is more favourable for generating progress. Erosion is one of the factors nourishing poverty by limiting access to food, health service and education which play a dynamic role in the development process. Any marginal cost can be critical when pushing thresholds to more rapid growth further out in time. But how big is the erosion problem, disregarding the critical level subsistence farmers operate on? The question gets all kinds of answers. As Blaikie wrote in "The political economy of soil erosion",

There are some leading opinions which claim that soil erosion, although perhaps widespread, is not important, and that "induced innovations" by farmers, governments and private sector research and development institutions will cope. These opinions seem so diametrically opposite to many others which claim that erosion is widespread and serious that the problem arises over how to judge the issue. (Blaikie, 1985)

This study can only very indirectly contribute to close this perception gap. We focus at the economic implications of soil erosion. Highlighting the values at stake might stimulate effort in further - and perhaps more coordinated - soil studies.

Few attempts have been made at quantifying the cost of erosion at a national level. This is partly due to lack of adequate data on erosion and the associated fall in productivity. Also the difficulties of making such cost estimates are increased by the lack of communication between soil specialists focusing on differences in erosion between neighbour plots and economists in need of data relevant to policy decisions at a national level. As background for the results for Nicaragua provided later in this report, we refer below to some nation-wide or regional studies of yield loss or soil erosion costs. The results can, however, not be directly compared with each other or with the results we obtained in the case of Nicaragua, since soil, cultivation technology and natural conditions may differ considerably. Also, the economic assements apply different approaches.

4.1 Erosion cost assessments


In Costa Rica, an assessment of national soil depreciation was made as part of developing natural resource accounts (World Resources Institute, 1991). The study estimated the soil loss and the cost of replacing the equivalent amount of nutrients (nitrogen (N), phosphorus (P) and potassium (K)). The soil loss estimates were built upon the universal soil loss equation (USLE) (Wischmeier and Smith, 1978) adjusted to the soil characteristics (erodibility, slope) (Vásquez, 1989) and rainfall (Vahrson, 1989) of Costa Rica. It turned out that the replacement costs of annual soil loss amounted to between 6 and 13 percent of gross product in the agricultural sector over the years from 1970 to 1989. Of the accumulated soil loss in this period, 61 percent occurred on land with annual crops, 5 percent on land with perennial crops and 34 percent on pasture. The distribution of land use on the above categories was roughly 15 percent, 10 percent and 75 percent respectively. As discussed in the report, the cost of replacing the loss of nutrients does not reflect the true soil capital loss, defined as future income reduction from diminished soil productivity.

Because maize is an important annual crop in Nicaragua, we refer to a study by Lyles (1975) who surveyed the decline in maize yields due to soil erosion in different states in the Corn Belt of Midwestern U.S. Yield reductions ranged from 1.7 to 3.5 percent per centimeter of topsoil loss. However, according to Lal (1987), these estimates are low compared to similar information on the effects of soil erosion in the tropics.

Magrath and Arens (1989) assessed soil loss and productivity loss on Java. The productivity loss was estimated for different crops and regions. For maize, soybeans and groundnuts, the

annual fall in productivity from loss of topsoil was estimated to be between 2 and 15 percent over a range of 15 to 600 tons soil loss per hectare (roughly equivalent to 0.15 to 6 cm loss of topsoil). The annual productivity loss for different regions weighted by area of different cropping systems varied between 3.8 and 4.4 percent. Such rates of productivity loss probably matters to the development of agriculturally based economies.

Impact of Technical Change on Cost of Erosion

Figure 4.1. from Magrath and Arens (1989) illustrates how technological improvement increases the cost of erosion on cultivated land. Erosion repeatedly brings negative shifts in the overall rising productivity of labour, capital and intermediates. As productivity of these input factors increases, the gap between income with and without a given amount of soil will also widen. Each year the value of soil capital is reduced by the discounted future income gap. In Nicaragua right now, low income is earned while the soil is degrading rapidly. How big the soil capital loss is, depends on the future capability to generate income from the soil. To determine the cost of soil erosion it is necessary somehow to foresee future development. We need a model to compare scenarios with and without soil erosion.

4.2. Consistent erosion cost estimates.

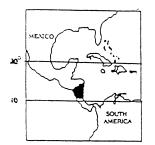
Often, the cost of soil erosion is associated with reduction in crop yields related to the actual land use when compared to an alternative situation where soil is undisturbed by erosion. However, the zero erosion scenario is hardly feasible in technical terms, and not even attractive in economic terms due to the cost of implementing it. Fox and Dickson (1988) point at several erosion cost studies where the cost of cultivating the soil sustainably is not taken into account.

The soil depreciation estimates for Costa Rica (World Resources Institute, 1991) refer to an alternative scenario different from the zero erosion case, but in an inconsistent way. When nutrient replacement costs were calculated, a hypothetical sustainable erosion level (equal to regenerated soil under best management of various soil types) was first subtracted from the estimated physical soil loss. However, the alternative cost of practising this soil management was not considered. Thus it was not taken into account that an alternative agricultural practice would reshape the whole economy, also the prices (on crops, fertilizer, labour) and land use pattern by which the soil depreciation costs were estimated.

Devarajan and Weiner (1989) provide estimates of genuine erosion costs in Mali. They first estimate the extent of yield reductions associated with the current rate of erosion. Next they introduce a soil conservation demand curve, which may be interpreted to reflect perfect foresight as to future income possibilities. Assuming a constant marginal cost of soil conservation, the extent of excessive erosion is determined. It turns out that roughly 1/4 of the land degradation and related yield reduction represents a depreciation of soil capital in the sense that it undermines future income generation. Soil depreciation in Mali was estimated to be 0.36 percent of GDP and 0.91 percent of agricultural GDP in 1988.

The study of Devarajan and Weiner is consistent in the sense that the costs of sustainable cultivation are incorporated. However, in the two stage procedure used by Devarajan and Weiner, the soil conservation demand curve as well as conservation cost curve is invariable with respect to the general state of the economy and the agricultural activity. It is doubtful that this de-linkage will hold for agriculturally based economies like most developing

countries. In particular soil conservation supply may be heavily based on labour and fertilizers and thus sensitive to their costs. To the extent that these costs determine the structure of the agricultural sector, there is a feedback from soil conservation to agricultural production.


Large scale soil conservation will demand resources and affect relative prices and income generation in the whole economy. Also, the equilibrium will shift due to the current soil degradation (on 3/4 of the land in Mali) which is not excessive, but affects the productivity. Thus the base year prices and activity levels are improper for estimating forgone income due to erosion. To deal with this problem, we need a model describing the impact of degradation on productivity, land use and prices.

In general, soil conservation is not costless. However, different crops expose soil to various degrees. Soil conservation up to a certain point could be realized costless by switching to a different cultivation pattern. The current land use is a result of market failure. If soil depreciation costs were considered, more erosion-resistant crops would be grown. In Devarajan and Weiner (1989) all land use is assumed to be homogenous as to soil loss and productivity loss. Within this framework, soil capital benefits of restructuring the agricultural production is left out. These are among the aspects we try to include in our study by linking soil degradation to crop production in a multi-sector general equilibrium model.

5. Soil erosion in Nicaragua

5.1 General description of the country and the agricultural activity

Administratively, Nicaragua is divided into 6 regions and 3 special zones as illustrated on the map in figure 5.1. The majority of the population and the economic activity is located in the 6 regions, although the three special zones contain most of the land area. Except for some production of basic grains, the value of the agricultural production in the three special zones is insignificant, and the degradation of the soils is connected to leakage of nutrients from soils of low inherent fertility (vertisols) rather than to erosion. We have therefore chosen not to include the 3 special zones in this work.

Figure 5.1. Administrative map of Nicaragua.

Located 10-15[°] north of equator, the climate in Nicaragua is tropical to sub-tropical with even temperatures the year round. Within the 6 administrative regions, precipitation ranges from a little below 1 000 mm up to 2 000 mm per year, with a marked dry period from around December to May. The year is divided into three growth periods; the "primera" from May to August, the "postrera" from September to December, and the "apante" from January to April. Because of water shortage, the "apante" is normally a rest period.

With respect to economic and technical development as well as to agroecologic characteristics, it is natural to separate the 6 administrative regions into two parts; the Pacific coast (comprising the administrative regions II, III, and IV) and the Central region (comprising Region I, V, and VI). Except for coffee and beef, all the export agriculture (cotton, sugar, sesame, and banana) is found along the Pacific coast. The Pacific coast is to a large extent covered by young, fertile volcanic soils generally very susceptible to erosion. The most technically advanced agriculture has developed in the cotton production, expanding on the flat plains of León and Chinandega in region II from the 1950's and on to the 1970's. In Region III, the fertile soils are located to more rugged and elevated terrains, making coffee the most important product. Region IV is the agriculturally most diversified region.

In the Central region, agricultural activity is dominated by the production of coffee and basic grains. In Region V, however, little coffee is grown, but it is among the largest of the 6 regions in livestock production. Except for the lower parts of region V, and some valleys in region I and VI, the Central region is largely mountainous, providing a cooler climate and a more rugged terrain than in rest of the country. The soils are generally fertile, but of older origin and less erodible than the soils along the Pacific coast. The importance of the various products is indicated in table 5.1, which shows average area harvested by region in the two decades 1970-80 and 1980-90.

	Regi	on I	Regio	on II	Regio	n III	Regio	on IV	Regi	on V	Regio	on VI	Nicar	agua
	70's	80's	70's	80's	70's	80's	70's	80's	70's	80's	70's	80's	70's	80's
Beans	14	19	1	4	2	2	9	12	5	17	21	24	52	78
Maize	22	21	33	21	7	4	20	15	29	52	56	58	168	171
Sorghum	7	4	12	19	11	12	8	15	5	5	7	4	50	58
Rice	1	2	2	8	3	1	7	9	5	9	3	4	21	34
Sesame			6	13	0	1	2	2					9	16
Coffee	19	15	1	1	18	9	30	13	3	4	63	40	133	81
Cotton			112	68	10	3	8	5			••		130	76
Sugar	1	0	22	23	5	7	6	8			2	1	36	39
Total	64	62	190	157	56	39	90	78	47	86	153	131	599	553

Table 5.1. Average area harvested annually. 1 000 hectares

Source: Ministry of Agriculture

The most significant change from the 1970's to the 1980's is the expansion of basic grains, and the reduction in the harvested area of cotton and coffee, traditionally the two most important export crops. Credit to small scale peasants, the main producers of basic grains, were introduced in the 1980's and eased the expansion of area for basic grain production. The harvesting of coffee suffered during the 1980's because of the war, while the reduction in cotton primarily is caused by lower profits due to ecological problems of erosion, increasing costs of plant protection and falling prices on the world market. In 1991, the area sown with cotton was 1/5 of the area cultivated in 1977 (Banco Central 1991).

The cultivated area in the Central region increased, especially in Region V, while on the Pacific coast the cultivated area shows a slight decline. But also in the Pacific coast, the area with basic grains increased.

During the 70's and 80's the use of chemical fertilizer increased, especially in the production of basic grains. Table 5.2. shows the change in yields from the 1970's to the 1980's.

		Region						
	I	II	III	IV	V	VI		
Beans	6	0	9	8	-6	-6		
Maize	121	79	110	76	-6	17		
Sorghum	38	30	42	55	36	46		
Rice	32	-11	22	19	-9	0		
Sesame	-20	-27	-9	-18				
Coffee	65	3	-15	47	-6	94		
Cotton	••	-5	4	0				
Sugar cane	25	-10	2	-3	8	45		

Table 5.2. Change in average yields from the 1970's to the 1980's. Percent.

Source: Ministry of Agriculture

Table 5.2 shows that maize and sorghum has experienced the largest increase in yields during the period. The increase in yields for sorghum is more or less the same for all regions while maize experienced a decline in yields in Region V and just a moderate increase in Region VI. Yields for sesame have decreased during the period in all regions. For the other crops the picture is a bit more mixed with yields going up in some regions and down in others.

5.2. Estimates of erosion and erosion induced decline in soil productivity

The Applied General Equilibrium model (AGE-model) for the Nicaraguan economy describes the agricultural activity in 12 different sectors. Since both production and agroecological conditions vary geographically, generating unequal rates of soil degradation, we have organized and related the information on soil erosion both to production and region. The erosion indexes and the indexes for erosion induced decline in soil productivity are specified for the 6 administrative regions and 11 agricultural production activities (erosion data for the activity "Other agricultural products" are not available. However, the area used for these crops is insignificant.)

The primary data source for the erosion estimates is the erosion map of Nicaragua in the scale of 1:522 000 published by the government of Nicaragua (Marín, 1991). A more aggregate

version of the erosion map is given in appendix 1. The cultivated land is classified according to 6 erosion levels; light, moderate, strong, very strong, severe, and extreme. The erosion classes are defined by how large a fraction of the original soil profile is lost (Marín, 1979). The definitions are shown in table 5.3. Based on an average depth of the A horizon of 40 cm and the B horizon of 50 cm, the corresponding soil loss depth in cm is also shown.

Erosion class	Fraction of horizon lost	Soil loss depth
Light	0-25 % of horizon A	0-10 cm
Moderate	25-50 % of horizon A	10-20 cm
Strong	50-75 % of horizon A	20-30 cm
Very strong	75-100 % of horizon A	30-40 cm
Severe	0-50 % of horizon B	40-65 cm
Extreme	50-100 % of horizon B	65-90 cm

Table 5.3. Definitions of the erosion classes

Below we describe the process of estimating annual soil erosion and rates of erosion induced productivity loss. The distribution of land on erosion classes is shown i table 5.4. Basic information behind this distribution is the erosion map (Marín, 1991) and a land use map (INETER, 1983). The state of erosion by crop, area and region was assessed. However, on the basis of various soil studies (Marín 1988, 1990, 1992) the erosion status by these land categories was assessed more accurately within the erosion class intervals as specified in table 5.3. Instead of characterizing an erosion class by lower limit, upper limit or the average, subjective evaluations are included by direct assessments of the state of erosion in an area. Table 5.5 shows the resulting estimates of accumulated soil loss in tons/hectare ¹ in 1970, 1980, and 1990. This may seem somewhat elaborate, but is made in this manner to explicitly show assessments and calculations stepwise.

¹ The units were converted from % of profile to tons/hectare by assuming that 1 cm soil corresponds to 100 ton/hectare (a density factor of 1 ton/m3). In this way, table 5.1. could be applied to all of Nicaragua. In reality, the soil density varies, but using a single conversion factor is justified by the fact that, roughly speaking, the land with the deeper soils generally consist of soils lighter than 1 ton/m3 (light volcanic soils density 0,8 - 0,9 tons/m3), while in the areas containing shallower soils, the density is generally higher than 1 ton/m3.

	Region I							Region IV					
T	Light	Moderate	Strong	V.strong	Severe	Extreme	Light	Moderate	Strong	V.strong	Severe	Extreme	
Beans	25	35	20	20			40	30	30				
Maize	25	35	20	20			30	40	30				
Sorghum	20	40	40				30	40	20	10			
Rice	50	30	20				75	25					
Sesame	20	50	30					40	40	20			
Coffee	25	40	35				30	30	30	10			
Cotton							15	30	25	20	10		
Sugar	40	40	20				80	10	10				
Tobacco	70	30					50	30	20				
Vegetables	90	10											
Pasture	10	20	30	30	10		30	25	25	20			
	and a second second	Re	egion II						Reg	ion V			
	Light	Moderate	Strong	V.strong	Severe	Extreme	Light	Moderate	Strong	V.strong	Severe	Extreme	
Beans	25	45	30					50	40	10			
Maize	20	50	30					50	40	10			
Sorghum	30	40	20	10				40	30	20	10		
Rice	50	30	20					100					
Sesame	10	20	30	30	10			20	40	40			
Coffee	10	60	30					30	40	30			
Cotton	20	30	30	10	10								
Sugar	70	30										ļ	
Tobacco	80	20								ļ			
Vegetables													
Pasture	50	30	20				40	20	20	10	10		
		R	egion III							gionVI			
	Light	Moderate	Strong	V.strong	Severe	Extreme	Light	Moderate		V.strong	Severe	Extreme	
Beans		35	35	30			15		20		5		
Maize		40	40	20			15		20		5	<u> </u>	
Sorghum	15	30	30	25			30		20		ļ	<u> </u>	
Rice	90	10					80) 10	10			<u> </u>	
Sesame	1	30	30	40									
Coffee	15	40	25	15	5		20) 30	25	15	5		
Cotton	10) 40	30	10	10							ļ	
Sugar	70) 30					30	0 40	30			ļ	
Tobacco	1	80	20				100	0					
Vegetables	5						7	0 15					
Pasture	6) 10	10	10	5	5	1	0 15	25	5 25	20		

Table 5.4. Land use by region, crop and erosion class. Percent.

Table 5.5. State of erosion by erosion	class,	region	and	crop.	1970,	1980,	and	1990.
Accumulated soil loss. Tons/hectare.								

				mulated soil loss	
Production	Region	Erosion class	1990	1980	1970
Coffee	I	Light	500	300	200
		Moderate	1200	700	400
		Strong	2000	1200	700
	Ш	Moderate	1800	1000	600
		Strong	2800	1500	800
		Very Strong	4000	2000	1000
		Severe	5500	3000	1500
	IV	Light	700	400	20
		Moderate	1500	900	50
		Strong	2500	1500	80
		Very Strong	3500	2000	100
	V, VI	Light	800	500	25
		Moderate	1700	1000	60
		Strong	2800	1600	100
		Very Strong	3500	2000	120
Cotton	II	Light	1000	400	25
		Moderate	1500	800	50
		Strong	2500	1400	80
		Very Strong	3500	2000	130
		Severe	5500	3000	200
	IV	Light	1000	400	25
		Moderate	1700	900	50
		Strong	3000	1600	100
		Very Strong	4000	2300	150
		Severe	6500	3500	220
Sugar cane	II, III, IV	Light	600	300	20
		Moderate	1200	700	40
Banana	П	Light	600	300	20
		Moderate	1000	600	30
Rice, upland	I, II	Light	1000	500	30
		Moderate	1500	800	40
		Strong	2000	1400	80
Rice, irrigated	I - VI	Light	500	300	15
Sorghum	II, IV	Light	1000	400	25
		Moderate	1500	750	50
		Strong	2500	1400	75
		Very Strong	3500	2000	125
		Severe	5750	3000	200
All other	I - VI	Light	1000	500	30
		Moderate	2000	1000	60
		Strong	3000	1600	100
		Very Strong	4000	2300	150
		Severe	6500	3500	230

The state of erosion reported in table 5.5 was further aggregated over erosion classes to characterize the state of erosion by crop and region, weighted according to land distribution

(table 5.4). Table 5.5 shows that the erosion rates increased substantially from the 1970's compared to the 80's. The reasons for this can be found in the following:

- Large areas of land were handed over to people with little experience in farming for the purpose of subsistence production. With the common systems of production used in Nicaragua, subsistence farming is very erosive. Large areas were clear cut, and tillage practice often included ploughing.

- Around 15 000 tractors were distributed to farmers and cooperatives. Many of those who received the tractors were ignorant to their proper use. Vulnerable soils were tilled at improper times. The machines also brought on compaction of the soil, increasing surface runoff and erosion.

- The ministry of agriculture (MIDINRA) and the state bank that provides agricultural credits (Banco Nacional de Desarollo) encouraged the production of cotton on very erodible land.

- In Carazo in region IV, trees were removed in areas of extensive coffee production.

Table 5.6 shows the average annual soil loss over the period 1981-1990.

	Region I	Region II	Region III	Region IV	Region V	Region VI
Beans	110	110	135	92	123	125
Maize	104	102	122	97	153	125
Sorghum	106	85	122	85	146	107
Rice	43	43	28	40	20	40
Sesame		148	140	130		••
Coffee	53	59	113	73	114	107
Cotton		106	147	132	••	
Sugar	96	36	36	40		97
Торассо	65	60	108	83		50
Vegetables	55		••			71
Pasture	148	83	104	109	115	175

Table 5.6. Average annual erosion 1981-1990 by crop and region. Tons/hectare.

Next, a relation between erosion class, and erosion induced productivity loss was assessed. An important basis for this evaluation was the yield development by crop and region over the last 25 years (appendix 2). Total yield decline by crop, and erosion class in 1990 compared to uneroded soil was assessed as shown in table 5.7. When taking into account that cultivation and associated soil degradation has taken place over different time periods (table 5.5.) the average annual productivity loss by crop and region between 1981 and 1990 was estimated to be as shown in table 5.8 (table 5.8). (National average productivity loss indices (by crop, aggregated over regions) are shown in table 8.1.)

Table 5.7. Erosion induced yield declineby region, crop and erosion class. Percent productivity compared to uneroded soil. 1990.

	Light	Moderate	Strong	Very	Severe	Extreme
Maize	100	80	56	34	17	7
Coffee	100	85	68	51	36	23
Coffee	100	90	77	61	46	32
Pasture	100	100	70	39	15	6
All other	100	85	68	48	29	14

The relation between erosion class and erosion induced productivity loss displayed in table 5.7 is based on qualified assessment. We do not know of Nicaraguan investigations on the effects of erosion on yields. It should also be kept in mind, as mentioned in section 2.2, that yield levels are influenced by a number of intervowen factors, and it is difficult to isolate the effects of erosion.

	Region I	Region II	Region III	Region IV	Region V	Region VI
Beans	2,1	1,9	3,0	1,6	2,7	2,7
Maize	2,1	1,3	2,3	1,1	2,7	2,4
Sorghum	1,5	0,9	1,9	0,9	2,2	1,5
Rice	0,7	0,7	0,1	0,3	••	0,3
Sesame	••	2,2	2,4	2,1	••	••
Coffee	0,4	0,9	1,3	0,9	1,8	1,4
Cotton	••	, 1,3	1,9	1,8	••	••
Sugar	0,6	0,1	0,1	0,3	••	0,8
Tobacco	0,5	0,3	1,6	0,9	**	••
Vegetables	0,2	••				0,6
Pasture	3,0	0,6	1,2	1,9	1,5	3,0

 Table 5.8. Average annual decline in soil productivity 1981-1990 by region and crop. Percent.

Table 5.8 shows that beans, maize, sesame and pasture are the sectors that experiences the largest productivity loss due to erosion. For beans and maize the productivity loss is especially large in Region III, V and VI. For pasture the largest productivity loss is in Region one and VI. Rice, sugar, vegetables and tobacco experience relatively small productivity losses while sorghum, coffee and cotton is in an intermediate position.

To compare these results with results from other erosion studies it is convenient to also estimate average productivity loss per cm soil loss which is shown in table 5.9. Density factors of the soils by production and region are shown in appendix 3.

	Region I	Region II	Region	Region IV	Region V	Region VI
Beans	1,9	1,9	2,0	1,5	2,2	1,9
Maize	2,0	1,2	1,7	1,0	1,7	1,9
Sorghum	1,4	0,9	1,4	0,9	1,5	1,4
Rice	1,7	1,7	0,4	0,7		0,9
Sesame	••	1,5	1,7	1,6	••	••
Coffee	0,7	1,3	1,0	1,1	1,5	1,3
Cotton	••	1,1	1,1	1,4	••	••
Sugar	0,8	0,3	0,3	0,7	••	0,9
Tobacco	0,8	0,5	1,5	1,0	••	
Vegetables	0,3			••		0,9
Pasture	2,0	0,8	1,1	1,9	1,5	1,7

Table 5.9. Average annual loss of soil productivity per cm loss of soil by region and crop. 1981-1990. Percent.

In table 5.9 the productivity loss is related to the removal of soil measured in depth of soil profile. The productivity loss per cm eroded soil varies between 0,3 and 2,0 percent. The figures are lower for maize than for beans because a larger share of the maize production is located in plain areas where soils are deeper. In Region II and IV, where soils are relatively deep, the figures are lower than in the other regions. For instance the productivity loss per cm eroded soil in sugar, rice, and vegetables seem unreasonably low.

Below we give a general description of the various crops, where they are grown and how exposed they are to erosion.

Maize and beans

In the Central Region, except for in the valleys of Jalapa, la Vigia, Pantasma and a few other small valleys, the erosive processes have affected the soils strongly to severely. This is mainly because the cultivation takes place in steep terrains with inclinations up to 50%. The climatic conditions in the central regions are very favourable for the production of maize and beans, but the production capacity is already significantly reduced due to erosion. Maize in the Pacific Region is generally cultivated in areas strongly or very strongly eroded by cotton, but a high level of technology compensates for the effects of soil erosion. In the Pacific Region

the most favourable conditions for the production of beans is found in Region IV. Beans are mainly cultivated on land with degree of erosion between low and strong, affecting the yield level correspondingly. However, the productivity is generally low in region IV more due to the unsuitably hot climate than the level of erosion.

Rice

In the Central Region the bulk of the production is technified and takes place in Region I in the valley of Jalapa. Here the effect of erosion is moderate. The expansion of rice production into areas of steeper terrains is affecting the soil productivity in rice production due to strong and severe erosion. In the Pacific Region rice grown under irrigation is located in heavy soils on flat land, creating a minimal risk of erosion. However, dry rice on more hilly land with moderate soil textures makes erosion affect the productivity to some extent.

Coffee

Coffee is primarily produced in the mountainous areas where the climatic conditions are very favourable. The decline in soil productivity is generally much lower than in the production of annual crops, in spite of the rough topography where the coffee is grown. Coffee is a perennial crop and is usually grown under shade trees, thus giving the soil a protective plant cover. The decline in yields after 1983 is probably due to plagues and diseases and lack of labour because of the war in the years between 1983 and 1989.

Sorghum

In the Central Region sorghum is mostly cultivated in small valleys. Here, the problems of drought probably enhanced by erosion is more important for the low productivity than the soil loss per se. In the Pacific Region sorghum is cultivated in the dry zones, and the yields are limited by dry climatic conditions and strongly to severely eroded soils.

Vegetables

Production of vegetables is mainly located to flat areas, thereby creating few problems of erosion.

Cotton

The disorderly expansion of cotton production during the 1970's had devastating effects on the soils. Extensive areas of flat and rolling land with soils highly susceptible to erosion were improperly managed with regards to adequate soil and water conservation. In region III and IV practically no conservation measures have been applied. Strong and severe erosion has drastically affected yields and soil productivity. On the areas most damaged by erosion, a lot of the cotton production was abandoned during the 1980's and partly replaced by other crops.

Sesame

Sesame is primarily grown by small and medium sized producers on soils strongly to severely eroded by cotton. This has considerable effects on the present level of productivity.

Sugar cane

Along the Pacific coast, cultivation of sugar cane is generally located to flat areas under irrigation. Thus, erosion rates are low.

Banana

Most of the banana is grown for export. Banana is grown on flat land, and the soil is well protected by vegetation and supplies of organic material. Therefore, problems of erosion are insignificant.

Pasture

The area used for pasture is about twice as large as the area suitable for cattle. The erosion is high because of overgrazing and compaction. In Region II, the grassland is located on flat areas of heavy soils, which explains why erosion is lower here than in the other regions.

6. Integration of environmental variables in economic analyses.

Soil erosion is only one of several environmental problems calling for integration into economic analysis and vice versa. Within the agricultural sphere, the use of chemical fertilizer and pesticides are obvious candidates for integrated studies. Within this project, priority has been given to the soil erosion problem. However, some efforts were also made to investigate

the potential for linking the use of agricultural chemicals to economic activity described by a macroeconomic model. Some preliminare results from this work is given in appendix 4.

6.1. The soil erosion submodel

The soil erosion submodel uses output levels from 11 agricultural sectors as input for calculating the amount of erosion. The output levels for the agricultural sectors are calculated by an applied general equilibrium model for Nicaragua. In the erosion model, soil loss per hectare is assumed to be constant by crop and region. A change in technology affects the area cultivated for a given level of production. The regional cultivation pattern is assumed to be constant.

In section 5, the average annual rates of soil loss by region and crop over the period 1981-90 were assessed. These provide coefficients for the model determining the yearly amount of soil erosion (tons) by crop and region. It is assumed here that the loss of soil will occur at this rate also for the decade to come. This means that widespread introduction of soil conservation is not supposed to take place in the period. Although some efforts in soil conservation are made, these are not likely to penetrate general agricultural technology for several years. Reasons for this are the institutional and economic barriers to erosion control mentioned in section 2. Consequently, assuming that *what* is grown *where* is the main determinant of erosion rates the next 10 years or so may not be so off target. A description of the erosion sub-model is presented below.

$$Q_i = A_i * B_i * K_i^{1-\alpha_i} L_i^{\alpha_i}$$
(1)

$$Q_{ij} = \beta_{ij} Q_i \tag{2}$$

$$H_{ij} = \frac{\mu_{ij}}{A_i B_i} Q_{ij}$$
(3)

$$E_{ij} = a_{ij} * H_{ij} \tag{4}$$

$$E_i = \sum_j E_{ij} \tag{5}$$

List of variables:

 Q_i = Production in sector i B_i = Parameter for erosion-induced productivity loss A_i = Parameter for factor neutral technical change K_i = Capital in sector i α= Cost share of labour in the base year $L_i =$ Labour in sector i $Q_{ii} =$ Production in sector i, region j $\beta_{ii} =$ Parameter for distributing total production in sector i to regional level $\dot{H}_{ii} =$ Area of production of crop i, region j (ha) Parameter for transforming production to area harvested (ha/mill Cordobas) $\mu_{ii} =$ $E_{ii} =$ Erosion in sector i, region j (tons) $a_{ij} =$ Rate of erosion for crop i, region j (tons/ha) $E_i =$ Total erosion in sector i (tons)

Equation (1) is the Cobb-Douglas production function in the general equilibrium model for Nicaragua. Output is being produced by capital and labour. A_i is an exogenous indicator of factor neutral technological change for capital and labour. B_i is the indicator of productivity loss due to erosion. In equation (2), total production in sector i, Q_i , is split into regional production levels (Q_{ij}), in the same proportions as the regional distribution of production in the base year 1990-91. Equation (3) transforms production into area harvested. The variable for factor neutral technical change and the rate of productivity loss due to erosion enters the equation in order to adjust for the effect of an increase or decrease in productivity. An increase in A_i or B_i in equation (1) implies increased production, and the area necessary to cultivate a certain harvest is reduced. In equation (4) the amount of soil loss for crop i in region j is determined. Equation (5) just sums up the amount of erosion for one crop in all regions.

7. The Applied General Equilibrium model for Nicaragua.

The cost of soil erosion is the present value of income foregone and should be subtracted from the conventional income concept. When doing an exercise of estimating foregone earnings due to soil erosion, one should be aware that observed prices are in general not reflecting the social cost of resources in the presence of market failures. Market failures related to allocation of credit and property are closely associated with the soil erosion problem itself. The Nicaraguan economy like most economies has plenty of other distortions as well. In this case estimated loss due to soil erosion based on market prices will generally deviate from the true social cost. To measure welfare outside optimum, Mirrlees (1969) pointed at the necessity use shadow prices, that is the prices that govern in optimum where all resources are optimally managed. Aware of this shortcoming, however, we use observed prices in the study of soil erosion in Nicaragua, as also is done in the cost estimates referred to in section 4.

The purpose of our study is somewhat limited compared to a complete soil erosion cost study. Due to lack of data on soil conservation cost, the first step is to see how economic forecasts for Nicaragua will overestimate future growth if no soil conservation is practised and no adjustments are made for declining agricultural productivity in the years to come.

This section contains a brief description of the general equilibrium model for the Nicaraguan economy. The model falls into the neo-classical tradition were it is assumed that consumers maximize utility, producers maximize profit and flexible prices clear markets. Only the labour market is not cleared. Here, the wages are indexed to inflation and not determined by demand and supply. The parameters in the model are calibrated rather than estimated.

According to the model, it is the level of total savings which is the driving force as to generating economic growth. Total savings are invested in production capital, thus to a large

extent determining the future production potential. Foreign saving is assumed to be constant, so that domestic saving is the essential variable for economic growth. Savings are proportional to income in four social classes. Since saving rates differ between classes, the income distribution is influencing the accumulation of production capital. The four social classes are campesinos, workers, petty capitalists and capitalists.

Income consists of profit, wages and transfers from abroad. Profit is determined from a sector as the price less indirect taxes and the unit cost multiplied by total production. Total profit is distributed among the four social groups according to fixed coefficients. Total income for workers is wage income + transfers from abroad. Peasants earn a constant share of profit in the agricultural sectors while petty capitalists receive a constant share of profit in urban sectors + transfers from abroad. Total income for capitalists is a fraction of total profit in agricultural sectors + a fraction of profits in the urban sectors + transfers from abroad. Savings equals total income less taxes and total expenditure.

The model has 26 producing sectors that each produces one commodity. The commodities are produced by the input factors labour, capital and intermediates, theintermedates is in fixed proportion to the production level, while there are substitution possibilities between labour and capital. The relative prices between labour and capital determine the mix of those input factors. Demand for labour is determined by equating the value of the marginal production of labour to the wage rate. High wages make producers substitute capital for labour so that demand for labour is decreasing in the real wage rate. The wage level is indexed to inflation, i.e. the consumer price index for workers.

Total labour supply is growing by a constant rate based on population growth forecasts. The relative relationship between income growth rates for peasants and urban workers decides the direction and size of migration of the labour force between urban and rural sector. Unemployment is determined as labour supply in urban areas less employed in urban areas.

The labour market is not in equilibrium. For the labour market to be in equilibrium it would be necessary for wages to adjust according to the value of the marginal product of labour until supply equals demand. The capital stock in period t+1 is equal to the capital stock in period t less depreciation + investment in period t. Total nominal investment equals the sum of investment by sector of origin. Allocation of investment by destination is determined by fixed coefficients. The sectoral pattern of investment by destination is translated into demand for investment goods by sector of origin.

Domestic produced goods compete with foreign goods both on the world market and at home. It is assumed that domestically produced commodities and imported goods of the same category are non-perfect substitutes (the Armington assumption). The relative prices determine the market shares.

World market prices (in dollars) are exogenous, and the exchange rate is fixed by the government (held constant in this study). The price of imported goods is determined as the world market price (in dollar) multiplied by the exchange rate and adjusted for tariffs on imports. The price of exports is determined as the world market price multiplied by the exchange rate and adjusted for an export subsidy. The higher the price of the domestically produced commodity relative to the price of the imported commodity, the higher is the import share. The lower the price on exports relative to the world market price, the higher is the export.

Appendix 5 gives a description of the equations in the model and a list of variables.

8. Scenario analysis: Impact of soil erosion on economic growth.

In this section we describe the results from simulations on the AGE model for Nicaragua. We focus on the macroeconomic effects of erosion due to productivity losses and estimated amounts of erosion i.e. loss of soil in tons. The scenarios must not be interpreted as actual forecasts of the likely development of the economy. Further work with the model is necessary in order to establish more realistic scenarios. However, the kind of scenario analysis performed here is useful in order to investigate the sensitivity of economic growth to erosion. We will therefore emphasize the *deviations* between scenarios rather than the actual levels of variables.

In the baseline scenario GDP grows at an annual rate of 2,7 percent. As described in section 6.1, soil loss is assumed to be in constant proportions to area harvested by crop and region. Area harvested is proportional to production adjusted for changes in productivity. Over the period 1991-2000 Nicaragua will have lost a total of approximately 970 million tons of soil.

Erosion reduces the productivity of the soil, i.e. yields are reduced for a given level of inputs. In this study we try to quantify the macroeconomic effects of erosion. We do this by introducing a decreasing productivity parameter in the production functions for agricultural products.

The estimates of productivity reductions by crop and region are given in table 5.8. In order to use these results in the model, the regional data were aggregated to national levels by weighing the regional productivity numbers by the region's share of total production of the crop in the base year. Productivity loss by crop on a national level is given in table 8.1.

Coffee	1,26		
Cotton	1,31		
Bananas	0,0		
Sesame	2,16		
Sugar	0,13		
Maize	2,41		
Beans	2,52		
Rice	0,33		
Sorghum	1,35		
Vegetables	0,13		
Pasture	2,32		

 Table 8.1. Erosion induced annual productivity loss in agricultural sectors. Percent

Sesame, maize and beans are the crops which incur the greatest productivity loss, while bananas, sugar and rice suffer minor productivity losses. Coffee, cotton and sorghum are in an intermediate position. Pasture incurs a productivity loss in line with sesame, maize and beans.

The loss of productivity will of course reduce output in the agricultural sectors. Reduced output in these sectors will however also affect other sectors in the economy. Since production in the agricultural sectors are reduced, deliveries from other sectors are reduced, shrinking the general production activity. All these effects are incorporated in the input-output core of the model. Table 8.2 shows the main macroeconomic effects of reduced productivity in agriculture due to erosion.

Table 8.2.Main macroeconomic variables.Deviation from baseline scenario afterten years.Percent.

GDP	-14,5
Imports	-11,3
Exports	-14,5
Private consumption	-13,7
Investment	-23,7

The table shows that production, imports, exports and consumption are reduced by 11-14 percent compared to the baseline scenario, while investment is reduced by almost 24 percent.

The reduction in investment is much larger than the reduction in the other variables and requires some further explanation.

Total investment is determined by total savings which consists of savings by households, government and foreign savings. Foreign savings is exogenous while savings by households is determined as a constant share of household income. Government savings is determined by equating total government revenue by total government expenditure. When production is reduced, government income is reduced due to lower revenue from indirect taxes and income taxes. Government expenditure on goods is, however, exogenous in the model, so government savings must therefore be reduced in order to balance the budget revenue with government expenditure. The reduction in household and government saving together implies a reduction in savings of almost 24 percent and consequently a corresponding reduction in investment. A relative big income reduction for capitalist and small urban proprietos contributes to lower household savings, as workers and and campesinos save less in comparison.

Table 8.3 shows the effects on output, labour and prices in the various sectors of the economy.

	Output	Labour	Wages	Prices
Coffee	-18,5	-32,4	20,0	0,3
Cotton	-21,2	-34,8	20,0	0,1
Bananas	-4,7	-21,3	20,2	-0,2
Sesame	-27,9	-40,0	20,2	0,7
Sugar	-12,2	-21,6	19,9	5,0
Maize	-22,2	-16,2	19,9	17,2
Beans	-22,8	-6,7	19,9	19,1
Rice	-8,1	-36,2	19,8	-1,6
Sorghum	-18,5	-77,2	19,9	-31,9
Other agriculture	-4,7	-25,5	20,0	-0,7
Cattle	-21,0	7,5	20,0	16,8
Forestry	-5,0	-31,4	20,0	-6,3
Fishery	-6,4	-34,1	20,1	-0,2
Mining	-5,2	-22,3	20,1	-0,4
Food and beverages	-12,2	-30,7	20,0	1,0
Textiles	-19,6	-36,7	20,0	0,1
Chemicals	-12,7	-31,1	20,0	0,1
Oil production	-12,0	-56,5	20,0	0,1
Other industries	-11,7	-33,3	20,0	-0,4
Electricity	-34,2	-37,7	20,0	5,4
Water	-10,8	-20,1	20,0	6,8
Construction	-21,2	-35,0	20,0	0,6
Services	-16,9	-22,4	20,0	8,6
Transport and comm.	-12,8	-27,7	20,0	-0,1
Education and health	-4,0	-4,3	20,0	16,2
Trade	-13,8	-27,1	20,0	1,6
Total	-14,6	-25,0		

 Table 8.3. Output, labour, wages and prices. Deviation from baseline after ten years.

 Percent.

Production

Falling soil productivity reduces production in the agricultural sectors directly and indirectly. As table 8.3 shows, it is sesame, beans and maize that experience the largest reductions, because it is these sectors that experience the largest productivity losses due to erosion. Reduced production in the agricultural sectors does also affect production in non-agricultural sectors. The reduction in production in agricultural sectors implies that these sectors need less intermediate goods from other sectors, which in turn leads to reduced production in these sectors. The reduction in production in non-agricultural sectors is largest for electricity.

Demand for labour

Total demand for labour is reduced by 25 percent. Production shifts downwords in all sectors, and lower activity shrinks labour demand. However, the labour demand is also affected by the change in sales price, the cost of other input factors like capital intermediates, and of course by the wage rate itself. Wages are indexed to the general price level which is rising, thus wages also increase and make producers demand less labour. The wage rate increases by approximately 20 percent in all sectors. Declining production and rising wages consequently both tend to undermine unemployment opprtunities. On the other hand the price effects are ambigous. For livestock production the rise in net price (sales price less unit cost) is large enough to offset the negative impact of rising wages and falling production volume. Hence, more labour are employed in this production.

Among the non-agricultural sectors it is the refinery sector that experiences the largest reduction in employment. The main reason for this is a relatively large reduction in the netprice. Demand for labour in production of sorghum is reduced by 77 percent. The large percentage reduction can however be explained by a very low initial use of labour. A small change in absolute numbers can therefore lead to large percentage changes.

The drastic reduction in labour demand should be judged on background of the wage formation relation of this model. The model assumes complete compensation of rising living costs for workers, independent of the unemployment level. In other words the real wage rate is *not* assumed to adjust downwards to assure full employment. Over a period of several years with high unemployment, it is doubtful that such a wage formation could sustain. It is more realistic that the real wage will fall and dampen the rise in unemployment. In that case, the negative impacts on economic growth will also be modified.

Prices

The prices in the model adjust in order to equate supply with demand. A reduction in productivity will as a first order effect reduce supply and thereby increase prices. Due to demand side effects the demand curve will also shift downwards and the effect on prices is uncertain. Table 8.3 shows that some prices are reduced and some are increased. The increase in prices is largest for maize, beans and pasture for the agricultural sectors and education and health among the non-agricultural sectors. Sorghum experiences the largest reduction in prices. The large increase in the price of maize and beans and a modest reduction in production indicates that the demand for basic food grains is rather inelastic. As a consequence a part of the cost of erosion is passed on to other social classes than campesinos. In table 8.4 the effect on income for the four social classes is shown.

This result illustrates a theoretical aspect concerning the valuation of natural resource depletion in an open economy noted by Asheim (1986). When natural resources are depleted, prices increase and improve the terms of trade and favour future consumers in the resource exporting country, partly compensating the reduction in resource capital assets. As a consequence, to maintain a constant level of consumption over time, it is not necessary to completely compensate the resource depletion by investment in other types of capital, as a part will be compensated by the rising terms of trade. If we think of campesinos as a separate trading economy, we notice their improved terms of trade with the rest of the economy.

Table 8.4. Effect on income distribution. Percent deviation from baseline after ten years.

	Income
Campesinos	-9,4
Urban workers	-12,9
Urban small proprietors	-16,8
Capitalists	-15,7
Total	-14,0

Although the total income is reduced more for other classes than the campesinos, the impact on income levels per capita might be more even due to the impact of migration. In the model, rural-urban migration is determined by the last years relation between income growth in the two parts of the economy. The erosion cost makes income grow less rapid in the urban sector than in rural sector. Thus migration to the urban sector is dampened, leaving a bigger share of the population dependant on the income generated by the rural economy.

9. Conclusions

Most erosion studies focus on small local areas and do not try to assess the effects of erosion on agents outside that area. To better assess the total economic implications we believe it is necessary to have a national perspective on soil erosion. In this report we analyse the macroeconomic effects of erosion induced reduction in agricultural productivity in Nicaragua. We do this by using a multisectoral macroeconomic model for the Nicaraguan economy. Through modelling of the interrelationship between sectors, we see how reduced productivity in the agricultural sectors influences activity and prices in other sectors. We find that after a period of ten years gross domestic product (GDP) and private consumption are reduced by 14 and 13 percent respectively compared to a baseline scenario without productivity loss. Investment is reduced by almost 24 percent. Sesame, beans and maize experience the largest reductions in production. Production in non-agricultural sectors is reduced because rising food prices and wage level increases the general domestic cost level. Demand for labour in the formal sector decreases by 25 percent.

At this stage, the focus has been on establishing the model framework, rather than creating a realistic policy scenario. Hence, the results are only illustrative. When doing this study we admittedly take many shortcuts in our estimates of soil loss and yield decline. Thus, the numbers that we report are uncertain and should be interpreted with caution. However, we still see the approach with linking environmental problems to macroeconomic models as useful. It shows that soil degradation matters to the whole economy, also to non-agricultural sectors. Hopefully the quantification of these impacts may serve as an eye-opener to decision makers who usually see soil erosion as outside their field. It is also our hope that a formal study at the macro level such as the present one can stimulate cooperation between soil scientists and economists in order to produce better data and better modelling of the links between soil erosion and economic development.

...**.**

References:

Banco Central de Nicaragua (1991): Bolletin Trimestrial. Banco Central de Nicaragua. Managua, Nicaragua.

Blaikie, P. (1985): The political Economy of Soil Erosion. Longman Scientific & Technical, Essex, England.

Fox, G. and E. J. Dickson (1988): What's Economic About the Economic Cost of Soil Erosion to Canadian Farmers? Discussion Paper DP88/3, Department of Agricultural Economics and Business, University of Guelph, Guelph, Ontario.

Government of Nicaragua (1992): Medium-Term Development Strategy 1992-1996 (Summary). Document presented at the Consultative Group Meeting, Washington, D.C., March 1992.

INEC (1991): Nicaragua en Cifras. Instituto Nacional De Estadisticas Y Censos. Managua, Nicaragua.

INETER (1983): Uso de Suelo. Realizacion de Temas Cartograficos a Partir de la Interpretacion de Imagenes Landsat. Instituto Nicaraguense de Estudios Terretoriales. Ministerio de Planificacion. Managua, Nicaragua.

Lal, R. (1987): Effects of Soil Erosion on Crop Productivity. Critical Reviews in Plant Sciences Vol.5, Issue 4, pp. 303-367. CRC Press, Boca Raton, Florida.

Lyles, L.(1975): Possible Effects of Wind Erosion on Soil Productivity. J. Soil Water Conserv., 30, 279, 1975.

Magrath, W. and P. Arens (1989): The cost of Soil Erosion on Java: A Natural Resource Accounting Approach. Environment Department Working Paper No. 18. The World Bank, Washington D.C.

Marín Castillo, Eduardo (1991): Mapa de Erosion Hidrica y Eolica del Suelo. ECOT-PAF, Gobierno de Nicaragua.

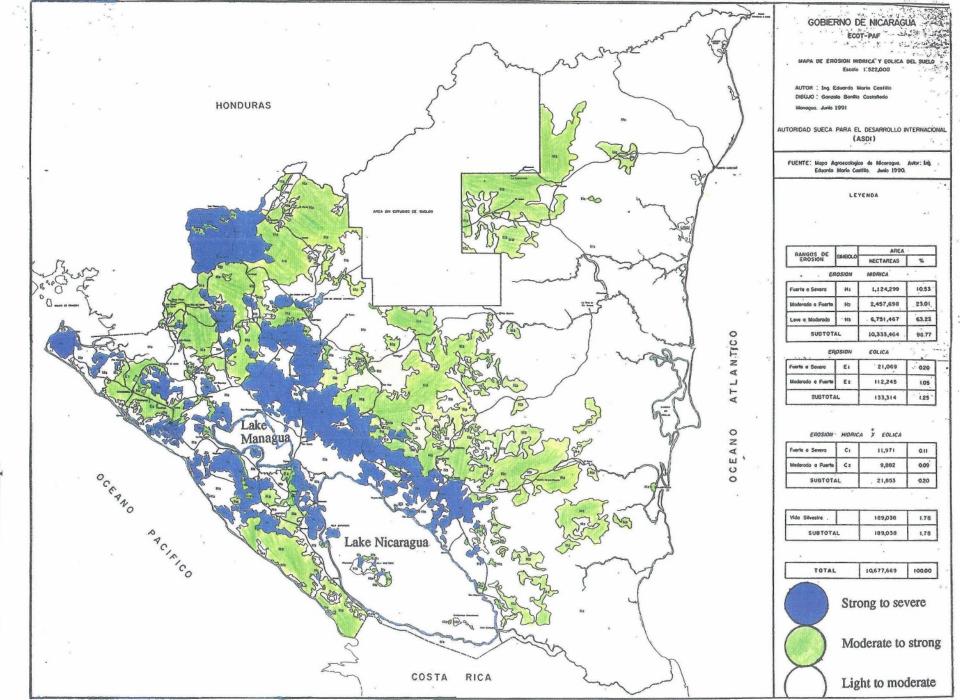
Marín Castillo, Eduardo (1979): Definiciones y Parametros de Variables Edafologcas. Unpublished paper. Instituto Interamericano de Ciencias Agricolas. Managua, Nicaragua.

Marín Castillo, Eduardo (1988): Proyecto de ordenamiento del sistema productivo, Region II. Informe final. Ministerio de desarollo agropecuario y reforma agraria (MIDINRA). Dirección general de agricultura (DGA). Managua, Nicaragua.

Marín Castillo, Eduardo (1990): Estudio agroecologico y su aplicación al desarollo productivo agropcuario, Region IV. Informe final. Ministerio de agricultura y Ganadería (MAG), Dirección general de tecnología agropecuaria (D.G.T.A), Ordenamiento del sistema productivo agropecuario (O.S.P.A). Managua, Nicaragua.

Marín Castillo, Eduardo (1992): Estudio agroecologico de la Region III y su aplicación al desarollo agropcuario. Agencia Finlandese para el desarollo internacional (FINNIDA).

Southgate, D.(1988): The Economics of Land Degradation in the Third World. Environment Department Working Paper No. 2, World Bank, Washington D.C.


Weitzman, M.L. (1976): On the welfare significance of national product in a dynamic economy. Quarterly Journal of Economics 90, 156-162. North Holland.

Williams, J.R. and K.G. Renard (1985): Assessment of Soil Erosion and Crop Productivity with Process Models (EPIC). In R.F. Follet and B.A. Stewart, eds., Soil Erosion and Crop productivity. Madison, Wisconsin: American Society of Agronomy, Inc./ Crop Science Society of America, Inc./ Soil science Society of America, Inc.

Wischmeier, W.H. and D.D. Smith (1978): Predicting Rainfall Erosion Losses. USDA Handbook. U.S. Department of Agriculture, p. 537.

World Resources Institute (1991): Accounts overdue. Natural Resource Depreciation in Costa Rica. Washington D.C.

Aasheim, G. B (1986): Harwick's rule in open economies. Canadian Journal of Economics, XIX, no. 3. 1986, 395-402.

43

Appendix 1. Erosion Map.

]	Region I

								Kt	gion I									
		1965-66	1970-71	1975-76	1976-77	1977-78	1978-79	1979-80	1980-81	1981-82	1982-83	1983-84	1984-85	1986-87	1987-88	1988-89	1989-90	1990-91
Beans	Area (mzs.)	7507	12397	23331	23201	19997	43310	17861	14595	23792	24623	29237	24500	32000	20200	35629	30707	32033
	Prod. (qq)	77952	146141	167168	202047	166252	517312	144434	157969	266873	249862	351665	256900	337800	160700	279300	263500	328500
	Yield (qq/mz)	10,4	11,8	7,2	8,7	8,3	11,9	8,1	10,8	11,2	10,1	12,0	10,5	10,6	8,0	7,8	8,6	10,3
Aaize	Area (mzs.)	25946	27122	27444	35153	35288	59631	38300	11450	38806	25349	28855	30200	32300	36500	43000	33782	20897
	Prod. (qq)	287012	337597	347043	347553	438754	897519	492838	215824	614021	390215	551471	804300	1100000	1330000	1384900	1421300	758600
	Yield (qq/mz)	11,1	12,4	12,6	9,9	12,4	15,1	12,9	18,8	15,8	15,4	19,1	26,6	34,1	36,4	32,2	42,1	36,3
Sorghum	Area (mzs.)	7777	10181	15568	12682	3585	9776	4991	4220	6640	5668	5238	5400	5100	2900	4210	7212	11025
8	Prod. (qq)	105924	139295	218368	136119	45806	148156	72130	57186	98043	63693	117133	117300	115900	38800	106400	146000	204000
	Yield (qq/mz)	13,6	13,7	14,0	10,7	12,8	15,2	14,5	13,6	14,8	11,2	22,4	21,7	22,7	13,4	25,3	20,2	18,5
lice	Area (mzs.)	439	441	1631	184	1136	2381	2496	1777	1095	5251	3675	4400	1700	3200	2980	3380	2473
(icc	Prod. (qq)	9447	7128	42637	7794	52080	64040	42361	57330	29575	168900	131983	157300	72000	102100	111000	114170	78991
	Yield (qq/mz)	21,5	16,2	26,1	42,4	45,8	26,9	17,0	32,3	27,0	32,2	35,9	35,8	42,4	31,9	37,2	33,8	31,9
iesame	Area (mzs.)	574	187	178	185	461	502		419	93	85	84	200		**	••		110
counto	Prod. (qq)	4990	1492	1600	1500	4205	4208	••	2631	569	621	618	2000				••	1230
	Yield (qq/mz)	8,7	8,0	9,0	8,1	9,1	8,4	••	6,3	6,1	7,3	7,4	10,0			••	••	11,2
Coffee	Area (mzs.)	20989	23424	31948	27151	27578	27907	25000	25000	24635	25027	25027	20324	17948	18771	20951	21378	24759
Jones	Prod. (qq)	89042	100859	107344	128954	146269	147652	136202	227998	236725	271696	189558	121700	132200	119533	149074	181671	138819
	Yield (qq/mz)	4,2	4,3	3,4	4,7	5,3	5,3	5,4	9,1	9,6	10,9	7,6	6,0	7,4	6,4	7,1	8,5	5,6
Cotton	Area (mzs.)	3472	46		13	53	20		122	263	239	138	49			••		••
	Prod. (qq)	89166	552		196	1325	660	••	4985	7890	6606	2795	1720	**	••	**	••	**
	Yield (qq/mz)	25,7	12,0		15,1	25,0	33,0		40,9	30,0	27,6	20,3	35,1	••	**	••		**
lugar	Area (mzs.)	2318	828	855	1237	1251	212	197	817	912	912	912		••	**			••
5	Prod. (qq)	47966	17480	21520	23317	23785	2947	2365	14703	16826	27344	27344	••	••		••		••
	Yield (qq/mz)	20,7	21,1	25,2	18,8	19,0	13,9	12,0	18,0	18,4	30,0	30,0		••			••	**
obacco	Area (mzs.)						••	••	694	689	502	1255	1100	••			**	**
	Prod. (qq)		**	••		••	••	••	21664	22152	18128	40821	23900	••	•0	••	••	**
	Yield (qq/mz)	••	••	••				••	31,2	32,2	36,1	32,5	21,7	••				**

Region II

		1965-66	1970-71	1975-76	1976-77	1977-78	1978-79	1979-80	1980-81	1981-82	1982-83	1983-84	1984-85	1986-87	1987-88	1988-89	1989-90	1990-91
Beans	Area (mzs.)	1612	1717	2450	3732	812	2726	691	1470	4444	9151	5160	3300	6345	6558	8158	10197	9666
	Prod. (qq)	18301	18412	15880	29349	6628	29605	4949	11520	34115	149450	63065	29300	51000	42242	56200	48400	58500
	Yield (qq/mz)	11,4	10,7	6,5	7,9	8,2	10,9	7,2	7,8	7,7	16,3	12,2	8,9	8,0	6,4	6,9	4,7	6,1
Maize	Area (mzs.)	32439	46710	39045	35421	68278	52621	59093	49734	47603	16989	21082	23700	15230	36690	49351	27441	19456
_	Prod. (qq)	489321	646045	482769	509200	830129	994493	734493	815562	1044446	614588	669701	910600	267200	1186874	1043200	694900	283800
	Yield (qq/mz)	15,1	13,8	12,4	14,4	12,2	18,9	12,4	16,4	21,9	36,2	31,8	38,4	17,5	32,3	21,1	25,3	14,6
Sorghum	Area (mzs.)	9490	21998	10555	9789	35327	29192	14298	6175	36713	15240	14804	16400	43373	44998	42487	26795	22622
0	Prod. (qq)	134684	356660	161437	193646	518133	648951	401148	148969	843828	292905	380128	440500	1327500	885519	1018100	416600	345400
	Yield (qq/mz)	14,2	16,2	15,3	19,8	14,7	22,2	28,1	24,1	23,0	19,2	25,7	26,9	30,6	19,7	24,0	15,5	15,3
Rice	Area (mzs.)	2305	2400	4190	2253	3406	650	196	2449	16223	10497	9318	5700	10300	11200	18180	17670	11902
	Prod. (qq)	48357	63170	128291	85540	140040	21746	2940	81460	482797	296300	319977	206300	305100	306500	471800	358570	316726
	Yield (qq/mz)	21,0	26,3	30,6	38,0	41,1	33,5	15,0	33,3	29,8	28,2	34,3	36,2	29,6	27,4	26,0	20,3	26,6
Sesame	Area (mzs.)	5088	9601	5520	4619	7324	6205	9088	21965	17618	9706	17545	17700	8751	8233	12169	30499	39447
	Prod. (qq)	60594	94907	51579	42845	71533	62988	83551	142992	117340	70807	201620	120300	68923	54370	62003	166761	183933
	Yield (qq/mz)	11,9	9,9	9,3	9,3	9,8	10,2	9,2	6,5	6,7	7,3	11,5	6,8	7,9	6,6	5,1	5,5	4,7
Coffee	Area (mzs.)	1090	1202	1306	780	780	784	1200	1200	1593	1593	1593	1435	1412	1400	800	830	758
	Prod. (qq)	5792	6170	4693	3826	4254	4295	4667	7936	8362	6127	4182	7500	4000	4900	4706	10056	5944
	Yield (qq/mz)	5,3	5,1	3,6	4,9	5,5	5,5	3,9	6,6	5,2	3,8	2,6	5,2	2,8	3,5	5,9	12,1	7,8
Cotton	Area (mzs.)	146103	111793	181413	238052	256115	211061	48818	119340	117931	113346	145242	142700	78856	82500	56780	47510 1400850	61052 1758010
	Prod. (qq)	5008982	4410177	6481323	6978864	7889222	6876855	981193	4357830	3539743	4468907	4937335	4004200	3122986	2139800	1553730		
	Yield (qq/mz)	34,3	39,4	35,7	29,3	30,8	32,6	20,1	36,5	30,0	39,4	34,0	28,1	39,6	25,9	27,4	29,5	28,8 31303
Sugar	Area (mzs.)	15497	27849	36181	29822	30206	34223	32003	34489	38501	35981	34654	35880	32605	32877	26205	31512	
	Prod. (qq)	669872	1371767	1783425	1777432	1822459	1953909	1549972	1819651	2121608	1791323	1907189	1518700	1482521	1289191	993184	1358084	1491725
	Yield (qq/mz)	43,2	49,3	49,3	59,6	60,3	57,1	48,4	52,8	55,1	49,8	55,0	42,3	45,5	39,2	37,9	43,1	47,7
Tobacco	Area (mzs.)		••		••	••	••	••	35	••	••	307	300	••	••	••	••	••
	Prod. (qq)	••	••	••	••		••	••	551	••		5954	4300	••			**	**
	Yield (qq/mz)				••		••		15,7	••		19,4	14,3					
Banano		1965	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
	Area (mzs.)	625	3292	3464	3410	3728	4052	3726	3780	3214	3800	3200	3800	3800	3500	3200	3800	3500
	Prod.(boxes)	431177	6802042	6097637	6074978	6522106	6501150	6308620	4478429	6895004	6051400	6895000	6051400	5950800	5665600	4999000	5400400	5681300
	Yield (box/mz)	689,9	2066,2	1760,3	1781,5	1749,5	1604,4	1693,1	1184,8	2145,3	1592,5	2154,7	1592,5	1566,0	1618,7	1562,2	1421,2	1623,2

Region III

		1965-66	1970-71	1975-76	1976-77	1977-78	1978-79	1979-80	1980-81	1981-82	1982-83	1983-84	1984-85	1986-87	1987-88	1988-89	1989-90	1990-91
Beans	Area (mzs.)	2630	1258	2156	4044	1112	6157	2568	946	2474	1396	1193	1800	4703	4225	5023	3058	2596
	Prod. (qq)	26512	11507	9335	25723	7673	54172	14000	4100	14578	14560	10730	18000	41100	23256	23400	24900	19100
	Yield (qq/mz)	10,1	9,1	4,3	6,4	6,9	8,8	5,5	4,3	5,9	10,4	9,0	10,0	8,7	5,5	4,7	8,1	7,4
Maize	Area (mzs.)	15079	10270	10184	12300	5075	16336	7880	5042	6423	5943	5687	5300	10747	6453	7636	3796	4110
	Prod. (qq)	191808	169390	99393	147713	48705	243702	107520	31243	62846	144705	141188	259300	346900	181663	185700	112600	97600
	Yield (qq/mz)	12,7	16,5	9,8	12,0	9,6	14,9	13,6	6,2	9,8	24,3	24,8	48,9	32,3	28,2	24,3	29,7	23,7
Sorghum	Area (mzs.)	5713	6933	23698	33884	5955	8495	8373	22950	15352	7682	15241	21900	25674	23937	14418	5301	5501
	Prod. (qq)	91358	101983	383146	986998	86431	164465	155382	841802	406828	155769	601638	829900	759100	435627	408500	138100	169200
	Yield (qq/mz)	16,0	14,7	16,2	29,1	14,5	19,4	18,6	36,7	26,5	20,3	39,5	37,9	29,6	18,2	28,3	26,1	30,8
Rice	Area (mzs.)	2327	3631	6215	3869	1641	2277	605	5738	3505	2209	2915	4500	300	100	610	750	151
	Prod. (qq)	42894	124475	203539	124873	36621	85038	21713	211635	144561	97100	143234	196800	5800	2000	16300	15000	1469
	Yield (qq/mz)	18,4	34,3	32,7	32,3	22,3	37,3	35,9	36,9	41,2	44,0	49,1	43,7	19,3	20,0	26,7	20,0	9,7
Sesame	Area (mzs.)	2560	403	824	276	449	1267	282	1896	1449	1802	1836	1300	544	1039	267	4420	5839
	Prod. (qq)	24269	4999	6875	2722	4423	12365	2180	14128	11629	17189	17229	13000	4911	3143	2681	34904	48435
	Yield (qq/mz)	9,5	12,4	8,3	9,9	9,9	9,8	7,7	7,5	8,0	9,5	9,4	10,0	9,0	3,0	10,0	7,9	8,3
Coffee	Area (mzs.)	16925	24537	34898	20775	20780	21038	20000	20000	15519	15435	15435	15524	9359	9956	7810	7477	7477
	Prod. (qq)	94137	150903	185219	149831	170042	171651	186187	115217	113557	141656	71291	48800	36200	58068	34884	58744	24650
	Yield (qq/mz)	5,6	6,2	5,3	7,2	8,2	8,2	9,3	5,8	7,3	9,2	4,6	3,1	3,9	5,8	4,5	7,9	3,3
Cotton	Area (mzs.)	28975	13015	13970	26406	29917	18441	3927	4300	3750	6129	7908	9390	2372	500	••	••	••
	Prod. (qq)	1098534	415032	467576	551357	589266	598795	62403	140349	132472	202617	227593	240766	71427	10600	••	••	••
	Yield (qq/mz)	37,9	31,9	33,5	20,9	19,7	32,5	15,9	32,6	35,3	33,1	28,8	25,6	30,1	21,2	••	••	
Sugar	Area (mzs.)	5657	6672	8076	6953	7041	6553	6132	6534	7294	8796	8346	7700	11499	11407	10655	13472	16180
	Prod. (qq)	238216	274099	387390	244142	250431	330384	262190	288883	336827	373564	355034	372600	489486	468015	510738	557058	772719
	Yield (qq/mz)	42,1	41,1	48,0	35,1	35,6	50,4	42,8	44,2	46,2	42,5	42,5	48,4	42,6	41,0	47,9	41,3	47,8
Tobacco	Area (mzs.)	••		••		••					••	171	200	••	••	••	••	
	Prod. (qq)			••	••	••	••	••				4037	2800				••	
	Yield (qq/mz)										•	23,6	14,0		••	••		

Region IV

		1965-66	1970-71	1975-76	1976-77	1977-78	1978-79	1979-80	1980-81	1981-82	1982-83	1983-84	1984-85	1986-87	1987-88	1988-89	1989-90	1990-91
Beans	Area (mzs.)	9861	6855	12095	17577	14783	26761	11536	10766	16459	8471	16668	13700	25563	18502	16324	18320	18561
	Prod. (qq)	111444	73646	67753	131868	127512	277362	74440	65591	130615	92229	186784	150300	223300	103700	104000	158200	162400
	Yield (qq/mz)	11,3	10,7	5,6	7,5	8,6	10,4	6,5	6,1	7,9	10,9	11,2	11,0	8,7	5,6	6,4	8,6	8,7
Maize	Area (mzs.)	28392	24313	25984	25539	35290	41681	27715	28389	36688	11046	16502	13900	25860	20241	29124	14891	21336
	Prod. (qq)	389568	433716	410938	433219	434362	817100	424780	732915	513013	183339	596689	518500	877900	894000	1113600	492600	642000
	Yield (qq/mz)	13,7	17,8	15,8	17,0	12,3	19,6	15,3	25,8	14,0	16,6	36,2	37,3	33,9	44,2	38,2	33,1	30,1
Sorghum	Area (mzs.)	7118	4618	7320	19359	8063	12380	23994	20707	14835	18168	25543	19800	26675	27217	18941	19911	18562
	Prod. (qq)	98978	78628	104506	667957	141909	216598	443768	662080	431796	498039	949209	756600	1051800	831800	557800	734800	727700
	Yield (qq/mz)	13,9	17,0	14,3	34,5	17,6	17,5	18,5	32,0	29,1	27,4	37,2	38,2	39,4	30,6	29,4	36,9	39,2
Rice	Area (mzs.)	10112	10996	8771	5290	3128	10748	24143	9286	21035	18031	17478	11500	13400	11400	8490	9510	12744
	Prod. (qq)	215692	243577	258230	129907	78166	313176	668681	277813	691877	634771	552370	438600	411000	332300	202700	235440	369249
	Yield (qq/mz)	21,3	22,2	29,4	24,6	25,0	29,1	27,7	29,9	32,9	35,2	31,6	38,1	30,7	29,1	23,9	24,8	29,0
Sesame	Area (mzs.)	3950	3247	2708	2771	3844	5665	2034	4614	2190	2286	2535	2800	1473	1086	1321	3654	5068
	Prod. (qq)	42873	37444	25322	31211	38069	63404	21975	31545	18178	21845	30533	31900	12600	10209	7265	22609	43300
	Yield (qq/mz)	10,9	11,5	9,4	11,3	9,9	11,2	10,8	6,8	8,3	9,6	12,0	11,4	8,6	9,4	5,5	6,2	8,5
Coffee	Area (mzs.)	24697	34228	65397	38924	38934	39434	29800	21014	19188	18415	20615	20630	17934	15548	16280	15203	13627
	Prod. (qq)	156871	181409	269231	217763	247743	249581	267123	146965	133235	214402	86231	164600	123000	135000	116578	221264	57730
	Yield (qq/mz)	6,4	5,3	4,1	5,6	6,4	6,3	9,0	7,0	6,9	11,6	4,2	8,0	6,9	8,7	7,2	14,6	4,2
Cotton	Area (mzs.)	19431	8952	9218	16744	21925	17839	11288	10789	10779	9437	14273	12161	3552	1900	770	2042	2040
	Prod. (qq)	748906	291637	333934	583287	609410	651686	301094	374247	400894	392006	532016	361959	94624	49600	7670	31760	29388
	Yield (qq/mz)	38,5	32,6	36,2	34,8	27,8	36,5	26,7	34,7	37,2	41,5	37,3	29,8	26,6	26,1	10,0	15,6	14,4
Sugar	Area (mzs.)	5349	5732	8842	11086	11230	12645	11834	10963	12241	14866	13743	12600	12472	2200	8703	10053	10443
0	Prod. (qq)	187258	210148	480724	445067	456297	594154	471422	439758	512875	642611	697064	549200	508113	66000	384913	441210	447071
	Yield (qq/mz)	35,0	36,7	54,4	40,1	40,6	47,0	39,8	40,1	41,9	43,2	50,7	43,6	40,7	30,0	44,2	43,9	42,8
Tobacco	Area (mzs.)				••	••		••	688	350	320	681	600	-	••	••		4.
	Prod. (qq)	••						••	17475	11799	9421	17301	16400	••	••	••	••	••
	Yield (qq/mz)		••	••				••	25,4	33,7	29,4	25,4	27,3		••		••	

47

Region V

		1965-66	1970-71	1975-76	1976-77	1977-78	1978-79	1979-80	1980-81	1981-82	1982-83	1983-84	1984-85	1986-87	1987-88	1988-89	1989-90	1990-91
Beans	Area (mzs.)	7449	8422	4549	10360	5169	11244	4127	4388	4325	23932	33870	34100	25030	15100	28834	35226	38094
	Prod. (qq)	88804	89679	24734	96687	38570	144940	24654	29668	22769	200539	259267	338000	195700	124900	277600	315400	337300
	Yield (qq/mz)	11,9	10,6	5,4	9,3	7,5	12,9	6,0	6,8	5,3	8,4	7,7	9,9	7,8	8,3	9,6	9,0	8,9
Maize	Area (mzs.)	59357	69607	24669	42582	24476	56240	21460	35025	36827	95352	104559	97600	42900	57900	68457	112288	95491
	Prod. (gq)	775984	745708	261012	522270	254638	909511	228379	683294	310240	1315062	1360128	967800	466300	578800	686700	1288200	932600
	Yield (qq/mz)	13,1	10,7	10,6	12,3	10,4	16,2	10,6	19,5	8,4	13,8	13,0	9,9	10,9	10,0	10,0	11,5	9,8
Sorghum	Area (mzs.)	11883	6604	7942	5528	4199	6103	11354	8137	10970	6192	1907	4000	8902	5900	8836	5999	5793
8	Prod. (qq)	172632	95842	125488	70477	61423	98361	176648	161652	141795	77873	39171	92000	284900	122800	184900	125700	117000
	Yield (qq/mz)	14,5	14,5	15,8	12,7	14,6	16,1	15,6	19,9	12,9	12,6	20,5	23,0	32,0	20,8	20,9	21,0	20,2
Rice	Area (mzs.)	3107	8328	5970	3817	5613	8862	7573	9948	6464	13550	15910	13300	12100	12000	10650	13880	14424
	Prod. (qq)	57038	239410	188438	145233	239616	311835	250323	347094	240415	456728	574931	397100	360000	284700	226600	356640	372983
	Yield (qq/mz)	18,4	28,7	31,6	38,0	42,7	35,2	33,1	34,9	37,2	33,7	36,1	29,9	29,8	23,7	21,3	25,7	25,9
Sesame	Area (mzs.)	59	151	3			1	5	33	6	23	••	••		••		••	191
	Prod. (qq)	541	1780	22			9	41	253	44	150				••	••	••	3134
	Yield (qq/mz)	9,2	11,8	7,3	••		9,0	8,2	7,7	7,3	6,5					••	••	16,4
Coffee	Area (mzs.)	4414	3688	3542	3013	3060	3112	4000	5024	5420	5730	5 730	5738	5851	3200	4852	5450	4794
	Prod. (qq)	18353	15339	10595	12757	14514	14652	18299	34579	27277	22305	26788	26300	12400	13077	16253	16938	20582
	Yield (qq/mz)	4,2	4,2	3,0	4,2	4,7	4,7	4,6	6,9	5,0	3,9	4,7	4,6	2,1	4,1	3,3	3,1	4,3
Cotton	Area (mzs.)	245	••		101	469	239	••	100		••	••		••	••	••		
	Prod. (qq)	7403			4581	16329	7170	••	1179	••	••	••	••		••	••		••
	Yield (qq/mz)	30,2			45,4	34,8	30,0	••	11,8				••			••	••	
Sugar	Area (mzs.)	1390	419	468	315	321	84	79	113	126	126	126	440	440	••	••	••	
2	Prod. (qq)	25966	8681	11123	5391	5468	2002	1655	3671	4693	3796	3796	13200	13200	**	••	••	••
	Yield (qq/mz)	18,7	20,7	23,8	17,1	17,0	23,8	20,9	32,5	37,2	30,1	30,1	30,0	30,0	••	••		

Region VI

		1965-66	1970-71	1975-76	1976-77	1977-78	1978-79	1979-80	1980-81	1981-82	1982-83	1983-84	1984-85	1986-87	1987-88	1988-89	1989-90	1990-91	
Beans	Area (mzs.)	16683	21008	33441	37739	35079	51891	19779	18142	20228	23410	33972	38100	41768	25236	46196	41702	50178	
	Prod. (qq)	186758	236204	313935	384080	380706	729442	147948	145412	164654	266666	307689	453000	385000	238590	360300	465000	533700	
	Yield (qq/mz)	11,2	11,2	9,4	10,2	10,9	14,1	7,5	8,0	8,1	11,4	9,1	11,9	9,2	9,5	7,8	11,2	10,6	
Maize	Area (mzs.)	75023	74484	89967	97069	97005	106854	48951	44520	83091	71960	83707	89500	80463	80830	97148	100385	90321	
	Prod. (qq)	1011 89 4	1049429	1340560	1222605	1420245	1794320	603378	587579	974138	1169493	1284748	1109200	1475500	1731170	1916000	1977900	1758100	
	Yield (qq/mz)	13,5	14,1	14,9	12,6	14,6	16,8	12,3	13,2	11,7	16,3	15,3	12,4	18,3	21,4	19,7	19,7	19,5	
Sorghum	Area (mzs.)	10885	8772	20317	4943	4871	4552	7828	7088	9661	3217	4167	6400	7655	4405	4498	6307	1578	
0	Prod. (qq)	143424	157906	343455	58470	76331	79647	130458	67822	174527	62309	136921	203700	230000	93500	131300	119100	42500	
	Yield (qq/mz)	13,2	18,0	16,9	11,8	15,7	17,5	16,7	9,6	18,1	19,4	32,9	31,8	30,0	21,2	29,2	18,9	26,9	
Rice	Area (mzs.)	750	3266	5107	4312	2831	5600	4909	4262	6187	6888	7615	6600	7700	7300	6030	4850	5523	
	Prod. (qq)	10570	131823	182221	180683	123820	206079	163140	169629	226678	293800	297397	279700	285100	245600	189100	174550	204317	
	Yield (qq/mz)	14,1	40,4	35,7	41,9	43,7	36,8	33,2	39,8	36,6	42,7	39,1	42,4	37,0	33,6	31,4	36,0	37,0	
Sesame	Area (mzs.)	389	478	38	70	112	112	3	49	9	51		••	••	••		71	191	
	Prod. (qq)	3443	5539	354	735	1015	1028	26	473	89	388	••	••	••		••	1110	3134	
	Yield (qq/mz)	8,9	11,6	9,3	10,5	9,1	9,2	8,7	9,7	9,9	7,6						15,6	16,4	
Coffee	Area (mzs.)	60158	76242	114712	97489	99019	100240	60000	62000	59345	59700	59700	61957	57626	54163	51370	48827	48716	
	Prod. (qq)	331049	397610	485524	583151	661901	668162	613706	751597	808813	912189	691644	746100	634200	509089	622999	493248	360862	
	Yield (qq/mz)	5,5	5,2	4,2	6,0	6,7	6,7	10,2	12,1	13,6	15,3	11,6	12,0	11,0	9,4	12,1	10,1	7,4	
Cotton	Area (mzs.)	4231	2481		1689	2367	575	••	••		••			••	••	••	••	-	
	Prod. (qq)	116309	92173	••	41634	46974	17273		••	••				••		••		••	
	Yield (qq/mz)	27,5	37,2		24,7	19,8	30,0		••	••						••	••		
Sugar	Area (mzs.)	4921	3242	3997	4492	4551	769	723	1124	1252	1252	1252	2200	2200		••			
0	Prod. (qq)	103890	66045	88258	77808	79832	10035	7801	21257	24615	37573	37573	66000	66000		••	••	••	
	Yield (qq/mz)	21,1	20,4	22,1	17,3	17,5	13,0	10,8	18,9	19,7	30,0	30,0	30,0	30,0	••	••	••	ú*	
Tobacco	Area (mzs.)		••	••	••			••	168	154	134	134		-•	••		••	••	
	Prod. (qq)	••	••	41	••	•*			4075	3807	3577	4071	••	**	••	••	••	••	
	Yield (qq/mz)			••			••	••	24,3	24,7	26,7	30,4	••	••	••	64	••		

	Region I	Region II	Region III	Region IV	Region V	Region VI
Beans	1,0	1,0	0,9	0,90	1,0	1,0
Maize	1,0	0,9	0,9	0,90	1,0	1,0
Sorghum	1,0	0,9	0,9	0,90	1,0	1,0
Rice	1,0	1,1	1,1	1,10	1,1	1,1
Sesame		1,0	1,0	1,0	••	••
Coffee	1,0	0,9	0,9	0,9	1,0	1,1
Cotton	••	0,9	0,9	1,0		
Sugar	1,0	1,0	1,0	1,0	••	1,0
Tobacco	1,1	0,9	1,0	0,9	••	1,1
Vegetables	1,0	••	••	••		1,1
Pasture	1,0	1,1	1,0	1,1	1,1	1,0

Appendix 3. Soil density factors.

Appendix 4. Use of fertilizer and pesticides.

Fertilizer and pesticides are input factors in agricultural production. The use of these input factors depends on their prices relative to other input factors. It is relevant in economic and environmental terms to incorporate variables for agrochemicals in the production function itself. However, the macroeconomic model available at present is not that specific in describing the behaviour of agricultural producers. A more rough approximation could be to link the input of agrochemicals to the level of production within each crop, based on constant input coefficients for use of fertilizer and pesticides. If this was done for each agricultural sector, the effects of structural change on use of fertilizer and pesticides would be incorporated in the model.

After a period of heavy subsidies on agrochemicals in the 80's, prices in Nicaragua are again roughly reflecting world market prices. Also other prices and the exchange rate are brought in touch with the free market levels. Thus, after a few years under the new price regime, input of agrochemicals are now likely to be stabilized at a level that is relevant for the years to come. If a price rise should occur, the input coefficients must obviously be adjusted. If small farmers' access to credit is improved, the use of agrochemicals may rise in certain cultivations, e.g. maize and beans. This should be considered in policy studies. Table A.1 shows preliminary coefficients in a linear sub-model of agricultural inputs.

The data presented below are not statistical data and are not directly useful as coefficients. However, they provide information which calibrated with other sources of information could provide coefficients for submodels of agrochemicals. The data are taken from the annual survey of production costs in different crops and technologies in Nicaragua (Costos agricolas 92/93, Banco Nacional de Desarollo) made by the state bank which is the main creditor of agricultural loans. The survey is a basis for evaluating applications for loans.

Сгор	Insecticides	Herbecides	Fungicides	Adherentes	Biologicos
Cotton	14,5	4,8			1,8
Sesame	2,1	0,4			
Soya	2,3	1,8			1,1
Sugarcane	21,1	2,5			
Coffee	1,2	3,6	3,5	1,0	
Tobacco	14,9	3,7	111,1	1,8	0,8
Maize	7,3	1,6	2,8	0,9	
Beans	7,2	1,1	1,9	4,1	
Rice	4,8	2,0	4,4	0,4	
Sorghum	1,2	0,9	3,8		
Other	3,9	1,7	12,7	0,3	0,1

Table A 4.1. Use of pesticides. Liters per ha.

				g/m	anza	na		Fraction
		Kg/mz	N	P	κ	Mg	В	of area
Alogodon technificad	Mix	90.9	15,5	17				
	Urea	68,175	31 <i>A</i>					
	Am.sulph.	68,175	14,3					
			61,1	17				1
Ajonjoli	Mix	90.9	13.6	5.9	11			
	Urea	90,9	41,8					
			55.A	5,9	11			1
Azucar	Urea	181,8	83,6					
Cafe ren 1.	Mix	45,A5	9,09	3,9				
	Urea	22,725	10,5					
	Foliar	1.36	0,63					
			20,2	3,9				0.04
Cafe ren 2.	mix	272,7	54,5	23				
	Urea	136,35	62,7					
	Foliar	7.27	3,34					
			121	23				0.04
Cafe ren 3.	Mix	545,A	98,2	14	54			
	urea	181,8	83,6					
	foliar	10,91	5.02					
			187	14	54			0.04
Cafe ren.4.	mix	545,A	98,2	14	54			
	urea	181,8	83,6		•••			
	foliar	11.82	5,44					
	iongi		187	14	54			0,04
Cafe techn.	mix	545,A	98,2	14	54			0.04
	urea	272,7	125	14	94			
	foliar							
	IORAL	11,82	5,44	14	F A			0.00
0-(007.05	229	14	54			0.22
Cafe semi	mix	227.25	40,9	5,9	22			
	urea	227,25	105					
	foliar	0,18	0.08					
			33,5	1,3	5,1			0.23
Cafe trad			_					0.22
Cafe mejor 1.	mix	363,6	65 <i>,</i> 4	7 <i>.</i> 8	45			
	urea	227,25	105					
	foliar	2.73	1,26					
			171	7,8	45			0.04
Cafe mejo. 2.	mix	409,05	73,6	8,8	50			
	urea	227.25	105					
	foliar	10,91	5.02					
			183	8.8	50			0.04
Cafe mejor 3.	mix	545.A	98,2	12	67			
	urea	181,8	83,6					
	foliar	2.73						
			183	12	67			0,04
Cafe recup1	mix	272.7		7	27			
	urea	136,35		·	-			
	foliar	5,71						1
		0,7 1	114	7	27			0,03
Cafe recup2	mix	272,7		7	27			0,00
	urea	136,35		/	21			
	foliar							
	loidi	5.71		٦	0.7			0.02
Cata una ma		5 45 4	114		27			0.03
Cafe recup3.	mix	545,A	98,2	14	54			
	urea	272,7						
	foliar	11,82			~			
			229					0,03
Tabaco Americano	mix	22.725		2,3				
	nitr.de potas	204,525	26.6		77			
	urea	90,9	41,8					
	H.semilla de alg	1136.25						
	mix	159.075	28,6	31				
1			99.8		79	>		0.2
			1					
Tabaco burlev	mix	818.1	147	18	81			
Tabaco burley	mix nitr d. amonia	818.1 340.875	1		81			
Tabaco burley	mix nitr d. amonia sulf.de potas	818.1 340.875 90.9	116		81			

Table A 4.2. Estimated use of fertilizer by crop and technology. Nitrogen (N), phosfor (P) and potassium (K) 1992.

	Kg/manzana			
	N	Ρ	Κ	
Cotton	61,1	17.2		
Sesame	55,4	5,9	11.2	
Sugarcan	181,8	83,6		
Coffee	113,9	7.6	27,0	
Tobacco	133,7	18,4	80,7	
Maize	79,1	18,0		
Beans	17,7	18,5	0,7	
Rice	55,1	5 <i>A</i>		
Sorghum	58,7	11,7		
Other	100,0	25,0	0,8	

	Kg/hectare		
	N	Р	K
Cotton	42,8	12,0	
Sesame	38,8	4,1	7 <i>.</i> 8
Sugarcan	127,3	58,5	
Coffee	79,7	5,3	18,9
Tobacco	93,6	12,9	56,5
Maize	55,4	12,6	
Beans	12,4	12,9	0,5
Rice	38,6	3,8	
Sorghum	41,1	8.2	
Other	70,0	17,5	5,6

Init Init <thinit< th=""> Init Init <thi< th=""><th>Tabaco hab.sol</th><th>mix</th><th>90,9</th><th>16.4</th><th>18</th><th></th><th>1</th><th></th></thi<></thinit<>	Tabaco hab.sol	mix	90,9	16.4	18		1	
mix 20.4525 3.68 0.4 2 Tabaco virg, sec aire mit d, amon sighd, a potas 477.225 52.8 18 36 0.2 Tabaco virg, hom de riemic mitrato d, potas 113.625 38 12 10 85. 0.2 Tabaco virg, hom de riemic mitrato d, potas 545.4 98.2 12 54. 98. 0.2 Maiz mitrato d, potas 99.99 13 38 111 12 91 0.2 Maiz mix 90.9 16.4 18 18 0.8 Frijol tech.mach y riege mix 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Sorgo tech riego mix 45.45 20.9 0.3 Sorgo tech mach mix 45.45 8.18 9 0.3 Sorgo tech mach mix 27.27 32.7 35 22		urea	45,45	20,9				
Tabaco virg. sec aire mix 477.225 82.9 10 47 Tabaco virg. hom de filmit d.amon sulph.d. potas 113.625 38 12 10 85.9 10 47 Tabaco virg. hom de filmit mitrato d.potas 99,99 13 38 11 12 10 85.9 10 47 Maiz mitrato d.potas 99,99 13 38 11 12 91 0.2 Maiz mitrato d.potas 99,99 16.4 18 18 18 18 18 18 18 18 18 0.2 18.8 18<		•			~ 4			
Tabaco virg. sec aire mitr d.amon 477.225 85.9 10 47 Tabaco virg. hom de riemit mitr d.amon 113.625 38 142 10 85 0.2 Tabaco virg. hom de riemit mitr d.amon 113.625 38 142 10 85 0.2 Maiz mitr d.amon 136.35 62.7 38 111 12 91 0.2 Frijol tech.mach y riega mix 90.9 16.4 18 0.8 18 0.8 Frijol tech.mach y riega mix 136.35 62.7 79.1 18 0.2 Arroz tech sec. bueyes wirea 90.9 16.4 18 0.2 2.4 Arroz tech bueyes sec urea 136.35 62.7 70.9 0.6 Sorgo tech mach mix 136.35 62.7 71.18 0.2 Sorgo tech mach mix 45.45 8.18 9 0.2 Sorgo tech mach mix 45.45 8.18 9 0.3 Cebola mach. mix 272.7 32.7 35 22 18 83.6 <td></td> <td>mix</td> <td>20,4525</td> <td></td> <td></td> <td></td> <td> </td> <td>0.0</td>		mix	20,4525					0.0
nitr d.amon stph.d. potas 163.62 113.625 55.6 Tabaco virg. hom de frimits nitrato d. potas 142 10 85 0.2 Tabaco virg. hom de frimits nitrato d. potas 99.99 13 38 111 12 91 0.2 Maiz mitrato d. potas 99.99 13 38 111 12 91 0.2 Maiz mitrato d. potas 99.99 16.4 18 18 18 18 18 18 18 18 0.2 Frijol semillo tech mach mix 45.45 8.18 9 12 3.4 0.2 Arroz tech sec: bueyes urea 90.9 16.4 18 0.2 3.4 0.2 Arroz tech nach mix 90.9 16.4 18 0.2 Sorgo tech nach mix 45.45 8.18 9 0.2 Gorgo tech mach mix 42.45 8.18 9 0.3 Sorgo tech nach mix 272.7 32.7 35 22 18	Tataana	1	477.005					0,2
suph.d. potas 113.625 38 0.2 Tabaco virg. hom de rimk nitrato d. potas 142 10 85 0.2 Maiz mitrato d. potas 99,99 13 38 0.2 Maiz mitrato d. potas 99,99 13 36 0.2 Maiz mitrato d. potas 90,9 16.4 18 0.2 Frijol tech.mach y flega mit 90,9 16.4 18 0.8 Arroz tech sec. bueyes urea 136.35 62.7 0.2 Arroz tech sec. bueyes urea 136.35 62.7 0.2 Arroz tech bueyes sec urea 45.45 20.9 0.2 Sorgo tech mach mix 45.45 8.18 9 0.2 Sorgo tech bueyes mix 45.45 8.18 9 0.2 Sorgo tech mach mix 45.45 8.18 9 0.3 Sorgo tech bueyes mix 272.7 32.7 35 22 urea 181.8	labaco virg. sec aire				10	4/		
Tabaco virg, hom de rikmik, nitrato d. potas 142 10 85 0.2 Maiz mikrato d. potas 99,9 13 38 111 12 91 0.2 Maiz mikr 90,9 16.4 18 12 18 18 18 18 18 18 16 18 <				55.6				
Tabaco virg, hom de in mitrato d, potas 99,9 13 38 Maiz mitrato d, potas 99,9 16.4 18 0.2 Maiz mitrato d, potas 90.9 16.4 18 0.2 Frijol tech.mach y legg mix 90.9 16.4 18 0.2 Arroz tech sec.no-max 45.45 8.18 9 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Sorgo tech rilego mix 90.9 16.4 18 0.2 Sorgo tech mach mix 90.9 16.4 18 0.2 Sorgo tech mach mix 45.45 20.9 0.3 0.3 Cebola mach. mix 45.45 8.18 9 0.4 urea 181.8 83.6 18 0.3 Cebola mach. mix 272.7 32.7 35 22 urea 181.8 <td< td=""><td></td><td>sulph.d. potas</td><td>113,625</td><td></td><td></td><td>38</td><td> </td><td></td></td<>		sulph.d. potas	113,625			38		
nitrato d.potas 99.99 13 38 Maiz mix 90.9 13 38 Itti 12 91 0.2 Maiz mix 90.9 16.4 18 Frijol tech.mach y rlegg mix 90.9 16.4 18 0.8 Frijol semilla tech mach mix 136.35 62.7 7 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Sorgo tech mach mix 90.9 16.4 18 0.2 Sorgo tech mach mix 45.45 8.18 9 0.4 Sorgo tech bueyes mix 45.45 8.18 9 0.4 Sorgo tech bueyes mix 272.7 32.7 35 22 0.3 Cebola <mach.< td=""> mix 272.7 32.7 35 22 0.3 <!--</td--><td></td><td></td><td></td><td>142</td><td>10</td><td>85</td><td> </td><td>0,2</td></mach.<>				142	10	85		0,2
Maiz mix urea 90.9 (16.4 111 12 91 0.2 Frijol fech, mach y riege mix Frijol semilla tech mach wix 136.35 62.7 79.1 18 1 Arroz tech secono-mac Mix 45.45 8.18 9 0.2 3.4 0.2 Arroz tech sec. bueyes viea 90.9 16.4 18 0.8 0.8 Arroz tech sec. bueyes urea 90.9 41.8 0.2 3.4 0.2 Arroz tech bueyes sec Sorgo tech riego urea 136.35 62.7 7 0.7 9 0.6 Sorgo tech mach mix 90.9 16.4 18 0.2 7 79.1 18 0.3 Sorgo tech bueyes mix 45.45 8.18 9 0.4 3.8 0.4 3.6 0.4 3.8 0.2 0.4 3.8 0.4 3.6 0.4 3.8 0.2 0.4 3.8 0.2 0.4 3.8 0.2 0.4 3.8 0.4 0.4 3.8 0.2 <td>Tabaco virg. hom de rie</td> <td>mix</td> <td>545,4</td> <td>98,2</td> <td>12</td> <td>54</td> <td></td> <td></td>	Tabaco virg. hom de rie	mix	545,4	98,2	12	54		
Maiz mix urea 90.9 136,35 62.7 62.7 Frijol tech.mach y riege mix 90.9 16.4 18 0.8 Frijol semilla tech mach mix 136,35 23.2 21 3.4 0.2 Arroz tech secono-max wiea 136,35 62.7 70.9 9 0.6 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech sec. bueyes urea 90.9 16.4 18 0.2 Arroz tech bueyes sec urea 136,35 62.7 7 70.9 9 0.6 Arroz tech bueyes sec urea 136,35 62.7 7 79.1 18 0.3 Sorgo tech mach mix 45.45 8.18 9 90.9 41.8 7 Sorgo tech bueyes mix 45.45 8.18 9 9 9 14.18 16 Cebola mach. mix 272.7 32.7 35 22 12 12 12 Repolio cons tech mach mach		nitrato d.potas	99,99	13		38		
urea 136,35 62.7 79.1 18 1 Frijol tech.mach y riegd mix 90,9 16.4 18 0.8 Arroz tech secono-mad mix 136,35 23.2 21 3.4 0.2 Arroz tech secono-mad mix 45,45 8.18 9 0.2 Arroz tech sec. bueyes urea 90,9 1.6.4 18 0.2 Arroz tech bueyes sec urea 45,45 20.9 0.2 Sorgo tech riego urea 45,45 8.18 9 0.3 Sorgo tech mach mix 45,45 8.18 9 0.3 Sorgo tech bueyes mix 45,45 8.18 9 0.3 Cebola mach. mix 272.7 32.7 35 22 urea 181.8 83.6 181.8 83.6 181.8 Lechuga tech.bueyes mix 272.7 32.7 35 22 urea 181.8 83.6 183.6 183.6 183.6 183.6 </td <td></td> <td>-</td> <td></td> <td>111</td> <td>12</td> <td>91</td> <td></td> <td>0,2</td>		-		111	12	91		0,2
urea 136,35 62.7 79.1 18 1 Frijol tech.mach y riegd mix 90,9 16.4 18 0.8 Arroz tech secono-mad mix 136,35 23.2 21 3.4 0.2 Arroz tech secono-mad mix 45,45 8.18 9 0.2 Arroz tech sec. bueyes urea 90,9 1.6.4 18 0.2 Arroz tech bueyes sec urea 45,45 20.9 0.2 Sorgo tech riego urea 45,45 8.18 9 0.3 Sorgo tech mach mix 45,45 8.18 9 0.3 Sorgo tech bueyes mix 45,45 8.18 9 0.3 Cebola mach. mix 272.7 32.7 35 22 urea 181.8 83.6 181.8 83.6 181.8 Lechuga tech.bueyes mix 272.7 32.7 35 22 urea 181.8 83.6 183.6 183.6 183.6 183.6 </td <td>Maiz</td> <td>mix</td> <td>90,9</td> <td>16.4</td> <td>18</td> <td></td> <td></td> <td></td>	Maiz	mix	90,9	16.4	18			
Frijol tech.mach y rlega mix 79,1 18 1 Frijol semilla tech mach mix 136,35 23,2 21 3,4 0,2 Arroz tech secano-max urea 136,35 62,7 70,9 9 0,6 Arroz tech bueyes sec urea 45,45 8,18 9 0,2 Sorgo tech riego mix 90,9 16,4 18 0,2 Sorgo tech mach mix 90,9 16,4 18 0,2 Sorgo tech mach mix 90,9 16,4 18 0,3 Sorgo tech mach mix 45,45 8,18 9 0,4 Sorgo tech bueyes mix 45,45 8,18 9 0,4 Sorgo tech bueyes mix 272,7 32,7 35 22 0,4 Cebolla mach. mix 272,7 32,7 35 22 0,3 Cebolla mach. mix 272,7 32,7 35 22 0,3 Lechuga tech.bueyes mix 272,7 32,7 35 22 0,3 Ibendia feend.			136,35					
Frijol tech.mach y rlega mix 90,9 16.4 18 0.8 Frijol semilla tech mach mix 136.35 23.2 21 3.4 0.2 Arroz tech secano-mac mix 45.45 8.18 9 0.6 Arroz tech sec. bueyes urea 90,9 16.4 18 0.2 Arroz tech sec. bueyes urea 45.45 20,9 0.2 Sorgo tech riego mix 90,9 16.4 18 Virea 136.35 62.7 7 7,1 18 0.3 Sorgo tech mach mix 45.45 8.18 9 7,1 18 0.3 Sorgo tech bueyes mix 45.45 8.18 9 0.4 18 36 62.7 7<					18			1
Frijol semilla tech mach mix 136.35 23.2 21 3.4 0.2 Arraz tech secano-macmix 45.45 8.18 9 70,9 9 0.6 Arraz tech sec. bueyes urea 90,9 11.8 0.2 70,9 9 0.6 Arraz tech bueyes sec urea 45.45 20,9 0.2 22 23.2 21 3.4 0.2 Sorgo tech mach mix 90,9 16.4 18 0.2 22 3.6 0.2 Sorgo tech mach mix 90,9 16.4 18 0.3 3.8 0.3 Sorgo tech bueyes mix 45.45 8.18 9 0.4 3.8 3.6 0.4 Sorgo tech bueyes mix 45.45 8.18 9 0.4 3.8 3.6 0.4 Cebolla mach. mix 45.45 8.18 9 0.3 0.3 0.4 3.8 3.6 0.3 Cebolla mach. mix 272.7 32.7 35 22 0.3 0.3 Lechuga tech.bueyes mix 272	Friid tech mach v riego	mh	000					
Arroz tech secono-max 45,45 8,18 9 Arroz tech sec, bueyes urea 136,35 62,7 Arroz tech bueyes sec urea 45,45 20,9 0.2 Sorgo tech riego mix 90,9 16,4 18 0.2 Sorgo tech riego mix 90,9 16,4 18 0.2 Sorgo tech mach mix 45,45 8,18 9 0.3 Sorgo tech bueyes mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.3 Cebolla mach. mix 272,7 32,7 35 22 0.3 Urea 181,8 83,6 18 36 18 36 Lechuga tech.bueyes mix 272,7 32,7 35 22 12 urea 136,35 62,7 32,7 35 22 12						31		
ureq 136,35 62,7 70,9 9 0.6 Arroz tech sec, bueyes weq 45,45 20,9 0.2 Sorgo tech riego mix 90,9 16,4 18 0.2 Sorgo tech riego mix 90,9 16,4 18 0.2 Sorgo tech mach mix 45,45 8,18 9 0.3 Sorgo tech mach mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.3 Cebolla mach. mix 272,7 32,7 35 22 0.3 Cebolla mach. mix 272,7 32,7 35 22 0.3 Urea 181,8 83,6 18 62,7 125 125 Repolio cons tech macmix 272,7 32,7 35 22 125 Iomate ind. tech mact mix 272,7 32,7 35 22 125 Iomate d. mesa, bueyemix 54,45 81,8						07	1	0.2
Arroz tech sec. bueyes urea 90,9 41.8 0.2 Arroz tech bueyes sec urea 136.35 62.7 0.2 Sorgo tech riego mix 90,9 16.4 18 0.3 Sorgo tech mach mix 45.45 8.18 9 0.4 Sorgo tech mach mix 45.45 8.18 9 0.4 Sorgo tech bueyes mix 272.7 32.7 35 22 0.3 Cebolta mach. mix 272.7 32.7 35 22 0.3 Urea 181.8 83.6 18.6 18.6 18.6 18.6 Lechuga tech.bueyes mix 272.7 32.7 35 22 17 Irea 136.35 62.7 32.7 35 22 16.35 Irea 272.7 32	Anoz rech secono-mo		1 1		Ŷ			
Arroz tech sec. bueyes urea 90,9 41,8 0.2 Arroz tech bueyes sec urea 45,45 20,9 0.2 Sorgo tech riego mix 90,9 16,4 18 0.2 Sorgo tech mach mix 45,45 8,18 9 0.3 Sorgo tech mach mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.4 Sorgo tech bueyes mix 45,45 8,18 9 0.3 Cebolla mach. mix 272,7 32,7 35 22 0.3 Cebolla mach. mix 272,7 32,7 35 22 0.3 Lechuga tech.bueyes mix 272,7 32,7 35 22 0.3 urea 181,8 83,6 - - - - - Iomate ind. tech mach mix 272,7 32,7 35 22 - - urea 136,35 62,7 - - - - - - <t< td=""><td></td><td>urea</td><td>130,35</td><td></td><td>~</td><td></td><td></td><td>~ (</td></t<>		urea	130,35		~			~ (
Arroz tech bueyes sec Sorgo tech riego urea $45,45$ $20,9$ 0.2 Sorgo tech riego mix $90,9$ $16,4$ 18 $79,1$ 18 0.3 Sorgo tech mach mix $45,45$ $8,18$ 9 $79,1$ 18 0.3 Sorgo tech bueyes mix $45,45$ $8,18$ 9 0.4 Sorgo tech bueyes mix $45,45$ $8,18$ 9 0.4 Sorgo tech bueyes mix $45,45$ $8,18$ 9 0.4 Sorgo tech bueyes mix $272,7$ $32,7$ 35 22 $181,8$ $83,6$ $18,6$ $18,66$	1				Ŷ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
urea 136,35 62.7 79,1 18 0.3 Sorgo tech mach mix $45,45$ $8,18$ 9 0.3 Sorgo tech bueyes mix $45,45$ $8,18$ 9 0.4 Sorgo tech bueyes mix $45,45$ $8,18$ 9 0.4 Sorgo tech bueyes mix $45,45$ $8,18$ 9 0.3 Cebolta mach. mix $272,7$ $32,7$ 35 22 $41,8$ Chittoma tech bueyes mix $272,7$ $32,7$ 35 22 $41,8$ Lechuga tech.bueyes mix $272,7$ $32,7$ 35 22 $42,7$ $32,7$ 35 22 $42,7$ $32,7$ 35 22 $42,7$ $32,7$ 35 22 $42,7$ $32,7$ 35 22 $42,7$ $32,7$ 35 22 $42,7$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$ $43,6,5$	Arroz tech bueyes sec	urea						0,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sorgo tech riego	mix	90,9	16 <i>.</i> 4	18			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		urea	136,35	62,7				
urea 90,9 41,8 0,4 Sorgo tech bueyes mix 45,45 8,18 9 0,4 Sorgo tech bueyes mix 45,45 8,18 9 0,3 Cebolla mach. mix 363,6 43,6 38 36 Chiltoma tech bueyes mix 272,7 32,7 35 22 urea 181,8 83,6 272,7 32,7 35 22 urea 272,7 32,7 35 22 urea 272,7 125 125 Repolko cons tech mac mix 272,7 32,7 35 22 urea 136,35 62,7 125 10 Tomate ind. tech mact mix 272,7 32,7 35 22 urea 136,35 62,7 125 125 Tomate ind. tech mact mix 272,7 32,7 35 22 urea 136,35 62,7 144 20 136,35 62,7 144 20 136,36 64,7 20				79,1	18			0,3
urea 90,9 41.8 0.4 Sorgo tech bueyes mix 45.45 8.18 9 0.3 Cebolla mach. mix 363.6 43.6 38 36 Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6 - - - Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6 - - - Lechuga tech.bueyes mix 272.7 32.7 35 22 - urea 272.7 125 - - - - Iomate ind. tech mact mix 272.7 32.7 35 22 - - urea 136.35 62.7 - - - - - Iomate ind. tech mact mix 272.7 32.7 35 22 - - - - Iomate ind. tech mach rid mix 272.7	Sorgo tech mach	mix	45,45	8,18	9			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		urea	90,9	41,8				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					9			0.4
urea 90,9 41,8 50 9 0.3 Cebolla mach. mix 363,6 43,6 38 36 Chiltoma tech bueyes mix 272,7 32,7 35 22 urea 181,8 83,6 18 18 18 Lechuga tech.bueyes mix 272,7 32,7 35 22 urea 136,35 62,7 32 35 22 urea 136,35 62,7 35 35 67 Sandoflor 6 6 6 6 6 6 Tomate d. mesa, bueye mix 545,4 81,8 35 67 36 Sandoflor 44 4 2 30 34 36 34 36 urea 181,8 83,6 72 18	Sorgo tech bueves	mix	45.45					
Cebolia mach. mix 363,6 43,6 38 36 Chiltoma tech bueyes mix 272,7 32,7 35 22 urea 181,8 83,6	bolge lean bacyot	1			•			
Cebolla mach. mix 363.6 43.6 38 36 Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6 18.6 18.6 18.6 18.6 Lechuga tech.bueyes mix 272.7 32.7 35 22 125 Repollo cons tech mac mix 272.7 32.7 35 22 125 Tomate ind. tech mact mix 272.7 32.7 35 22 125 Tomate ind. tech mact mix 272.7 32.7 35 22 125 Tomate ind. tech mact mix 272.7 32.7 35 22 125 Tomate d. mesa, bueye mix 545.4 81.8 35 67 Sandoflor 4.4 4.8 4.8 4.8 4.8 Virea 181.8 83.6 43.6 47 30 urea 181.8 83.6 72 165 165 Papa cons mach sec y mix 363.6 65.4 72 166 Papa semilla tech mac mix 363.6		u cu	,,,,		0			03
urea 181.8 83.6 Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6				50	•			0,5
urea 181.8 83.6 Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6								
urea 181.8 83.6 Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6	Coholle month		0,0,1	40.4	• •	21		
Chiltoma tech bueyes mix 272.7 32.7 35 22 urea 181.8 83.6	Cebolia mach.	1			38	30		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1					
Lechuga tech.bueyes mix 272.7 32.7 35 22 Repollo cons tech mad mix 272.7 125	Chiltoma tech bueyes	1			35	22		
urea 272.7 125 Repollo constech mad mix 272.7 32.7 35 22 urea 272.7 125 125 125 Tomate ind. tech mach mix 272.7 32.7 35 22 urea 136,35 62.7 32.7 35 22 Tomate d. mesa, bueye mix 545.4 81.8 35 67 Sandoflor 6 4.4 34 34 34 Zanaoria tech mach rie mix 272.7 40.9 18 34 urea 181.8 83.6 47 30 urea 181.8 83.6 55 52 Papa cons mach sec y mix 363.6 65.4 72 urea 136.35 62.7 5								
Repollo constech mad mix 272.7 32.7 35 22 Iomate ind. tech mact mix 272.7 125 125 Iomate ind. tech mact mix 272.7 32.7 35 22 urea 136,35 62.7 54 54 sulph d amon 45.45 9.54 54 54 Tomate d. mesa, bueye mix 545.4 81.8 35 67 Sandoflor 6 6 6 6 Zanaoria tech mach rie mix 272.7 40.9 18 34 urea 181.8 83.6 7 30 urea 181.8 83.6 72 65.4 72 Papa cons mach sec y mix 363.6 65.4 72 72 urea 181.8 83.6 72 74 Papa semilla tech mac mix 363.6 65.4 72 Urea 136.35 62.7 75 75 Girasol Mix 90.9 10.9 12 7.5 Mani Mix 90.9 10.9 12 7.5 <td>Lechuga tech.bueyes</td> <td>mix</td> <td>272,7</td> <td>32.7</td> <td>35</td> <td>22</td> <td></td> <td></td>	Lechuga tech.bueyes	mix	272,7	32.7	35	22		
Iomate ind. tech mach mix 272,7 125 Iomate ind. tech mach mix 272,7 32,7 35 22 urea 136,35 62,7 54 54,45 9,54 Tomate d. mesa, bueye mix 545,4 81,8 35 67 Sandoflor 6 6 6 6 Tomate d. mesa, bueye mix 545,4 81,8 35 67 Sandoflor 4,4 7 7 30 7 Zanaoria tech mach rie mix 272,7 40,9 18 34 urea 181,8 83,6 7 30 urea 181,8 83,6 72 105 Papa cons mach sec y mix 363,6 65,4 72 12 urea 181,8 83,6 72 12 136,35 62,7 Papa semilla tech mac mix 363,6 65,4 72 12 12 Girasol Mix 90,9 10,9 12 7,5 12 Girasol Mix 90,9 10,9 12 7,5		urea	272,7	125				
Tomate ind. tech mach mix 272.7 32.7 35 22 urea 136,35 62.7	Repollo constech ma	d mix	272,7	32,7	35	22		
urea 136,35 62,7 sulph d amon 45,45 9,54 Tomate d. mesa, bueye mix 545,4 81.8 35 67 Tomate d. mesa, bueye mix 545,4 81.8 35 67 Sandoflor 4A		urea	272,7	125				
sulph d amon Sandoflor 45,45 6 9,54 Tomate d. mesa, bueye and of lor 545,4 81.8 35 67 Sandoflor 4A 4 4 4 4 Zanaoria tech mach rie mix 272,7 40,9 18 34 urea 181.8 83,6 5 5 Ajo tech mach para se mix 363,6 43,6 47 30 urea 227,25 105 5 5 Papa cons mach sec y mix 363,6 65,4 72 552 Papa semilla tech mac mix 363,6 65,4 72 552 Papa semilla tech mac mix 363,6 65,4 72 105 Girasol Mix 90,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5	Tomate ind. tech mac	łmix	272,7	32,7	35	22		
sulph d amon Sandoflor 45,45 6 9,54 Tomate d. mesa, bueye and of lor 545,4 81.8 35 67 Sandoflor 4A 4 4 4 4 Zanaoria tech mach rie mix 272,7 40,9 18 34 urea 181.8 83,6 5 5 Ajo tech mach para se mix 363,6 43,6 47 30 urea 227,25 105 5 5 Papa cons mach sec y mix 363,6 65,4 72 552 Papa semilla tech mac mix 363,6 65,4 72 552 Papa semilla tech mac mix 363,6 65,4 72 105 Girasol Mix 90,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5		urea	136.35	62.7				
Sandoflor 6 Tomate d. mesa, bueye mix 545,4 81.8 35 67 Sandoflor 4,4 4 4 4 4 Zanaoria tech mach rie mix 272,7 40.9 18 34 urea 181.8 83.6 5 67 Ajo tech mach para se mix 363.6 43.6 47 30 urea 227.25 105 5 Papa cons mach sec y mix 363.6 65.4 72 urea 181.8 83.6 65.4 72 Papa semilla tech mac mix 363.6 65.4 72 urea 136.35 62.7 552 Papa semilla tech mac mix 363.6 65.4 72 urea 136.35 62.7 5 5 Foliar 26.4 12.1 5 5 Girasol Mix 90.9 10.9 12 7.5 Mani Mix 90.9 10.9 12 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			1					
Tomate d. mesa, bueye mix 545,4 81,8 35 67 Sandoflor 4,4 Zanaoria tech mach rie mix 272,7 40,9 18 34 urea 181,8 83,6 - - - Ajo tech mach para se mix 363,6 43,6 47 30 urea 227,25 105 - - Papa cons mach sec y mix 363,6 65,4 72 urea 181,8 83,6 - - Papa cons mach sec y mix 363,6 65,4 72 Urea 181,8 83,6 - - Foliar 12 5,52 - - Papa semilla tech mac mix 363,6 65,4 72 - Urea 136,35 62,7 - - - Girasol Mix 90,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5 Soya Mix 90,9 10,9 12		1 .	1 .	1				
Sandoflor 4.4 Zanaoria tech mach rie mix 272.7 40.9 18 34 urea 181.8 83.6	Tomate d mesa buev	1	-	1	35	67		
Zanaoria tech mach rie mix 272.7 40.9 18 34 urea 181.8 83.6 83.6 Ajo tech mach para se mix 363.6 43.6 47 30 urea 227.25 105 105 Papa cons mach sec y mix 363.6 65.4 72 urea 181.8 83.6 18 Papa cons mach sec y mix 363.6 65.4 72 urea 181.8 83.6 12 Papa semilla tech mad mix 363.6 65.4 72 urea 136.35 62.7 105 Foliar 26.4 12.1 12 Girasol Mix 90.9 10.9 12 7.5 Mani Mix 90.9 10.9 12 7.5			1		00	07		
urea 181.8 83.6 Ajo tech mach para se mix 363.6 43.6 47 30 Papa cons mach sec y mix 363.6 65.4 72 Papa cons mach sec y mix 363.6 65.4 72 urea 181.8 83.6	Zapaoria toch mach t			1	18	34		
Ajo tech mach para se mix 363,6 43,6 47 30 Papa cons mach sec y mix 363,6 65,4 72 urea 181,8 83,6 - Papa cons mach sec y mix 363,6 65,4 72 urea 181,8 83,6 - Papa semilla tech mac mix 363,6 65,4 72 Papa semilla tech mac mix 363,6 65,4 72 Girasol Mix 90,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5 Soya Mix 90,9 10,9 12 7,5		1				54		
urea 227,25 105 Papa cons mach sec y mix 363,6 65,4 72 urea 181,8 83,6 12 Foliar 12 5,52 105 Papa semilla tech mac mix 363,6 65,4 72 urea 136,35 62,7 136,35 62,7 Foliar 26,4 12,1 12 7,5 Girasol Mix 90,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5 Soya Mix 90,9 10,9 12 7,5						20		
Papa cons mach sec y mix 363.6 65.4 72 urea 181.8 83.6 - Foliar 12 5.52 - Papa semilla tech mac mix 363.6 65.4 72 urea 136.35 62.7 - - Foliar 26.4 12.1 - Girasol Mix 90.9 10.9 12 7.5 Urea 45.45 20.9 - - - Mani Mix 90.9 10.9 12 7.5 Soya Mix 90.9 10.9 12 7.5	All lech mach paid s					30		
urea 181.8 83.6 Foliar 12 5.52 Papa semilla tech mac mix 363.6 65.4 72 urea 136.35 62.7 55.2 56.35 62.7 Girasol Mix 90.9 10,9 12 7.5 Urea 45.45 20.9 50.9 10.9 12 7.5 Mani Mix 90.9 10,9 12 7.5 5 Soya Mix 90.9 10,9 12 7.5		1	1	1				
Foliar 12 5.52 Papa semilla tech mac mix 363.6 65.4 72 urea 136.35 62.7 Foliar 26.4 12.1 Girasol Mix 90.9 10,9 12 7.5 Urea 45.45 20.9 10.9 12 7.5 Mani Mix 90.9 10,9 12 7.5 Soya Mix 90.9 10,9 12 7.5	Papa cons mach sec	· [1					
Papa semilla tech mad mix 363.6 65.4 72 urea 136.35 62.7 Foliar 26.4 12.1 Girasol Mix 90.9 10,9 12 7.5 Urea 45.45 20.9 10.9 12 7.5 Mani Mix 90.9 10,9 12 7.5 Saya Mix 90.9 10,9 12 7.5								
urea 136.35 62.7 Foliar 26.4 12.1 Girasol Mix 90.9 10,9 12 7.5 Urea 45.45 20.9 10.9 12 7.5 Mani Mix 90.9 10,9 12 7.5 Soya Mix 90.9 10,9 12 7.5			1					
Foliar 26,4 12,1 Girasol Mix 90,9 10,9 12 7,5 Urea 45,45 20,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5 Soya Mix 90,9 10,9 12 7,5	Papa semilla tech ma	qmix	1	4				
Girasol Mix 90,9 10,9 12 7,5 Urea 45,45 20,9 10,9 12 7,5 Mani Mix 90,9 10,9 12 7,5 Soya Mix 90,9 10,9 12 7,5			136,35	62,7				
Urea 45.45 20.9 Mani Mix 90.9 10.9 12 7.5 Soya Mix 90.9 10,9 12 7.5		Foliar						
Mani Mix 90,9 10,9 12 7,5 Soya Mix 90,9 10,9 12 7,5	Girasol	Mix			12	7,5		
Soya Mix 90,9 10,9 12 7.5		Urea	45,45	5 20,9)			
Soya Mix 90,9 10,9 12 7.5	Mani	Mix	90,9	10,5	12	7.5		
	Soya	Mix	90,9	10,9	12	7.5		

Appendix 5. The Applied General Equilibrium model for Nicaragua and list of variables. The price block

$$PM_i = pwm_i * er * (1 + tm_i)$$
(6)

$$PE_i * (1+te_i) = pwe_i * er \tag{7}$$

$$PC_i * XC_i = PD_i * XD_i + PM_i * M_i$$
(8)

$$P_i * X_i = PD_i * XD_i + PE_i * E_i$$
(9)

$$P_{i}^{*}(1-tv_{i}) = PV_{i}^{+} \sum_{j} a_{ji}^{*} PC_{j}$$
(10)

$$PK_{i} = \sum_{j} PC_{j} * imat_{ji}$$
(11)

$$COST_{j} = \sum_{i} PC_{i} * a_{ij} + W_{j} * LC_{j}$$
(12)

$$IPC_{k} = \frac{\sum_{i} PC_{i} * CD_{ik}}{\sum_{i} CD_{ik}}$$
(13)

$$IPCTOT = \frac{\sum_{k} \sum_{i} PC_{i} * CD_{ik}}{\sum_{k} \sum_{i} CD_{ik}}$$
(14)

$$INFLAC_{t} = \frac{IPCTOT_{t}}{IPCTOT_{t-1}} - 1$$
 (15)

Production and factor demand

$$X_i = ad_i * L_i^{\alpha_i} * KF_i^{1-\alpha_i}$$
(16)

$$W_i * L_i = X_i * PV_i * \alpha_i$$
(17)

$$X_e = at_e * \left(\gamma_e * E_e^{\rho_e} + \left(1 - \gamma_e\right) * XD_e^{\rho_e} \right)^{\frac{1}{\rho_e}}$$
(18)

$$\frac{E_e}{XD_e} = \left(\frac{PE_e}{PD_e} * \frac{1 - \gamma_e}{\gamma_e}\right)^{-\frac{1}{\rho_e - 1}}$$
(19)

$$XC_{m} = aC_{m} * \left(\delta_{m} * M_{m}^{-\rho_{m}} + (1 - \delta_{m}) * XD_{m}^{-\rho_{m}} \right)^{-\frac{1}{\rho_{m}}}$$
(20)

$$\frac{M_m}{XD_m} = \left(\frac{PD_m}{PM_m} * \frac{\delta_m}{1 - \delta_m}\right)^{\frac{1}{1 + \rho_m}}$$
(21)

$$DI_{i} = \sum_{j} a_{ij} * X_{j}$$
(22)

Income and consumption

$$GAN_{i} = (P_{i} * (1 - tv_{i})) - COST_{i}) *X_{i}$$
(23)

$$Y_{wk} = \sum_{i} W_{i} * L_{i} + er * trxk_{wk}$$
(24)

$$Y_{cp} = \sum_{r} dgc_{r} * GAN_{r}$$
(25)

$$Y_{pr} = \sum_{u} dgsi * GAN_{u} + er * trxk_{pr}$$
(26)

$$Y_{kp} = \sum_{r} (1 - dgc_{r}) * GAN_{r} + \sum_{u} (1 - dgsi_{u}) * GAN_{u} + er * trxk_{kp}$$
(27)

$$SUBG_{k} = \sum_{i} CSUB_{ik} * PC_{i}$$
(28)

$$PC_{i}*CD_{ik}=PC_{i}*CSUB_{ik}+Q_{ik}*(EXPEND_{k}-SUBG_{k})$$
(29)

$$EXPEND_{k} = (1 - s_{k}) * (1 - td_{k}) * Y_{k}$$
 (30)

$$SC_k = Y_k * (1 - td_k) - EXPEND_k$$
(31)

Government

$$GR = \sum_{i} tv_{i} * P_{i} * X_{i} + \sum_{i} tm_{i} * er * pwm_{i} * M_{i} + \sum_{k} td_{k} * Y_{k}$$
(32)

$$GR = \sum_{i} PC_{i} * GD_{i} + \sum_{i} * er * pwe_{i} * E_{i} * te_{i} + SGOB$$
(33)

$$GD_i = betag_i * GDTOT$$
 (34)

Investment and saving

$$KF_{i,t+1} = KF_{i,t} * (1 - depre) + DK_{i,t}$$
 (35)

$$INV = \sum_{i} PC_{i} * ID_{i}$$

$$STOT = \sum_{k} SC_{k} + sgob + er * sfor$$
(37)

$$\sum_{i} PK_{i} * DK_{i} = INV$$
(39)

$$DK_i = kshare_i * DKTOT$$
 (40)

$$ID = \sum_{j} imat_{ij} * DK_{j}$$
 (41)

Equilibrium of demand and supply

$$XC_i = DI_i + \sum_k CD_{ik} + GD_i + ID_i$$
(42)

Labour market

$$LS=LR+LU$$
 (44)

$$LR_{t+1} = LR0 * \left[\frac{\frac{Y_{cp, t}}{Y_{cp, t-1}}}{\frac{Y_{wk, t}}{Y_{wk, t-1}}} \right]^{\gamma_1}$$
(43)

$$LS_t = ls0*(1+g)^t$$
 (45)

$$DES = LU - \sum_{u} L_{u}$$
(46)

$$L_i = LC_i * X_i \tag{47}$$

$$W_i = W_{i,t-1} * IPC_{wk,t-1} * index_i$$
(48)

List of variables.

Endogenous variables:

SUB _k	= Basic consumption by social class
P _i	= Output price
PD,	= Domestic price of commodity i
Xi	= Production of commodity i
IPC _k	= Consumer price index for class k
IPCTOT	= Consumer price index
INFLAC	= Rate of inflation
$\mathbf{E}_{\mathbf{i}}$	= Exports of commodity i
PM _i	= Domestic price of competitive imports
PE_i	= Domestic price of exports
PC _i	= Composite price of domestic and imported commodities
XC _i	= Composite commodity of domestic and imported products
\mathbf{M}_{i}	= Demand for imports
XD _i	= National production for the domestic market
PV _i	= Value added per unit
PK _i	= Price of capital
COST _i	= Unit cost
\mathbf{W}_{i}	= Wage rate
LC _i	= Labour coefficient
GAN _i	= Total profit in sector i
$\mathbf{L}_{\mathbf{i}}$	= Demand for labour
LS	= Labour supply
LU	= Urban labour demand
LR	= Rural labour demand
DES	= Total unemployment
\mathbf{DI}_{i}	= Demand for intermediate commodities
CD_{ik}	= Demand for commodity i by class k
EXPEND _k	= Expenditure on consumption by class k
Y _k	= Nominal income by class k
SC _k	= Savings by class k
GR	= Total income to the government
GD _i	= Government expenditure on commodity i
SGOB	= Government saving
INV	= Total nominal investment

ID_i	= Investment by sector of origin
DKTOT	= Total investment
STOT	= Total saving
DK _i	= Investment by sector of destination
KF _i	= Capital by sector

Exogenous variables and parameters:

er a_{ij} ad_i α_i at_i τ_i rho_e pwm_i ac_i δ_i rho_m $betag_i$ tm_i $tmtot_i$ $tvtot_i$ va_i te_i tv_i $index_i$ $imat_{ij}$ $kshare_i$ $dgsi_i$ dgc_i	 = Conversion matrix from destination to origin in investment = Share coefficient on total investment = Distributional coefficient of profits for petty capitalists = Distributional coefficient of profits for campesinos
va _i	= Value added
-	
-	•
•	• -
•	
	= Distributional coefficient of profits for petty capitalists
dgc _i	
dgw _i	= Distributional coefficient of wages
q_{ik}	= Budget share of consumption by class
S _k	= Marginal propensity to consume by class
td _k csub _{ik}	= Direct taxes on income= Basic consumption
sfor	= Foreign savings
depre	= Depreciation rate of capital
g	= Growth rate of labour force
trxk _k	= Transfers from abroad by class k
gdtot	= Total government expenditure on goods and services
gamma1	= Migration elasticity